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ABSTRACT

Motivation: Comparative genomics heavily relies on alignments of
large and often complex DNA sequences. From an engineering
perspective, the problem here is to provide maximum sensitivity
(to find all there is to find), specificity (to only find real homology)
and speed (to accommodate the billions of base pairs of vertebrate
genomes).
Results: Satsuma addresses all three issues through novel
strategies: (i) cross-correlation, implemented via fast Fourier
transform; (ii) a match scoring scheme that eliminates almost all false
hits; and (iii) an asynchronous ‘battleship’-like search that allows for
aligning two entire fish genomes (470 and 217 Mb) in 120 CPU hours
using 15 processors on a single machine.
Availability: Satsuma is part of the Spines software package,
implemented in C++ on Linux. The latest version of Spines can
be freely downloaded under the LGPL license from http://www
.broadinstitute.org/science/programs/genome-biology/spines/
Contact: grabherr@broadinstitute.org
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1 INTRODUCTION
The problem of identifying DNA sequences that share a common
origin dates back to the beginning of modern genomics, and a
number of sequence alignment programs have been developed
over the past 30 years [an incomplete list includes FASTA
(Lipman and Pearson, 1985); the BLAST family, including blastz
and MegaBlast (Altschul et al., 1990; Huang et al., 1991;
Zhang et al., 2000; Schwartz et al., 2003), http://blast.wustl.edu;
SSEARCH (Pearson, 1991); MUMmer (Delcher et al., 1999); BLAT
(Kent, 2002); PatternHunter (Li et al., 2003; Ma et al., 2002)].
Comparative genome biology aims to find genomic differences as
well as similarities. From a computational perspective, this requires
providing pairwise sequence alignments at maximum sensitivity,
specificity and acceptable speed. While full dynamic programming
approaches (such as in Smith, 1981) in theory yield maximal
sensitivity, it is not practical to apply them to large datasets (e.g.
entire vertebrate genomes), because of the high computational cost.
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Two other approaches have been used to address this issue:
(i) suffix-tree-based methods (e.g. MUMmer, Delcher et al., 1999),
which are very fast, but limited to highly similar sequences; and
(ii) k-tuple, or seeded matches (Kent, 2002; Ma et al., 2002;
Schwartz et al., 2003), where specific regions are considered for
more thorough alignments if a minimum number of seeds (either
consecutive runs of bases, ‘k−tuples’, ‘k-mers’, or windows that
allow for mismatches in certain positions but not others) can be
matched perfectly between both sequences, so that the size of
the seed (i.e. the minimum number of bases that need to match)
determines the runtime of the program versus its sensitivity. Seeded
aligners generally require genomic sequences to be masked for
repeats and/or these programs dynamically filter out seeds that occur
too many times, to avoid runtimes that increase exponentially with
seed frequency (Schwartz et al., 2003).

Satsuma is a new sequence alignment program, which, in contrast,
finds sequence matches through cross-correlation, a widely used
technique in audio signal processing. When we treat genomic
sequences as if they were audio signals, applying cross-correlation
is like finding decayed echoes of originally identical acoustic
patterns—in this case homologous DNA that has diverged over time
(for similar, yet conceptually different approaches applying cross-
correlation to DNA sequence, see Brodzik, 2005; Katoh et al., 2002;
Rockwood et al., 2005). Cross-correlation computes a measure
of similarity between two analog signals in the time domain as
a function of time-lag, or relative shift between them, resulting
in a sliding dot product of both signals. This operation can be
done in the frequency domain as a number of multiplications at
computational cost that is linear with the signal length; given that the
transformation back and forth between time and frequency domains
is computed rapidly using the fast Fourier transform (FFT) algorithm
(Cooley and Tukey, 1965), cross-correlation can be computed very
efficiently (Oppenheim and Schafer, 1975; Rabiner and Gold, 1986).
However, it is not computationally possible to Fourier-transform
large sequences such as entire chromosomes at once (runtime = O(n∗
log(n))), so Satsuma divides genomic sequences (the query and the
target) into windows (4096 bp by default) that overlap in the query
sequence (overlap = one-fourth of the size). When a query window
is compared to a target window, nucleotides from both sequence
windows are translated into four numeric signals, one for each base
(or letter, A, C, G and T), and cross-correlation is applied to each
signal pair. After summing up the results for all letters, we are left
with a function that indicates the letter similarity between query
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and target when shifted relative to each other: the higher the value,
the more bases match across the entire overlap. While random base
matches are expected and constitute background noise, a higher-
than-average number of bases that match due to homology produce
a signal that rises above the noise. After picking out all the good
signals, it is still not known where in the overlap the significant
alignment is located, so all valid shift positions are followed up by a
filter that searches for blocks in which a minimum number of bases
match (45% by default) over a minimum length (28 bases). A second
filter, the alignment probability model, determines the ‘viability’
of each block: based on the length, identity, CG composition and
target sequence size, Satsuma estimates the probability that a block
is random noise and only keeps the ones that pass a threshold
(P = 10−5 by default). Up to this point, all blocks are gap-free;
thus, a subsequent dynamic programming step merges overlapping
blocks into alignments with gaps.

Thus far, Satsuma can overcome two intrinsic problems inherent
to seeded alignment approaches: (i) no implicit or explicit
assumptions are made about the pattern in which sequences have
to match (as seeds require); and (ii) the need for repeat-masking
(either with a repeat library, which might not be available for
all genomes, or based on k-mer counting, which will make the
aligner blind to gene families) is eliminated, since the runtime
does not increase with repeated regions. However, even though
the comparison of two sequence windows is fast, applying this
algorithm exhaustively (i.e. each target is compared to each query
window) results in computational runtimes of O(n*m), with n and
m being the sizes of the sequences to be compared. While this might
be acceptable for certain tasks, such as aligning fungal genomes
or cDNAs to larger genomes, it is impractical for whole-genome
comparison. To make the runtime characteristic more linear with
genome sizes, Satsuma implements a ‘synteny search’ algorithm,
analogous to the paper-and-pencil game battleship, which takes
advantage of the fact that the order and orientation of homologous
sequences is highly conserved even for distant organisms [e.g.
human and opossum (Mikkelsen et al., 2007) or human and chicken
(International Chicken Genome Sequencing Consortium, 2004)].
First, query and target windows are mapped out on a grid as squares,
and only a small fraction of the grid is searched for initial alignment
hits. Then, only the squares in the neighborhood of hits are searched
iteratively for more hits, thus following syntenic stretches (sinking
the enemy’s long ships), so that, in the end, only a small fraction
of the entire grid has to be looked at. This strategy, implemented as
a highly parallelized process, dramatically reduces CPU time and
allows for comparing large sequences (for implementation details
of all algorithms, see Section 2).

2 METHODS

2.1 Cross-correlation/FFT
To align query and target sequences, both are first cut into chunks (4096
bp), where the target chunks overlap by a quarter of the chunk size, and two
chunks are compared pairwise sequentially. DNA sequence is transformed
into floating point sequence ‘signals’, where, in the case of nucleotide
alignments, there are four signals for each sequence, one for each letter (A, C,
G and T): initially, each position for which an unambiguous base occurs is
set to 1, the remaining positions are set to 0. Ambiguous base codes (IUPAC)
are split among the letters so that they sum up to 1 (e.g. ‘K’ sets ‘T’ and ‘G’
to 0.5 each). By using information entropy as measure, we de-emphasize

simple sequence repeats, such as homo-polymer runs, to lessen the effect of
overshadowing and undershadowing other signals (a long run of A’s in the
target, for example, will add a non-random signal over the entire window
size that reflects the base composition in the query sequence), which we
found to not significantly alter the results, but increases the efficiency of
signal selection. After subtracting the mean from each signal to normalize
over sliding overlap lengths and adding zero-padding of another 4096 bases
(otherwise signals would look periodic), the cross-correlation theorem is
applied by first Fourier-transforming each signal using the FFT algorithm,
multiplying signals (one with the complex conjugate of the other, and then
transforming back into letter/signal space). As a result (and after adding up
the signals for each letter), we obtain a function that shows positive spikes
indicating the number of positions the signals have to be shifted across each
other so that a higher-than-expected number of matches can be found.

2.2 Signal selection
To determine shift positions, Satsuma requires signals in the back-
transformed function to be 1.8 times stronger than the SD of all values
within windows of 256 (This is inefficient; improving this algorithm will
dramatically speed up the process. In most cases, due to the chunking, non-
homologous sequences are compared, resulting in noise only without signals.
On average, ∼250 distinct shift positions are evaluated). A subsequent step
now goes back into letter space, shifts sequences accordingly, and determines
the regions in both query and target where more letters match than expected:
this is implemented efficiently and is linear in time given the overlap size
between sequences, by requiring a minimum of 13 matching bases in local,
adjacent windows of at least 28 bp in size. Each match that is found is then
tested by the match scoring algorithm (see below) and either rejected or
accepted. The latter are collected and stored.

2.3 Match scoring
Here, the goal is to determine the probability that an alignment of length
N represents a real biological signal and not random chance. Let R denote
the number of random matches in the alignment; then R ∼Binomial(N,P)
where P is the probability of a random match at a single site. The value of
P depends on the GC content in both sequences; let ngc and νgc denote the
number of G’s and C’s in the query and target, let nat and νat be the number
of A’s and T’s. Then the expected number of random matches is

µ=NP=2N
( natνat

4N2
+ ngcνgc

4N2

)
= natνat +ngcνgc

2N

with the binomial SD

σ =
√

µ
(

1− µ

N

)

since N is typically large, R is distributed approximately Normal(µ,σ2).
We can use the normal cdf to estimate the probability Pl of finding a local
alignment of length N and identity at least x bases by chance

Pl = 1

2

(
1+erf

(
µ−x

σ
√

2

))

Finally, we compute Preal, the probability of finding exactly zero matches
of equal or better quality by chance. If the target genome size is S, then the
number of false matches can be approximated by Poisson(2PlS) (the factor
of 2 accounts for potential reverse complement matches). This gives the
probability of zero random matches

Preal = e−2plS

[For comparison, BLAST (Karlin and Altschul 1990) similarly scores
sequence pairs and computes an E-value, the expected number of random
matches with equal or better score. A Poisson’s distribution is used to
approximate the P-value, the probability of finding at least one such random
match, by P = 1−exp(−E)].
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2.4 Merging overlapping alignments
After initial gap-free alignments are done, Satsuma first collects all blocks
from all chunks, sorts them, and finds blocks that overlap in both the query
and the target sequences by at least 1 bp. A simple dynamic programming
algorithm with empirical penalties is used to merge these blocks, allowing
for insertions and deletions (mismatch penalty = 1, gap penalty = 1 per
gap + 0.5 per gap base) in transitions between blocks.

2.5 Battleship search
The entire space spanning both genomes is mapped onto a grid with 1 ‘pixel’
spanning 24 by 24 elementary blocks of 4096×4096 bp2 each, where blocks
overlap in the query sequence by 1024 bp. All pixels are kept in an ordered
priority queue, and their respective sequences are aligned according to the
ranking. To initialize the process (nothing is known in the beginning), we
first start with 24mer matches unique to the query and target, followed by a
configurable number of full line searches, i.e. evenly spaced regions (8192 bp
in length) in the target genome are aligned against all of the query sequence.
Hits that survive a dynamic programming step (the synteny filter, which
finds a path through alignments that preserve order and orientation, see next
paragraph) serve as initiation points. From that point on, pixels containing
hits and their eight bordering pixels are distributed to search processes, with
a map of the grid constantly updated centrally when search processes finish.
Hits, detected by the synteny filter, and pixels neighboring these hits, are
ranked according to alignment identity in the priority queue and distributed
for search (each pixel is only processed once at maximum). This strategy,
just like in the paper-and-pencil game, attempts to follow along the length of
battleships until the entire ship is sunk, and this algorithm, while not optimal,
does not depend on the shape of the ship as long as it is contiguous. In case
there are not enough high-ranking pixels in the queue (which happens when
multiple ships come to an end, i.e. there are large-scale re-arrangements in
the genome), more initiation points are searched, and the choice of regions
in the target genome is based on the size of coverage gaps in the target. To
further increase efficiency, regions in the query that are already well covered
with syntenic hits are omitted. The process comes to an end when no more
initiation points in coverage gaps of at least 3 pixels can be found (we note
that this is not necessarily the optimal stop criterion).

2.6 Synteny filter
To filter out homologous alignments based on large-scale synteny, Satsuma
applies a dynamic programming chaining algorithm to only keep matches
that are, over certain lengths, syntenically consistent with each other in
order and orientation. First, Satsuma assigns a value to the cost of a match
to be removed: the initial penalty is −ln(1 - alignment probability), which,
for repeat matches (i.e. there are multiple hits in the target and/or query
sequence), is decreased exponentially with the copy number of matches. If
two matches are chained together, the connection is penalized by the sum
of all matches in between that would be skipped as a result. In addition,
the cost to connect two matches is hierarchically computed based on: (i)
whether the query and target chromosome identifiers match (0 if so, an
empirically determined flat penalty if not); (ii) whether the two matches are
the same orientation (0 if so, the flat penalty if not); and (iii) how well the
differences between matches compare in the query and the target sequence,
i.e. if the distances are the same, the penalty is 0, and the penalty goes
up with increasing discrepancy, plus another empirically determined penalty
proportional to the square root of the absolute difference in target coordinates
to favor smaller connections over large ones. Iteratively removing syntenic
matches from the original set and re-applying the synteny filter to the rest
allows for recovering syntenic matches to large-scale duplications (>1 Mb)
in the query sequence. Since syntenic matches might be dropped by mistake,
Satsuma applies another round of alignments as a post-processing step,
augmenting the syntenic set by comparing sequence that falls in between
the original syntenic matches.

Fig. 1. MizBee is a multiscale synteny browser that interfaces with Satsuma
to enable efficient exploration of conserved syntenic data (Meyer et al.,
2009). Shown here are results from Satsuma on the stickleback–pufferfish
dataset. On the left is the genome view, where the stickleback genome
is shown in the outer ring, and the pufferfish genome on the inner ring
along with the user-selected chromosome 1 from the stickleback genome.
The connecting edges indicate the location of conserved syntenic blocks
between the two species, and the edge color is determined based on the linked
pufferfish chromosome. In the middle of the window is the chromosome view
that provides details about the size and location of the syntenic blocks for
the selected stickleback chromosome, along with the average similarity score
for each block shown in the histogram to the right of the bar. The rightmost
view shows a user-selected syntenic block, where information about the
similarity, orientation, location and size of conserved features within the
block are shown. The three views are linked using variety of mechanisms,
such as color, interaction and highlighting, and users interactively select
chromosomes and blocks using either the mouse or keyboard. MizBee, and
the shown Satsuma dataset, can be freely downloaded from http://mizbee.org.

2.7 Architecture and parallelization
The battleship search is implemented in a completely asynchronous fashion,
such that one process is the master (i.e. it continuously runs dynamic
programming and re-sorts the pixel priority queue as data comes in), which
farms out lists of pixels to be searched to slaves that run on a compute
farm or a multi-processor machine. As soon as a slave finishes the task, it
reports back with the results and fetches a new set of pixels. Communication
between master and slaves is implemented via TCP/IP. This asynchronous
implementation has a number of implications: (i) at any given time, it
is the best guess that decides how to prioritize pixels, without having
the entire information that would be available in a linear implementation;
(ii) computational load can vary throughout the process, i.e. one can take
advantage of all free CPUs available at any time, provided the computational
cost to process a single set of pixels is low (∼5 min with the default
parameters); and (iii) the exact sequence in which pixels are searched is
undefined, since the order in which pixels are processed depends on the
timing, number of available CPUs, etc. and is thus not deterministic. We ran
experiments under different conditions and found that, while the size of the
search space might vary, the resulting alignments are very stable and only
minimally depend on processing order.

2.8 Visualization
Satsuma interfaces with the synteny browser MizBee (Meyer et al.
2009), a visualization tool designed for exploring multiscale conservation
relationships in comparative genomics data. MizBee augments Satsuma by
enabling efficient browsing of syntenic data across a range of scales from the
genome to individual orthologous matches, shown in Figure 1. The design of
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MizBee is grounded in perceptual principles, and includes numerous visual
encoding techniques to enhance cues about conservation relationships such
as proximity, size, similarity and orientation. The development of MizBee
was guided in part by the data Satsuma generates, and the scientific questions
the users of Satsuma ask. More information about MizBee, as well as freely
available executables and example data from Satsuma (stickleback versus
pufferfish genome), can be found at http://mizbee.org.

3 RESULTS

3.1 Specificity, Sensitivity and Speed
3.1.1 Specificity The alignment probability model decides which
matches are regarded as homologous and which are not, and thus
directly controls Satsuma’s specificity. Consistent with expectations,
the model predicts that the shorter the alignment, the higher an
identity is required in order to be ‘real’ (Fig. 2A). Most notably,
for all different lengths, there is a marked and steep drop so that
at length 100, an identity of 0.45 indicates almost certainly that the
alignment is noise, but increasing the identity to 0.52 predicts the
alignment to be almost certainly real. To test the actual accuracy,
we implemented a NULL model: sampling random alignments
between non-homologous sequences from two organisms (lizard
and chicken), where one sequence was, in addition, complemented
but not reversed to ensure that no homology was to be found,
while preserving the non-randomness of local base composition
(analogous to Schwartz et al., 2003). Figure 2A shows that the
model’s prediction (for length 50, 100, 150 and 200 bp) resembles
the observation from the NULL model very closely overall. We note
that, for short alignments (∼50 bp), it is simple sequence repeats
(preserved in structure when complementing sequence) that cause
the observation to shift slightly to the right (data not shown).

3.1.2 Sensitivity Satsuma finds matches by examining all bases
from one genome within a window to all bases from another genome
in the window in parallel, and then selects how far to shift sequences
relative to each other to match them up. The signal-to-noise ratio
(and thus how well Satsuma succeeds in picking out signals from
the background noise) determines the limits of its sensitivity. To
put this to the test, we randomly selected two non-homologous
sequences from the human genome (∼8 kb each), and inserted
identical sequence of different lengths. We then gradually introduced
‘mutations’ (random single nucleotide changes) to one sequence
by randomly changing bases to emulate genomic divergence,
and ran Satsuma on those sequences to determine the effective
sensitivity (Fig. 2B). Signals from short matches (50 bp) tend to be
overshadowed by noise rather quickly with increasing divergence
(>10%), as 50 bp constitute only 1.2% of a 4096 bp window.
Matches of length 100 bp (2.4% of the window), however, can be
detected down to base-pair-substitution rates of 0.6 (or sequence
identity 59%), and matches of even longer sizes can be detected
down to substitution rates of 0.8 or about 50% sequence identity. We
do note that all of these matches are gap-free, and thus alignments
containing gaps (insertions and deletions) will have to consist of
consecutive gap-free blocks of certain identity and length in order
to be detected (see Section 2).

3.1.3 Speed The teleost fishes stickleback (Gasterosterus
aculeatus, gasAcu1) and pufferfish (Tetraodon nigroviridis,
tetNig1) feature small genomes for vertebrates, at 470 and 217 Mb,

Fig. 2. Specificity and sensitivity. (A) Specificity: Satsuma’s match
probability model predicts that a single, gap-free alignment of given length,
identity and GC/AT composition is found by random chance given the target
genome size (lizard, 1.7 Gb) in light colors (y-axis), over the match identity
(x-axis). This is compared to a Null model (see Section 2) shown in dark
colors. (B) Sensitivity: identical sequences of different lengths (50, 100,
150 and 200 bp) were inserted into non-homologous DNA from the human
genome and mutated by randomly changing bases over the entire region
(base substitution rate, x-axis, top), resulting in a decrease in sequence
identity (x-axis, bottom). Each bar indicates that the alignment was correctly
identified by Satsuma given the length of the sequence to be found over
increasing mutation rates.

respectively (excluding chrUnk). Those genomes are about as
large as possible for an all-sequences-against-all comparison to
still be computationally feasible, so this dataset was ideal for
evaluating the battleship synteny search versus the straightforward
exhaustive search. The exhaustive search took ∼150 h on 600 CPUs
(90 000 CPU hours total) distributed in a server farm managed
by Load Share Facility (LSF), while the battleship search ran
from start to completion overnight on 15 processors on a single
machine (120 CPU hours total), a factor of several hundred times
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Fig. 3. (A) Synteny between pufferfish chromosome 1 (x-axis) and
stickleback chromosomes a (blue), b (red) and c (black), (B) Zoom-in into
region depicting the search space (white) overlaid with the matches (red and
blue).

faster, while recovering all syntenic hits found in the exhaustive
search. Figure 3 shows a synteny plot of pufferfish chromosome 1
versus three stickleback chromosomes, with the actual grid pixels
searched marked in white. We also note that there are very few false
hits, indicating that the algorithm performs well in distinguishing
syntenic from non-syntenic homology.

We then tested the scalability of the algorithm to larger genome
pairs: with a runtime of 230 CPU hours for 8.3% of the human
genome (chromosome 1, 250 Mb, as the target sequence) against
all of dog (2.4 Gb, query sequence), we estimate that aligning two
entire mammalian genomes takes <3000 CPU hours in total when
processing one target chromosome at a time.

3.2 Duplications, rearrangements and repeats
The genomes of flowering plants, such as the grasses rice (Oryza
sativa) and sorghum (Sorghum bicolor), exhibit a number of
large-scale duplications, rearrangements, as well as high levels of
interspersed repeats, comprising 40% (rice) and 61% (sorghum)
of the genomes (Paterson et al., 2009; Yu et al., 2005). Satsuma
aligned the 390 and 750 Mb genomes in 480 CPU hours, the
genome-wide synteny plots of the 12 rice chromosomes against the
sorghum genome are shown in Figure 4. In addition to capturing
rearrangements ranging from several kb up to tens of Mb, Satsuma
finds both orthologous as well as paralogous syntenic matches. We
note that the high repeat content somewhat elevates the noise levels
compared to vertebrate genomes; however, the syntenic signal is
still clearly visible [for protein-based synteny maps (Paterson et al.,
2009)].

3.3 Comparison with blastz
We compared Satsuma to the widely used alignment chains
generated by the alignment program blastz and provided by
the UCSC genome browser (http://genome.ucsc.edu, Chiaromonte
et al., 2002; Schwartz et al., 2003) on datasets of different
evolutionary distances. As a test set, we aligned ∼2.8 Mb from
human chrX (hg18, 149,830,243-152,627,579) to the syntenic
regions in three genomes, the closest being dog (CanFam2, chrX:
122,150,346-124,566,871), somewhat further out the marsupial

Fig. 4. Alignment of two grass genomes: Oryza sativa (x-axis, target, one
graph per chromosome), and Sorghum bicolor (y-axis, query, chromosomes
are color-coded). The plots show re-arrangements and large-scale segmental
duplications in both genomes.

opossum (monDom4, chrX: 32,807,449-34,657,981) and, quite
distant, the homologous region in chicken (galGal3, chr4: 9,761,583-
18,789,149). An overview of the comparison is shown in Figure 5.
On the dog/human dataset, Satsuma aligned a somewhat smaller
fraction of the human genome (36%) compared with the blastz chain
(44%) overall, with the majority of aligned bases being found by
both methods (72% of bases in blastz chain alignments are also
contained in Satsuma alignments, 88.5% of Satsuma alignments are
also contained in blastz chains). The most significant disagreements
stem from differences in determining alignment boundaries: 23% of
the blastz chains (10% of the sequence) resides in regions adjacent
to alignments that were identified by both methods, i.e. blastz is
more inclusive when determining how far alignments should extend.
Of the remaining blastz- and Satsuma-only alignments (i.e. isolated
regions in which only one method found an alignment, and this
alignment is not located adjacent to an alignment that the other
method found), Satsuma finds a slightly larger fraction than blastz
(6.2% and 5.4% of all human bases, respectively).
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Fig. 5. Comparison of Satsuma and blastz chained alignments (http://
genome.ucsc.edu). Datasets: (A) human/dog (∼60 Myr apart, Lindblad-Toh
et al., 2005); (B) human/opossum (∼130 Myr apart, Mikkelsen et al., 2007);
and (C) human/chicken (∼350 Myr apart, International Chicken Genome
Sequencing Consortium, 2004). Shown are the blastz-only bases (black) and
Satsuma-only bases (red), i.e. bases in alignments that were only found by
either one alignment program and not adjacent or overlapping with matches
found by the other program. Bases in overlaps (i.e. both aligners found the
same bases) are shown in light gray, and bases in alignments adjacent to
alignments found by both aligners are shown in dark gray and pink.

Notably, differences between the two methods are more
pronounced on the opossum/human dataset, where again blastz
aligns more bases (2.4% versus 2.0%), but the overlap is relatively
small (28.2% of the total 63 163 of bases in blastz chain alignments
are also contained in Satsuma alignments, 31.9% of the total 55
799 of bases in Satsuma alignments are also contained in blastz
chains). The amount of blastz extensions, however, is a much
larger fraction than when using the dog dataset, with 33.8% of
all bases aligned by blastz residing in regions that extend off of
alignments found by Satsuma as well [for a discussion on the issue
of determining alignment boundaries, and possible over-extending
versus under-extending alignments (Frith et al., 2008)]. The fraction
of stand-alone Satsuma-only alignments (1.3% of all bases and
67% of Satsuma-aligned bases) and blastz-only (0.9% of all bases
and 38% of blastz-aligned bases) alignments is comparable. Lastly,
the genome of the chicken, being an avian reptile, is quite far
diverged from human. Here, Satsuma aligns slightly more bases
(12.5 versus 11.8 kb), with about half of the bases found by both
methods and ∼2 kb being blastz extensions off of shared alignments,
and Satsuma detecting 5.7 kb of sequence undetected by blastz and
3.2 kb of sequence alignments reported only in the blastz chain.
Table 1 compares matches found by Satsuma and blastz that at
least partially overlap annotated exons (RefSeq) in the chicken and
opossum genomes. While there are more exons found by blastz-only
than are found by Satsuma-only in the human/opossum alignments,
Satsuma appears more sensitive in detecting orthologous exons on
the chicken/human dataset.

For a runtime comparison, we ran blastz with default parameters
on 140 pairs of randomly chosen, non-repeat-masked sequence
samples from human chr1 and dog, using the chunking strategy
(1 Mb versus 30 Mb chunks) described for the original human–
mouse blastz alignments (Schwartz et al., 2003). From the mean
runtime of 34 min, and given that the chunking required by blastz
scales up its runtime at O(n∗m), we estimate that aligning 250 Mb
of human chromosome 1 to the 2.4 Gb dog genome would take
∼11 500 CPU hours, compared to 230 CPU hours for Satsuma.

Table 1. Comparison of Satsuma and blastz alignments between chicken
and human and opossum/human in regards to exons (RefSeq) in the chicken
and opossum genomes, in a region on the human X chromosome

Chicken Opossum

Annotated exons 255 131
Exons found by both 31 39
Exons found by Satsuma only 19 3
Exons found by blastz only 3 8
Non-exons found by both 0 39
Non-exons Satsuma only 16 135
Non-exons blastz only 5 51

4 DISCUSSION AND FUTURE DIRECTIONS
Satsuma is a sequence aligner that implements very different
strategies than other programs, most notably a search strategy on
a global level and cross-correlation at the local level. While this
eliminates the need for repeat masking, another key feature gained
by a seed-less approach is Satsuma’s innate ignorance of the exact
nature of sequences: any two sequences of anything, as long as
they can be translated into vectors or matrices of floating point
numbers, can be aligned. As a practical implication, Satsuma is,
as of now, fully capable of incorporating ambiguous base codes into
alignments at all stages, which, for example, allows for protein–
protein and protein–nucleotide searches. In the future, additional
sequence information can easily be added to increase sensitivity
beyond the nucleotide level: for example, only ∼40% of the genome
sequences of mouse and human can be aligned to each other
(Schwartz et al., 2003), and this is probably close to the limit of
what can be done with nucleotide sequence alone. However, it has
been shown that local DNA topography is conserved in some cases
where the nucleotide sequence is not (Parker et al., 2009). Since
topography can be represented as a single number per location,
this information could increase the fraction of aligned genome
overall if used throughout the entire alignment process in addition
to nucleotide sequence, which might not only fill gaps in alignment
coverage, but recover entire regions that were simply unalignable
before.

We close by noting that Satsuma is still a work in progress,
with improvements both in algorithms as well as engineering (e.g.
eliminating the need to hold entire genome sequences in memory
for random access) under way. In addition, we are adding entire
new features, such as a novel context-sensitive, detailed alignment
algorithm, SLAP (P. Russell et al., manuscript in preparation), as
a post-processing step to recover sequence alignments with many
and/or large gaps in between, or adjacent to matches that Satsuma
finds now. Another aspect involves mining of large datasets at
different levels of locality, from a genome-wide view down to the
nucleotide level, where our approach is to interface with a multi-
level, interactive graphical synteny browser, MizBee (see Section 2).
Even as it stands now, a working version of Satsuma, fully capable
of aligning two entire genomes at good sensitivity, specificity and
within a reasonable time can be downloaded freely under the
GNU Lesser General Public License agreement from http://www
.broadinstitute.org/science/programs/genome-biology/spines/.
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