RANDOM NUMBERS FALL MAINLY IN THE PLANES
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Virtually all the world’s computer centers use an arithmetic procedure for
generating random numbers. The most common of these is the multiplicative
congruential generator first suggested by D. H. Lehmer. In this method, one
merely multiplies the current random integer I by a constant multiplier K and
keeps the remainder after overflow:

newl = K X old I modulo M.

The apparently haphazard way in which successive multiplications by a large
integer K produce remainders after overflow makes the resulting numbers work
surprisingly well for many Monte Carlo problems. Scores of papers have re-
ported favorably on cycle length and statistical properties of such generators.

The purpose of this note is to point out that all multiplicative congruential
random number generators have a defect—a defect that makes them unsuit-
able for many Monte Carlo problems and that cannot be removed by ad-
justing the starting value, multiplier, or modulus. The problem lies in the
“crystalline” nature of multiplicative generators—if n-tuples (uy,us,. . ., %),
(ug,s, . . .,Uns1),. .. Of uniform variates produced by the generator are viewed
as points in the unit cube of #» dimensions, then all the points will be found
to lie in a relatively small number of parallel hyperplanes. Furthermore, there
are many systems of parallel hyperplanes which contain all of the points; the
points are about as randomly spaced in the unit n-cube as the atoms in a perfect
crystal at absolute zero.

One can readily think of Monte Carlo problems where such regularity in
“random” points in n-space would be unsatisfactory; more disturbing is the
possibility that for the past 20 years such regularity might have produced bad,
but unrecognized, results in Monte Carlo studies which have used multiplicative
generators.

Some Notation.—For any modulus m and multiplier k, let

Tr2Ts... 0<r;,<m

be a sequence of residues of m generated by the recurrence relation
7441 = kry modulo m,
and let uy,us,us, . . . be that sequence viewed as fractions of m:
u = ri/m, up = ro/m, uz = r3/m,... .

Let m; = (uy,...,us), m2 = (Ug,. .., Un41), T3 = (Us,. . .,Uns2), . . . be points of the
unit n-cube formed from n successive u’s.

25



26 MATHEMATICS: G. MARSAGLIA Proc. N. A. S.

THEOREM 1. If c¢1)cs. . . ,Ca 1S any choice of integers such that
ca + ek + ck? 4. ..+ k"' = 0 modulo m,

then all of the points mi,ms,. ., will lie in the set of parallel hyperplanes defined by
the equations

arr + cr: +.. .+ cap, = 0,£1,£2,. ...
There are at most

leal + lee| +... 4 |eal

of these hyperplanes which intersect the unit n-cube, and there is always a choice of
1,63, - . .,Cn SUch that all of the points fall in fewer than (n!m)*/* hyperplanes.
Here is a table of (n/m)!/* for the most common values of m, powers of 2:

Upper Bound for the Number of Planes Containing All n-tuples
n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
m = 21 73 35 23 19 16 15 14 13
m = 2% 465 141 72 47 36 30 26 23
m = 2% 2,953 566 220 120 80 60 48 41
m = 2% 5,907 952 333 170 108 78 61 51
m = 2% 7,442 1,133 383 191 119 85 66 54
m=2% | 119,086 9,065 2,021 766 391 240 167 126

For example, in a binary computer with 32-bit words, m = 232, fewer than 41
hyperplanes will contain all 10-tuples, fewer than 566 hyperplanes will contain
all 4-tuples, and fewer than 2,953 planes will contain all 3-tuples. (The genera-
tor 7441 = kr; mod 2% will produce 357,913,941 independent points in the unit
3-cube, and theoretically the smallest number of planes containing all these
points is about 103, in contrast to the bound of 2,953.)

The theorem can be proved in four steps:

Step 1: If

a + ek + ek?+...4+ c.k* ! = 0 modulo m,
then

C1U; + ColUit +...+ Crllitn—1
is an integer for every 7, and thus
Step 2: The point 7; = (U, Uiy, - - - ,Ustn—1) Must lie in one of the hyperplanes
oty + cTs + ...+ cuy = 0,£1,£2,£3,.. ..

Step 3: The number of hyperplanes of the above type which intersect the
unit n-cube, 0 < 2: < 1, ..., 0 < z, < 1, is at most
Icll + |c2| +...+ lcn|>

and

Step 4: For every multiplier ¥ and modulus m there is a set of integers
cy,. . ., €, (not all zero) such that
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a + ek + ck? +...4 c,k*' = 0 modulo m
and

led] + lel +.. .4 [ea] < (mIm)rim,

To prove Step 1, note that by using the greatest integer notation [ ], the se-
quence 7,7y,. . . can be put in the form

r1, kr1 — mlkry/m), k?rv — mlk?r/m], k*r1 — m[k3r/m],. ..

and thus the sequence u;,us,. .. may be written

m mJ) m m] m m!| m mJ

Clearly, if ¢; + ¢k +. ..+ c,k"~! is a multiple of m, then cyu; +. . .4 Calitna
will be an integer.

Step 2 follows immediately from Step 1, and Step 3 is easily verified.

Now, for Step 4 we want to prove that there are integers ci,c,,. . .,¢, not all
zero such that

¢+ ek + ck? + ...+ c.k*~! = 0 modulo m 1)
and

lcll + le| +...4 lea] < (Im)rim,

To do this we transform the problem so that it becomes a standard one in the
geometry of numbers: every solution to (1) can be expressed (uniquely) by the
relation

m 0 0 0 ... 00
—k 10 0 ... 00

(1. . ,Ca) = (t1y. .. ,tn) 0 -k 10 0 01,
0 000 ... —k 1

where the ¢’s are integers. Thus the problem is to show that there are integers
t1,. . .t, not all zero such that

[mby — kty] + |ta — kts| +...4 [tacs — kta| + [t < Im)V/™

This follows from a general theorem on linear forms by Minkowski, using the
basic result that a symmetrie, convex set of volume 2" in n-space must contain
a point (other than the origin) with integral coordinates. Elegant, elementary
proofs are now available; see, e.g., Hardy and Wright,? pages 394-396 and 413,
or Cassels,! pages 150-153.

Step 4 together with the Steps 1-3 complete the proof of Theorem 1—every
multiplicative random number generator produces n-tuples of uniform variates
which lie in at most (n/m)'/* parallel hyperplanes. Furthermore, any choice of
¢y, . . .,c, which satisfies congruence (1) will provide a set of at most |¢1| +...+
|c.| parallel hyperplanes which contain all of the n-tuples produced by the
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generator. Similar results can be established for congruential generators of the
type 71 =kr; + ¢ mod m.
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