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ABSTRACT

Motivation: Exploitation of locally similar 3D patterns of physico-
chemical properties on the surface of a protein for detection
of binding sites that may lack sequence and global structural
conservation.
Results: An algorithm, ProBiS is described that detects structurally
similar sites on protein surfaces by local surface structure alignment.
It compares the query protein to members of a database of protein
3D structures and detects with sub-residue precision, structurally
similar sites as patterns of physicochemical properties on the protein
surface. Using an efficient maximum clique algorithm, the program
identifies proteins that share local structural similarities with the query
protein and generates structure-based alignments of these proteins
with the query. Structural similarity scores are calculated for the query
protein’s surface residues, and are expressed as different colors on
the query protein surface. The algorithm has been used successfully
for the detection of protein–protein, protein–small ligand and protein–
DNA binding sites.
Availability: The software is available, as a web tool, free of charge
for academic users at http://probis.cmm.ki.si
Contact: dusa@cmm.ki.si
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
In the Protein Data Bank (PDB), there are presently 8000 protein
structures derived from structural genomic studies and 2000 of these
have no known function (Berman et al., 2002). Binding sites are
closely related to protein function, the identification of binding sites
in proteins is essential to an understanding of their interactions with
ligands, including other proteins. Many computational tools for the
analysis (Tuncbag et al., 2009) and prediction (Ezkurdia et al., 2009)
of binding sites have been reported.

Binding sites can retain conservation of sequence and structure
(Keskin et al., 2005; Valdar and Thornton, 2001). Structural
conservation however is more prevalent (Lecomte et al., 2005). Even
in the absence of obvious sequence similarity, structural similarity
between two protein structures can imply common ancestry, which
in turn can suggest a similar function (i.e. a binding site). However,
it is also possible for structurally similar proteins to have different
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functions, and similar folding by itself does not necessarily imply
evolutionary divergence (Russell et al., 1997). In the case of
divergent evolution, similarity is due to the common origin, such
as accumulation of differences from homologous ancestral protein
structures. In contrast, convergent evolution arises as a result of some
sort of ecological or physical drivers toward a similar solution, even
though the structure has arisen independently. A rough estimate is
that the frequency of two different folds converging to a similar
statistically significant side-chain pattern is ∼1% (Russell, 1998). It
has been shown that convergent evolution of enzyme binding sites
is not a rare phenomenon (Gherardini et al., 2007).

If a protein has no known function, but a known 3D structure,
inferences concerning function can be made by comparison to other
proteins. Recently, a number of web servers for local structural
alignment have become available. These provide comparison of
pre-selected parts of proteins (e.g. binding sites, user-defined
structural motifs) (Angaran et al., 2009; Debret et al., 2009;
Shulman-Peleg et al., 2008) against binding sites or whole-protein
structural databases. The MultiBind and MAPPIS servers (Shulman-
Peleg et al., 2007, 2008) allow the identification of common
spatial arrangements of physicochemical properties such as H-bond
donor, acceptor, aliphatic, aromatic or hydrophobic in a set of user
provided protein binding sites defined by interactions with small
molecules (MultiBind) or in a set of user-provided protein–protein
interfaces (MAPPIS). Others provide comparison of entire protein
structures (Ausiello et al., 2008) against a number of user submitted
structures. Unlike global alignment approaches, local structural
alignment approaches are suited to detection of locally conserved
patterns of functional groups, which often appear in binding sites
and have significant involvement in ligand binding (Shulman-Peleg
et al., 2007).

In this article, we describe an algorithm ProBiS, which, in contrast
to these methods, enables local structural alignment of entire protein
surface structure against a large database of protein structures in
reasonable time. It detects structurally similar regions in a query
protein by mapping structural similarity scores on its surface. The
comparison involves geometry and physicochemical properties, and
is conducted at the level of amino acid functional groups. For each
pairwise comparison of the query protein to a database protein, the
algorithm produces multiple local alignments of the surface regions
that are found in both; no attempt is made to align the proteins
globally and similar folding is not a requirement for a relationship
between the two proteins. Since no presumptions about localization
of binding sites prior to comparison are used, ProBiS may detect
new binding sites and suggest ligands that these binding sites may
accommodate.
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ProBiS is a generalization of our earlier algorithm that predicts
protein–protein binding sites by searching for conserved protein
surface structure and physicochemical properties in proteins with
similar folds, and permitting comparison of only a few structural
neighbors (Carl et al., 2008; Konc and Janežič, 2007a). Major
extensions of the ProBiS algorithm over the earlier algorithm
include:

• Comparison of proteins regardless of their fold similarities.
ProBiS compares the query protein with a database of over
23 000 protein structures. In contrast to the previous algorithm,
which simultaneously compares only a few proteins with
similar folds, ProBiS identifies all proteins that share local
similarities with the query protein. It then calculates local
structural similarity scores of query protein residues in each
of these retrieved proteins and in this way detects structurally
similar regions, which often correspond with binding sites.

• Detection of similarities between backbone segments with
different conformations (e.g. flexible loops) in the query and
database proteins. Such similar backbone segments are detected
by 3D comparison of protein backbones.

• Assignment of a number of different scores to every structural
alignment. These scores are designed to measure statistical
and structural significance and are the basis for the retrieval
of similar proteins from the database; only alignments with
favorable scores are retained for further analysis of structural
similarity.

• Detection of ‘fingerprints’ that are highly conserved amino acid
residues within the most reliable local structural alignments
found. These are most commonly of proteins with the same fold
as the query protein. The remaining structural alignments are
subsequently examined for similar motifs. As a result, proteins
that share with the query protein a structurally similar binding
site but have a different fold can be retrieved from the protein
database.

• Storage of results in a database, each entry of which has a record
of the aligned residues, rotational matrix, translational vector
and alignment scores.

The advantages and limitations of ProBiS in the detection of
protein–protein, protein–small ligand and protein–DNA binding
sites are described using a quantitative performance evaluation
on a test set of 39 proteins. The results show that ProBiS
outperforms other methods that rank amino acid residues by
degree of sequence conservation and also energy-based methods.
Unlike global structural alignment approaches, ProBiS yields high-
quality local structural alignments of proteins with dissimilar folds,
and aligns similar binding sites without presumption of their
whereabouts in the compared structures. The extent of structural
similarity in protein–protein and protein–small ligand binding sites
is also discussed.

2 METHODS
ProBiS detects surface structural patches that are common to the query
protein and a database protein. The algorithm identifies structurally similar
sites, whose constituent residues may be scattered in sequence, but are close
together in structure. Such similar patches are often related to ligand binding
and the search for them exploits the fact that binding sites share similar

patterns of interactions in proteins which perform similar functions but may
or may not have different folding patterns. The possible interactions are
represented with sub-residue precision and a structural similarity search
algorithm, which employs a fast maximum clique algorithm and operates
independently of fold and sequence, performs a local, surface-oriented
comparison of the proteins.

A clique is a subset S of vertices in a graph, composed of vertices and
edges, such that each pair of vertices in S is connected by an edge. A
maximum clique in a given graph is the clique with the largest number
of vertices. The maximal clique algorithm of Bron and Kerbosch, which
has previously been used to compare binding sites (Schmitt et al., 2002),
significantly differs from our maximum clique algorithm (Konc and Janežič,
2007b). While a maximal search is for all cliques that are not subgraphs of
any other clique, maximum clique algorithms search only for the clique with
the maximum number of vertices. Consequently, although both address a
NP-hard problem, finding a maximum clique requires an order of magnitude
less computation time.

Using a fast maximum clique algorithm and a strategy of dividing
graphs into subgraphs, enables our approach to the comparison of complete
protein surfaces. ProBiS compares the query protein structure sequentially
to proteins in the PDB and retrieves structures that share local structural
similarities with the query protein. It uses these similar structures to generate
a structure-based sequence alignment of the query protein with the proteins
from the database and then calculates the similarity score for each query
protein surface residue, projecting these scores as colors onto the surface of
the query protein. Each of these steps is described in detail in the following
sections.

2.1 Representation of protein surfaces
Residues on the protein surface are identified by an algorithm that identifies
the solvent accessible surface atoms (Konc et al., 2006). This subset of all
the protein atoms is represented as a series of graphs of vertices and edges,
as shown in Figure 1. Vertices are points in 3D space, and each replaces one
functional group belonging to a residue on the protein surface.

Functional groups are specific groups of atoms within these residues
responsible for the characteristic interactions of the protein with other
molecules. Each vertex is labeled with the physicochemical properties of
a functional group that it replaces, hydrogen bond acceptor (AC), hydrogen
bond donor (DO), mixed acceptor/donor (ACDO), aromatic (PI) and aliphatic
(AL); (Schmitt et al., 2002).

To compare two proteins, represented as graphs, a product graph is
constructed as shown in Figure 1. The corresponding vertices in this product
graph are pairs of vertices with identical physicochemical properties (u1, u2),
e.g. two acceptors: (AC, AC), and each of the two vertices in the pair is

Fig. 1. Different functional groups in proteins are assigned distinct labels
(see color encoding). Subgraphs are generated from the query protein and
each database protein and then used to produce product graphs which reveal
the extent of superposition of any pair of subgraphs.
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Fig. 2. Schematic representation of the ProBiS algorithm. (A) The query protein structure (Q) is compared in a pairwise manner with each of ∼23 000
non-redundant structures (P). (B) Proteins, represented as graphs of vertices (white dots) and edges (not shown), are divided into n overlapping subgraphs,
where n equals the number of vertices and all vertices are within 15 Å of a central vertex: three subgraphs per protein are depicted here as distinctly colored
encirclements. A fast distance-matrix-based filtering is applied to them to eliminate non-similar subgraphs. (C) A product graph is constructed for each similar
pair of subgraphs (see color encoding in B and C). A maximum clique (thick lines) in a product graph represents the largest similarity between two compared
protein subgraphs. (D) Each maximum clique produces a structural alignment of two compared proteins (the alignment shown corresponds to the middle
maximum clique in C). (E) Steps A–D are repeated for each protein from the nr-PDB and the results are stored in a MySQL database. Structural similarity
scores are calculated and projected on the query protein surface. Structurally similar and variable residues are colored red and blue, respectively. High-scoring
residues are considered as predicted structurally similar binding sites.

derived from its own protein graph. Two vertices (u1, u2) and (v1, v2) of a
product graph are connected by an edge if and only if distances between u1
and v1 and between u2 and v2 differ by <2 Å (Konc and Janežič, 2007a).
Protein graphs can be regarded as rigid 3D protein structures of vertices,
and a product graph constructed from two such graphs is an approximate
representation of all possible rotations and translations of one protein graph
onto the other. A maximum clique in the product graph corresponds to the
rotational–translational variation that superimposes on, or aligns with the
largest number of vertices in the two protein graphs.

2.2 The ProBiS algorithm
A local structurally similar site is defined as one or more surface functional
groups that adopt a similar geometrical arrangement in two or more compared
proteins. The vertices representing these groups can be superimposed with
a low root mean square deviation (RMSD), but such a local alignment does
not guarantee that entire protein backbones can be superimposed. Protein
surface residues are represented as vertices in 3D space and a structurally
similar site is merely one with a similar geometrical arrangement of vertices.
A maximum clique in the product graph described above is equivalent to a
vertex similarity between the two proteins, and in turn, each such vertex
similarity, is equivalent to a local structural alignment of common surface
residues. A crucial step in the comparison of whole-protein surfaces is the
division of protein graphs into subgraphs and filtering of these that precedes
the actual comparison using the computationally intensive maximum clique
algorithm. The strategy of the ProBiS algorithm is presented schematically
in Figure 2. The method, steps A–E corresponding to those in Figure 2, is
described in greater detail as follows.

(A) A query protein structure (Q) whose structurally similar regions
are to be detected is compared with each of ∼23 000 non-redundant PDB
structures (P). Residues on the surface of the proteins, identified by a solvent
accessible surface algorithm (Konc et al., 2006), are represented as graphs
with vertices and edges, and their functional groups are replaced by one of
the five vertex types which are shown as white dots in Figure 2B. Finally,
vertices that are separated by <15 Å are connected with edges.

(B) Proteins represented as graphs of vertices and edges, are divided into
n overlapping subgraphs, where n is the number of vertices in each protein
graph. Figure 2B shows two proteins, with three such subgraphs for each
protein depicted as distinctly colored regions. A subgraph of a protein graph
is defined as all vertices within 15 Å of a central vertex, and is compactly
represented as a distance matrix of these neighboring vertices. To find if
two such subgraphs, i.e. two distance matrices, represent similar parts of
their respective protein surfaces, the two distance matrices are subtracted,
and from the resulting difference matrix, a value of similarity is calculated
(as described in Konc and Janežič, 2007a). For each pair of query and
database protein’s subgraphs, which are similar as judged by this value,
a product graph is constructed. This ensures that only pairs of subgraphs
that have sufficiently similar geometrical arrangements of vertices and with
similar physicochemical properties proceed to the next, computationally
intensive step.

(C) All sufficiently similar pairs of subgraphs that pass the filtering in
the previous step are then subjected to the more rigorous maximum clique
procedure, which detects vertex-to-vertex correspondences between the two
protein graphs being compared. A product graph is constructed for each
such pair of protein subgraphs as described above. The algorithm then
finds a maximum clique in each product graph by examining approximately
100–1000 product graphs with up to 1000 vertices each in each protein–
protein comparison. A maximum clique in a product graph corresponds to a
largest common vertex substructure, which can be translated to a maximum
substructure common to the two compared proteins. Maximum cliques of 3, 4
and 3 vertices are shown as thick lines in Figure 2C.

(D) Each maximum clique is equivalent to a single structural alignment
and superimposition of two compared proteins. The alignments are local,
and allow superimposition of maximum numbers of two protein subgraph
vertices. Alignment scores such as surface vectors angle, RMSD and
expectation values (E-values) are calculated for each such local super-
imposition of the two proteins, as discussed in Section 2.4, subsequently.
These alignment scores measure the statistical and structural significance
of the different local structural superimpositions and allow filtering out of
insignificant structural alignments. Maximum cliques passing this filter and
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possessing at least five common vertices are joined into clusters, which
represent the larger structural similarities in the protein surfaces being
compared. Finally, a search for similarities in flexible parts of the two
compared proteins is conducted, as described below.

(E) Steps A–D are repeated for each database protein and the resulting
alignments and their scores are saved to a results database implemented on the
MySQL platform. The significant local structural alignments can be retrieved
from this results database, using the alignment scores as search parameters.
Only local structural alignments with favorable scores (Section 2.4) are
considered further in the calculation of similarity scores. For every surface
residue in the query protein, ProBiS first sums the number of times it is found
in all favorable local structural alignments. These sums, one for each residue,
are then translated into discrete similarity scores ranging from 0 (blue)
to 9 (red) and the appropriate colors are applied to the structure of the query
protein. To facilitate the comparison with other methods, all query protein
surface residues with structural similarity scores of 7, 8 or 9 are arbitrarily
considered to be parts of binding sites.

2.3 Protein flexibility
Many proteins are flexible, capable of adopting different conformations and
an algorithm that detects similarities in purely rigid structures will have
only limited value. This problem is addressed by searching for backbone
segments with residue compositions and orientations that are similar in
the query protein and the database protein, but which may adopt different
conformations in the two proteins. Each maximum clique, i.e. its rotational–
translational variation, representing a rigid, local similarity, is used to locally
superimpose the two compared protein structures and then their backbones
are examined for pairs of three consecutive amino acid residues meeting the
following conditions.

(1) The distance between the two Cα atoms of the two middle residues
must be <10 Å.

(2) The amino acid codes of three residues of the first protein, must
be similar to those of the second protein. A BLOSUM62 (Blocks
Substitution Matrix) matrix is used to score the match of each residue
pair in these three residue-long alignments (Henikoff and Henikoff,
1992). To exclude spurious matches composed solely of hydrophobic
residues, the cumulative score for the three residues must be >12.

(3) For each of the three similar residues in a pair of proteins a vector
between the first and the third Cα atom is drawn. To ensure similarly
oriented matches, the angle between two such vectors must be <45◦.

Once identified, these backbone segments of three residues are extended
in both directions by adding a new residue to both ends. This is done
independently of sequence order. A pair of residues is only added if it lowers
the expectation value (see Section 2.4, subsequently) of the alignment. No
gaps are allowed and the distances between pairs of newly added residues
may be >10 Å.

2.4 Local structural alignment scores
A number of scores are used to measure the statistical and structural
significance of the local structural alignments and to permit filtering out
of insignificant alignments (see Section 2.2, step D). Since local structural
alignments need not involve a large number of residues, the similarity
that is detected could in fact be a frequently occurring 3D motif, having
no relationship to common protein function. Further, surface properties in
the two aligned surface regions may differ, e.g. the surfaces may have
different curvatures, or they may be differently oriented. The first step in
the calculation of scores is the local superimposition of the two compared
proteins, based on the rotational and translational variation imposed by a
maximum clique. Then, four distinct criteria are applied to each such local
structural alignment.

(1) Surface vectors angle: for each of the two superimposed sets of
vertices, an outer-pointing surface vector originating in the geometric
center and perpendicular to the surface of the protein is constructed.
These vectors each represent the orientation of one of the two
superimposed surface patches of vertices and a smaller angle between
them indicates a similar orientation of the surfaces in this region. Local
structural alignments with surface vector angles <90◦ are retained.

(2) Surface patch RMSD: calculated for each pair of superimposed
vertices, this measures the shape similarity of the two superimposed
surface patches. Local structural alignments having surface patch
RMSD <2.0 Å are accepted.

(3) Surface patch size: structural alignments with fewer than 10 vertices
are discarded.

(4) E-value: ProBiS algorithm calculates an E-value for each local
structural alignment using the Karlin–Altschul equation (Altschul
and Gish, 1996; Altschul et al., 1997; Karlin and Altschul, 1990).
More details are given in the Supplementary Material. In this
calculation, vertices in the structural alignment are converted back
to the corresponding residues and each residue may be represented
by more than one vertex. Consequently, only one occurrence of
each residue in the alignment is counted. In contrast to sequence
alignment approaches, gap penalties are not included in the calculation
of E-values, since structurally similar residues on a protein surface
may by definition, be quite separate in the protein sequence. The lower
the E-value, the less likely that the match is by chance, and the greater
significance of the local structural alignment. The threshold E-value
for acceptance of a structural alignment used here is <1×10−4.

The alignment scores used here have been defined by varying them
systematically and observing the effects of the changes on the binding site
detection.

2.5 Fingerprint residues
Residues that are important for binding of ligands need not be contiguous
but are typically found in well-defined local 3D arrangements and can be
regarded as a fingerprint of the specific binding site. A motif of fingerprint
residues is therefore first identified in a subset of the most reliable structural
alignments and then a search for a similar motif of residues is conducted
among the remaining aligned proteins.

A structure-based sequence alignment of proteins with favorable
alignment scores (described in Section 2.4) is constructed in which the
structurally aligned protein sequences are listed in the order of their
decreasing alignment lengths. Alignment length is the sum of residues in all
local structural alignments that were found for a pair of compared proteins.
In the second step, fingerprint residues are identified in the structure-based
sequence alignment as follows.

(1) Only proteins that structurally align to more than one-third of the
query protein residues and thus represent the most trusted part of the
structure-based sequence alignment are considered.

(2) Discrete similarity scores (between 0 and 9) are calculated for this
‘most trusted’ part of the structure-based sequence alignment.

(3) Structurally similar residues with the highest similarity score, 9 are
labeled as fingerprint residues.

After the fingerprint residues have been identified, their appearance in the
remainder of structurally aligned proteins is sought and protein structures
that share a locally similar interaction pattern with the query protein are
retrieved from the structure-based sequence alignment. For the results to be
accepted, each aligned protein must have a minimum of five such fingerprint
residues.

1163



[12:04 13/4/2010 Bioinformatics-btq100.tex] Page: 1164 1160–1168

J.Konc and D.Janežič

Fig. 3. Schematic representation of nr-PDB database preparation, con-
version to a surface representation and ProBiS results database (MySQL).

2.6 Identification of non-redundant PDB structures
A list of more than 23 000 non-redundant single chain protein structures,
automatically updated each week, is prepared as follows (Figure 3): the
RCSB website provides a list of clustered PDBs derived from the ∼60 000
protein structures in the PDB, in which sequences that are ≥95% identical are
clustered together. The structure with the highest resolution is selected from
each cluster, X-ray crystallographic structures being given preference over
NMR structures. The graph representation of all selected protein structures
and residues on the surface of the proteins are calculated, and are saved
into ‘surface files’. These surface files represent a current view of the non-
redundant database (nr-PDB), which is updated every week following the
regular RCSB protein database update. Surface, instead of PDB files are
used with ProBiS, since they enable faster pairwise comparisons.

2.7 Test set protein structures preparation
As a test set for the detection of binding sites, we use 39 non-redundant
protein structures, each involved in well characterized protein–protein
interactions and crystallized as a complex involving at least one other protein.
The non-redundancy of the test set is achieved with the blastclust algorithm
(Altschul et al., 1997), so that no two proteins (with the exception of two
pairs, see Supplementary Material) have a sequence identity of >30% in a
pairwise alignment covering >90% of each of their sequences. Most of these
proteins also bind other ligands, such as cofactors and metal ions, which
often are missing from the PDB records. Accordingly, we also identified
binding sites for these ligands. A residue is part of a binding site if the
distance between any of its atoms and an atom from another molecule (e.g.
protein, small molecule, DNA) is less than the sum of their van der Waals
radii plus 3.0 Å. Alternatively, if no ligands are available in the crystal
structures, known binding site residues obtained from the catalytic site atlas
(Porter et al., 2004) and literature were used. A detailed description of the
identification of the missing binding sites for each of the 39 proteins can be
found in the Supplementary Material.

3 RESULTS
ProBiS detects structurally similar regions and maps them on the
surface of the appropriate protein structures. This is accomplished
through the detection of high quality local structural alignments
in a database of non-redundant protein structures. The program’s
performance in detecting different types of binding sites, e.g.
protein–small ligand, protein–protein, protein–DNA, has been
studied on a set of 39 protein structures, details of which are provided
in Supplementary Material.

The local structural similarity scores generated by ProBiS are
effective predictors of protein binding sites. The predictions, based
solely on local structural similarity, are more accurate than those
produced by ConSurf (Glaser et al., 2003, 2005), a protein surface
mapping tool which depends upon sequence conservation and which
to our knowledge, is the only available tool that maps sequence
conservation to protein structure. ProBiS is also compared with
Q-SiteFinder (Laurie and Jackson, 2005), a method which detects
energetic features in protein structures favorable for ligand binding

and has been benchmarked as a small-ligand as well as protein–
protein binding sites detection tool (Burgoyne and Jackson, 2006).
A detailed discussion of the results obtained by ProBiS is provided
in the case of biotin carboxylase and in the case of TATA-binding
protein (TBP); the unique ability of ProBiS to detect and align
similar binding sites in protein structures with different folds and to
compare it with other global and local structural alignment methods
is described.

All experiments described here were performed on a 16 threaded,
8 core, 2 processor personal computer. On this computer, pairwise
local alignment of two protein structures with ProBiS requires
typically <1 s and running ProBiS jobs in parallel, the nr-PDB
search with a query protein of ∼200 residues, involving fast filtering
followed by structural similarity mapping takes ∼10 min.

3.1 Binding sites detection
A test set was prepared of 39 proteins that interact either with other
proteins, or with small molecules, substrates or cofactors. In cases
where the ligands were missing from the PDB files, the relevant
data were supplied from the literature or from homologous cases. As
described in the Supplementary Material, we considered the various
different types of binding sites as a single united binding region
important for protein function and we also considered each binding
site type separately. Each of the 39 proteins in the test set was a
query used in a search of the database of currently ca. 23 000 non-
redundant protein structures extracted from the PDB. The quality of
the detected binding regions was measured in terms of the specificity,
sensitivity and significance of prediction, as defined below.

Specificity indicates the proportion of the residues predicted to
be in the binding site which are actually in the binding site. If
T residues are predicted to be in the binding site, but only S are
correctly predicted, then the specificity is defined as: SP = S/T

Sensitivity is the proportion of the interface that was predicted. If
the interface requires U residues but only W were correctly predicted
to be in the interface, then sensitivity is defined as: SE = W/U

Significance of prediction is the probability P of randomly
choosing a patch of residues equal in size to the predicted patch,
but with equal or better correspondence with the actual binding site
than the predicted patch (Carl et al., 2008). P is defined as:

P=
(

Ts
Ps

)−1 min(Ps,Is)∑
i=Os

(
Is
i

)(
Ts −Is
Ps −i

)

where Ts is the total number of protein residues, Is is the number
of residues in the actual protein binding site, Ps is the number of
residues in the predicted protein binding site and Os is the number
of predicted residues that overlap with the actual protein binding
site. For example, the value P = 0.5 for a patch of predicted residues
indicates that in 5 out of 10 attempts, a patch with the same number
of randomly chosen residues will lead to a better prediction of the
actual binding site.

The detailed results from the 39 test set structures are presented in
the Supplementary Material. The ability of ProBiS to detect protein
binding regions in the test set protein structures is compared to that
of ConSurf and to that of Q-SiteFinder in Table 1. ProBiS produces
discrete similarity scores (0–9) and ConSurf produces conservation
scores (1–9) for surface protein residues, and it is possible to
compare the two methods directly. Residues with similarity scores
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Table 1. Binding sites detection with a structural similarity mapping method,
evolutionary conservation mapping method and an energy-based method on
a set of 39 proteins

Method Total
no. of
residues

Interface
no.
residues

No. of
predicted
residues

P-value
(×10−3)

SP
(%)

SE
(%)

ProBiSa 224 54 62.8 1.4 39.0 43.9
ConSurfb 224 54 60.6 33.0 34.3 38.1
Q-SiteFinder 224 54 48.5 6.5 39.4 38.2

Tables with detailed results are available in the Supplementary Material.
aThe alignment scores listed in the ‘Methods’ section were used.
bConSurf uses different methods to count conserved residues. We used the Bayesian
method which is enabled by default and gives the best results.

7–9 (ProBiS) and with conservation scores 8–9 (ConSurf), are
regarded as reliable binding site predictions. Using this definition,
the two methods detect almost equal number of structurally
similar (ProBiS) and conserved (ConSurf) residues for a test set
protein. ProBiS retrieves 62.8 structurally similar residues/protein
and ConSurf retrieves 60.6 sequence conserved residues/protein
(Table 1). The specificity, sensitivity and significance of prediction
established by the two methods are directly comparable. The top
four predicted sites proposed by Q-SiteFinder as the putative binding
site are considered; a minimum of P-value at this setting is observed
(Supplementary Material).

It can be seen from Table 1 that ProBiS achieves on average 4.7%
higher specificity and 5.8% higher sensitivity than ConSurf. The
lower median value, 1.4×10−3 for the significance of prediction
also favors the ProBiS algorithm. While ConSurf calculates
conservation scores on the basis of multiple sequence alignment
typically of hundreds of homologous protein sequences, ProBiS
usually uses tens of locally similar structures. These results suggest
that local structural similarity provides some additional precision
to the detection of binding sites. ProBiS outperforms the energy-
based Q-SiteFinder method, which produces median P-value of
6.5×10−3 at a similar specificity as our algorithm and at 5.7%
lower sensitivity. Consequently, structural comparison should be a
method of choice in the case when 3D structural data for a protein
of interest is available and there are similar structures in the PDB.

3.2 Structural similarity in protein–protein and
protein–small ligand binding sites

The final test set of 39 proteins includes 39 protein–protein binding
sites, 17 sites in which small ligands bind, 1 protein–DNA binding
site and 1 loop, associated with protein folding. In the 39 proteins,
the average protein–protein binding site contains 42.8 amino acid
residues and a small-ligand binding site, 27.9 amino acid residues.
Every residue involved in binding, to all ligands including cofactors
and metal ions is counted in these numbers. Small-ligand binding
sites have 76.0% of their residues structurally similar. In comparison,
protein–protein binding sites, with the sensitivity of 38.0%, are two
times less structurally similar. The only protein–DNA binding site
studied (PDB: 1ytf) was predicted with the sensitivity of 63.0%,
which, despite its larger size (46 residues), suggests some similarities
in terms of its structural similarity scores, to the small-ligand binding
sites. The sensitivities in the two major binding site classes are
markedly different. However, the absolute number of structurally

similar residues, calculated as the product of the average number of
residues in a binding site class and the sensitivity of this class, differ
less. Small ligand binding sites have, on average, 21.2, and protein–
protein binding sites, 16.3 structurally similar residues. The absolute
similarity as judged by structural similarity scores seems to be
only moderately lower for protein–protein compared to small-ligand
binding sites.

Clearly, structural similarity does not extend to entire protein–
protein binding sites and cannot be used as the only predictor of
a protein–protein binding site. Instead, it could be used to detect
structurally conserved ‘hot-spots’ (Keskin et al., 2005), residues
within protein–protein binding sites, with a particularly important
function, for example, hydrogen bonding in ligand binding. Hot
spots contribute the most to the binding free energy of a protein–
protein complex, and their conservation in homologous sequences
has been used to aid in their identification (Guney et al., 2008).

Protein–protein binding sites are mostly conserved in structural
homologues while similar small-ligand binding sites are, in addition,
found in structurally distant proteins that frequently adopt different
folds. As an example, the P-loop, which is a small ligand binding site
responsible for phosphate binding in the alpha subunit of a G-protein
(PDB: 1got) is detected as structurally similar across many hundreds
of database proteins, including those with different folds, while
the protein–protein binding site for the beta subunit, is conserved
substantially in only the nine most similar structural homologues
retrieved. This is generally observed in the proteins studied and
supports a hypothesis that protein–protein binding sites evolve
more rapidly than protein–small ligand binding sites. Arguably, this
difference may be attributed to their different biological roles: small
ligands binding sites govern processes of molecular transformation,
which are relatively unchanged in time, while protein–protein
binding sites regulate evolutionary transient processes in which
connections with different proteins are developed.

3.3 Detailed binding sites detection examples
Biotin carboxylase (PDB: 1bnc) is a homodimer with two binding
sites: an active site in which the ligand biotin is bound and a binding
site for the second identical protein subunit (Fig. 4A and B). A search
of the nr-PDB database with one of the homodimer subunits as
the query protein, resulted in 178 structures with locally similar
surface patches retrieved from the nr-PDB; 79% of the active site
pocket and 31% of the protein–protein binding site were found to be
structurally similar. In biotin carboxylase, the two binding sites are
∼12 Å apart and conservation of one is unlikely to be correlated
with that of the other. Notably, the protein–protein interface in
this homodimer was found in another study (Caffrey et al., 2004)
which used multiple sequence alignment of this protein’s sequence
homologues to determine the extent of conservation of its surface
residues, to be less conserved than the rest of the exposed surface.
In contrast, local structural similarity, used by ProBiS seems to be
a good predictor of the protein–protein binding site, especially of
residues that are involved in hydrogen bonding between the two
subunits.

TATA-binding protein (TBP) recognizes a characteristic sequence
of nucleotides composed of deoxyadenosine and deoxythymidine
(the TATA box) and binds to it, thus marking the starting point
of transcription. TBP (PDB: 1ytf) forms a complex with the
transcription factor IIA (Fig. 4C) and the TATA box (Fig. 4D).
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Fig. 4. Structural similarity pattern in the homodimer protein biotin carboxylase (PDB: 1bnc) and in the TATA-binding protein (TBP) (PDB: 1ytf). The
proteins are represented as pink cartoon models, TATA box DNA as cyan cartoon model; the structurally similar residues are shown as yellow, orange and
red stick models and the interacting residues on the opposing chains are shown as pink stick models. Hydrogen bond pattern occurring (A) between biotin
carboxylase and bound ligands, biotin, ADP, Mg2+ and bicarbonate ion; (B) between the two subunits of biotin carboxylase; (C) between the TBP and the
transcription factor IIA and (D) between the TBP and the TATA box DNA is shown.

Structurally similar residues in the DNA binding region of TBP
form multiple hydrogen bonds with the TATA box (Fig. 4D); this
region has been observed previously to be conserved in sequence
(Patikoglou et al., 1999). ProBiS also identifies protein–protein
binding site residues (Fig. 4C) with the sensitivity of 50% (ConSurf
with the sensitivity of 16.7%). To our knowledge, the structural
similarity involving these residues has not been reported previously.

3.4 Detection of similar function in structurally
unrelated proteins

In order to demonstrate the unique ability of ProBiS to detect and
align similar binding sites in the absence of fold similarity, we
examined 10 pairs of protein structures, where the two members

of a pair adopt different folds, but have a similar binding site and
perform a similar function (Russell, 1998). These pairs of proteins
were identified by an all-against-all comparison of SCOP (Structural
Classification of Proteins) representatives and the similar binding
site residues identified in each protein pair can be superimposed
with low RMSD.

We performed pairwise comparisons using the ProBiS algorithm
between the proteins in each pair reporting the highest scoring
local structural alignment, i.e. that with the lowest E-value. Then,
we compared the alignments produced by ProBiS with those of the
global and local structural alignment algorithms and obtained the
results shown in Table 2. All three structural alignment programs
that we used for comparison, DaliLite (Holm et al., 2008), MolLoc
(Angaran et al., 2009) and MultiBind (Shulman-Peleg et al., 2008),
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Table 2. Comparison of structural alignments quality of similar binding sites on 10 protein pairs with dissimilar folds

First protein structure Second protein structure ProBiS DaliLite MolLoca MultiBindb

PDB Residue numbers Ligand PDB Residue numbers Ligand RMSDs (Å)

1addA 262,295,181,15,214,238 ZN 1bmcA 168,90,152,86,88,149 ZN 6.53 14.31 13.29 14.59
1eceA 114,162,238,116,161,27 BGC 2dnjA 212,39,134,252,7,170 DNA 9.91 12.91 12.48 8.05
1phrA 12,129,18,19 SO4 1vhrA 124,92,130,131 EPE 1.50 8.94 8.10 5.37
1bmfA 269,270,273,175,176 ANP 1aylA 268,269,213,254,255 ATP 2.34 n/a 3.26 11.93
1ampA 179,117,256,97,228 ZN 1alkA 51,327,331,370,102 ZN 2.14 10.69 6.60 11.91
1ribA 84,237,238,118,121,122 FEO 1vhhA 130,148,127,135,139,142 ZN 4.82 n/a n/a 13.19
1powA 308,311,286 FAD 1inpA 311,370,358 n/a 1.07 35.70 19.75 n/a
1alkA 369,327,101,331,370,166 ZN 1fjmA 64,92,208,125,173,221 MN 7.00 n/a 9.63 7.92
1qbaA 844,845,847,850,849,852 n/a 1eurA 176,177,179,182,181,184 n/a 0.27 46.12 0.30 n/a
2kauC 134,136,219,246,320,364 NI 2mhrA 54,25,106,77,73,62 FEO 12.68 25.95 12.41 12.62

Mean RMSDs (Å) 4.82 22.09 9.54 10.69

aGeometry + atom type method is used; in the two cases, where ligands are not available (n/a), we restricted the comparison to the corresponding residue numbers given above.
bThe compared binding sites are defined by the surface region within 8.0 Å from small ligands with codes ZN, MN, SO4, EPE, NI and FEO; the default threshold of 4.0 Å is used
elsewhere.

which represent different approaches to structural alignment are
available as web-servers. Global alignment algorithms such as that
in DaliLite maximize the aligned length and, concurrently, minimize
the RMSD between two protein backbones. Local structural
alignment algorithms, such as that in MolLoc and that in MultiBind,
minimize the RMSD between preselected regions of the proteins,
e.g. binding sites.

The comparison between the methods listed in Table 2 is made by
calculating, after superimposition, the RMSD between the similar
binding site residues, which had been previously identified (Russell,
1998). DaliLite produces the worst RMSD, 22.1 Å, presumably
because the protein structures that are compared do not have similar
folds and consequently global alignment fails to superimpose the
binding site residues. For three of the protein pairs that were
examined, DaliLite does not produce any result, probably because
the proteins folds are too dissimilar. In the remaining five cases,
DaliLite misaligns the binding sites. MolLoc and MultiBind produce
better alignments with RMSDs of 9.5 Å and 10.7 Å, respectively,
but unlike ProBiS and DaliLite, do not support unsupervised
comparison. Thus the user has to manually select regions of protein
surfaces that are to be compared. Where the ligands are missing in
the compared structures, MolLoc allows the compared binding sites
to be defined with a set of user provided residues; we used residues
given in Table 2. MultiBind only allows comparisons, where a ligand
is present in each of the two compared binding sites, consequently
for two pairs we could not perform the alignment; in all other cases,
the RMSD of the alignment in the top scoring solution is presented.

In proteins which have different folds, ProBiS produces better
alignments of the residues in the similar binding site detected by
Russell et al. (1998) than either DaliLite, MolLoc or MultiBind
to judge from the calculated RMSD between these residues. In
addition, ProBiS can align protein structures in an unsupervised
fashion, which allows it to perform database searches.

4 CONCLUSION
It is well known that protein binding sites are structurally similar and
many methods exist that can structurally align proteins. We introduce

a new approach for the detection of binding sites in a 3D protein
structure by searching for the locally similar surface structures
in a large database of protein structures. The maximum clique
technique, the core of the algorithm detects 3D correspondences
between proteins at a sub-residue level. Local structural similarity
scores are calculated and mapped to the query protein surface. Such
prediction of binding sites which depends on structural similarity
of protein surfaces is useful and accurate and can enjoy success
in structures with dissimilar folding patterns. Structural similarity
can provide additional advantages over sequence conservation in
the detection of functional regions such as binding sites and it is
concluded that structural comparison should be the method of choice
when a crystallographic or NMR structure for a protein of interest is
available. The ProBiS algorithm for detection of structurally similar
binding sites in proteins is freely available as a web-tool. Detailed
explanation and instructions to users of ProBiS can be found at http://
probis.cmm.ki.si.
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