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ABSTRACT

Motivation: Microarrays are being increasingly used in cancer
research to better characterize and classify tumors by selecting
marker genes. However, as very few of these genes have been
validated as predictive biomarkers so far, it is mostly conventional
clinical and pathological factors that are being used as prognostic
indicators of clinical course. Combining clinical data with gene
expression data may add valuable information, but it is a challenging
task due to their categorical versus continuous characteristics. We
have further developed the mixture of experts (ME) methodology, a
promising approach to tackle complex non-linear problems. Several
variants are proposed in integrative ME as well as the inclusion of
various gene selection methods to select a hybrid signature.
Results: We show on three cancer studies that prediction accuracy
can be improved when combining both types of variables.
Furthermore, the selected genes were found to be of high relevance
and can be considered as potential biomarkers for the prognostic
selection of cancer therapy.
Availability: Integrative ME is implemented in the R package
integrativeME (http://cran.r-project.org/).
Contact: k.lecao@uq.edu.au
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
In clinical cancer studies, the primary treatment of localized cancer
is either complete tumor excision with or without radiotherapy.
The addition of systemic adjuvant therapies, such as chemotherapy
or hormonal treatment has been shown to increase the chance
of long-term survival but also to increase side effects and costs.
Strong prognostic factors are, therefore, needed to predict more
accurately the disease outcome as this would help physicians make
treatment decisions. Various clinical or pathological factors have
been evaluated as prognosis factors. For example, the treatment
of primary breast cancer is often based on factors such as age,
lymph node status, tumors size, among others, and also cell
biological estrogen receptor status. Although these factors provide
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valuable information about the risk of recurrence, they are generally
considered not to be sufficient to predict individual patient outcomes
and determine an individual patient’s need for systemic adjuvant
therapy. In some cases, for example, patients with the same clinical
parameters can have different clinical courses.

DNA microarray-based technology is seen as a great potential
to gain new insight into cell biology and biological pathways.
This technology has been mostly used to further delineate cancer
subgroups or to identify candidate genes for cancer prognosis and
therapeutic targeting. However, even though the identified gene
signature was promising, e.g. the 70-gene signature from van’t Veer
et al. (2002), the clinical applications resulting from microarray
statistical analyzes remain somewhat limited. This might be due
to the complex and noisy nature of microarray data.

Utilizing both clinical factors and genetic markers may add
complementary information and may lead to a more accurate
prognostic. Another reason to combine both types of variables is
purely economical. Indeed, if the combination of clinical factors and
a small number of biomarkers would suffice to either (i) improve
the prognostic prediction or (ii) reduce the number of biomarkers
while performing as good as when using a bigger set of genes alone,
this would imply major cost cutting in biomarkers driven clinical
treatments. To this end, a first step would be to select a combined
signature of both gene expressions and clinical factors, which would
be used in an appropriate statistical methodology. Then, the last step
would be to assess if the selected genes can be considered as potential
biomarkers for the clinic.

The combination of both markers is a challenging task for two
reasons. First, both types of variables do not measure the same
entity. While microarray data are homogeneous, as the expression
levels of genes or transcripts are measured, clinical variables are
heterogeneous in their nature, as they can measure the age of the
patient, but also the size of the tumor or the gender. Second, most
clinical variables are of a categorical type, or are discretized by the
physician, whereas microarray data are continuous data. Developing
an appropriate methodology that can handle both types of variables,
thus raises some statistical challenges.

Related work: few methodologies have been proposed so far
to combine clinical factors and gene expression to improve
cancer prognosis. In a general framework, Hothorn et al. (2006)
proposed conditional inference trees to deal with various types
of variables. Closer to our focus of application, several authors
analyzed the van’t Veer et al.’s (2002) study. While Dettling
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and Buhlmann (2004) proposed a penalized logistic regression
(PELORA), Sun et al. (2007) selected a hybrid signature using the
algorithm I-RELIEF and Gevaert et al. (2006) proposed Bayesian
networks to automatically perform feature selection. The latter
authors showed that their selection of three clinical variables and
13 genes had comparable results to the 70-signature genes from
van’t Veer et al.’s (2002) study, suggesting that the inclusion of
clinical variables may, therefore, reduce the number of genes to
reliably predict the prognosis. More recently, there have been further
studies that assessed the additional predictive value of microarray
data compared to clinical data alone. For example, Cox proportional
hazards models were used on a simulation study (Truntzer et al.,
2008), and a two-step approach based on Random Forests (RFs)
and partial least squares (PLS) regression was also proposed by
Boulesteix et al. (2008). Both articles cautioned the optimism or
overestimation that appears in the integrated models as microarray
data are artificially favored during the gene selection process (see
also Tibshirani and Efron, 2002). Interestingly, when incorporating
clinical variables on the van’t Veer et al.’s (2002) data, Sun et al.
(2007) found an improvement in the accuracy, Gevaert et al. (2006)
found comparable results, and Dettling and Buhlmann (2004) and
Boulesteix et al. (2008) found that the clinical variables did not
contain much useful information for class prediction. It is likely that
the performance results highly depend on the proposed statistical
approach, as well as how both types of data are dealt with. For
example, the clinical factors were rescaled in Sun et al. (2007),
which rendered them continuous, whereas the gene expression data
were discretized into three categories: baseline, overexpressed and
underexpressed in Gevaert et al. (2006).

Why mixture of experts? Mixture of experts (ME) models (Jacobs
et al., 1991) and their generalization, hierarchical ME models
(Jordan and Jacobs, 1994) were introduced to account for non-
linearities and other complexities in the data. It is based on a divide-
and-conquer strategy to tackle a ‘complex problem by dividing it
into simpler problems whose solutions can be combined to yield a
solution to the complex problem’ (Jordan and Jacobs, 1994). ME
are of interest due to their wide applicability [see for example
Chen et al. (1999); Ng and McLachlan (2007) and, more recently,
Gormley and Murphy (2008)] and the advantages of fast learning
via the expectation–maximization (EM) algorithm (Dempster et al.,
1977; Jordan and Xu, 1995). Recently, ME have been developed
for classification purposes (Chen et al., 1999; Ng and McLachlan,
2007). In this study, we set into a binary classification framework
as the cancer studies that we analyzed have a recurrence versus
non-recurrence of metastasis outcome, or a patient’s survival status
outcome.

Our contribution: in this article, we propose to extend ME
to combine clinical factors and gene expression using different
functions to incorporate both types of variables. We propose to
use different gene selection procedures before applying ‘integrative
ME’. The results are obtained on three well-known cancer studies:
prostate (Stephenson et al., 2005), breast (van de Vijver et al.,
2002), and central nervous system (CNS; Pomeroy et al., 2002).
We show that (i) categorical clinical variables can be included in
a statistical model to circumvent the noisy nature of microarray
data and improve cancer prognosis and (ii) the selected gene
signature that is combined with these clinical variables can be
considered as containing potential relevant biomarkers for the
clinic.

Fig. 1. General principle of ME networks.

2 APPROACH

2.1 ME for binary classification
Notations: let X denote the n×p matrix containing the column-centered
expression values of p genes for the n patients and Z the n×q matrix
containing the values of the q categorical clinical factors for these same
n patients. In the case of binary classification problems, we assume that
the output y is a discrete binary variable that has possible outcomes of
‘recurrence’ and ‘non-recurrence’. In the following, we denote xj and zj the
output vectors on the jth sample and wj = (xT

j ,zT
j )T the concatenated vector

of both types of variables (j=1,...,n).
General principle: the ME architecture is shown in Figure 1. The expert

networks sit at the leaves of the tree and the gating network sits at the non-
terminals of the trees. Each expert h receives the input vector wj and produces
an output vector (h=1,...,H, j=1,...,n). These output vectors then proceed
up the tree and are blended by the gating network outputs, which also receives
the vectors wj as input. The final output of the ME architecture is a convex
weighted sum of all the output vectors produced by the experts and the gating
network. The experts are trained on different partitions of the input space.
As the data are allowed to lie simultaneously in multiple regions, it allows
for an overlap between neighboring regions. This is called a ‘soft splits’
partitioning of the data, as opposed to ‘hard splits’ used in CART or MARS
trees.

The expert networks: the output of each of the H experts is produced
via a generalized linear function of the input. For example, in our
classification problem, the Bernoulli distribution of possible binary outcomes
of ‘recurrence’ and ‘non-recurrence’ is used

f E
h (yj|wj;βh)=

(
exp(βT

h wj)

1+exp(βT
h wj)

)yj
(

1

exp(βT
h wj)

)(1−yj )

(1)

where βh is the unknown weight vector of the input wj .
The gating network: the gating network is also a generalized linear

function and is modeled by the generic softmax function as

gh(wj;πh,αh)= πhf G
h (wj;αh)∑H

l=1π l f G
l (wj;αh)

(2)

where πh >0,
∑H

h=1πh =1, f G
h (wj;αh) denotes a function with input vector

wj and αh is the vector of unknown parameters for the hth expert. In
integrative ME, we will use different types of gh functions to combine both
clinical factors and microarray data.

Final output of ME: the final output of an ME neural network is a weighted
sum of all the local output vectors produced by the experts

f (y|w;�)=
H∑

h=1

gh(w;πh,αh)f E
h (y|w;βh), h=1,...,H,
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where � is the vector of all the unknown parameters and can be estimated
by the maximum likelihood approach via the EM algorithm. As both outputs
from the gating and expert networks depend on the input w, the overall output
of ME architecture is a non-linear function of the input.

2.2 Combining gene expression with categorical
clinical factors

We propose to use different types of gating network functions to handle both
categorical and continuous variables in the integrative ME approach.

Multinomial logit: this function was originally proposed by Jacobs et al.
(1991) and Jordan and Xu (1995) and can be fitted via the iterative reweighted
least squares (IRLS) algorithm (McCullagh and Nelder, 1989). In our case

gh(wj,αh)= exp(vT
h wj)∑H

h=1 exp(vT
h wj)

, h=1,...,H,

where vh is a variable weight vector for each expert. The multinomial logit
function is well adapted in our case to deal with different types of variables.

Independence model: the independence model is based on the naive
assumption that the categorical variables are independent of each other and
of the continuous variables. As was proposed by Ng and McLachlan (2005),
the function f G

h (wj;αh) in (2) is defined as

f G
h (wj;αh)=

q∏
i=1

fhi(zij)φh(xj;µh,�h), (3)

where φh(xj;µh,�h) denotes a multivariate Gaussian function for input
vector xj with mean µh and covariance matrix �h, and fhi(zij) the hth

conditional density of the ith categorical variable in zj , i=1,...,q. If we
denote ni the number of distinct values taken by the variable zi, we can then
use a multinomial distribution that consists of one drawn on ni values with
probabilities λhi1,...,λhini , where λhini =1−∑ni−1

l=1 λhil . Therefore, we have

fhi(zij)=
ni∏

l=1

λ
δ(zij ,l)
hil , (4)

where δ(zij,l)=1 if zij = l and is zero otherwise (l=1,...,ni).
Location model: the naive independence model can be modified to allow

for some dependence between the two types of data, for example, by using
a location model (Hunt and Jorgensen, 1999) as was proposed by Ng and
McLachlan (2008). In the location model, some of the q′ most correlated
categorical variables, q′ ≤ q are transformed into a single multinomial
random variable U with S cells where S is the number of distinct patterns or
locations of these variables. Thus, (3) is replaced by

f G
h (wj;αh)=

S∏
s=1

[phsφh(xj;µhs,�h)]δ(j,s),

where δ(j,s)=1 if zij =s and is zero otherwise, and phs is the probability
that the q′ categorical variables correspond to the sth pattern for the expert
h, h=1,...,H;s=1,...,S. The conditional density of the remaining q−q′
categorical variables is as in (4).

This model does not impose any orders of the categories in each
categorical variable. The q′ clinical variables are determined by testing the
association between the q categorical variables, for example, via a simple
χ2 test.
EM algorithm and parameter tuning. The application of the EM algorithms
for the different integrative ME models can be found in Supplementary
Material S1 to estimate the unknown parameters π , α and β. The tuning
of the number of experts is also described.

2.3 Overview of the analysis
The additive power of combining clinical factors and genes markers
as well as the relevancy of the genetic markers is assessed in three
steps.

Step 1: variable selection: gene selection is an important step, not
only to select informative and potentially relevant gene expression
signature, but also to circumvent the ‘curse of dimensionality’.
Indeed, integrative ME can be limited by a too large number of
variables as in that case it will require the inversion of ill-conditioned
matrices. Many variable selection procedures were proposed in
the literature for classification purposes; see, for example, Guyon
et al. (2002), Tibshirani et al. (2002) and Lê Cao et al. (2007),
among many others. We propose to use three different types of
methodologies:

• a univariate filter method with the widely used t-test to select
differentially expressed genes;

• a wrapper method with RFs (Breiman, 2001) that proposes an
internal importance measure to select discriminative genes;

• a sparse exploratory approach called sparse PLS (sPLS; Lê Cao
et al., 2008, 2009), which is similar to a sparse discriminant
analysis approach.

As previously underlined (Tibshirani and Efron, 2002; Truntzer
et al., 2008), combining genes and classical clinical variables tends
to give biased results. Indeed, the predictive power of the genes
tends to be overestimated as the outcomes y are already used
during the selection process. Conversely, the clinical variables do
not necessarily need to be selected as they are fewer (q=5−10) and
were often validated in many large studies. This artefact gives an
artificial importance to the genes compared to the clinical variables if
selection bias is not taken into account. In the following, we denote
X∗ the dataset that contains only the p∗ selected gene expression
values. p∗ is arbitrarily defined and is set to a small value as the
focus is to find genetic biomarkers. To avoid overfitting issues, the
p∗ genes are selected on a training set XL using, for example, K-fold
cross-validation (say, K =10).

Step 2: assess the predictive ability of the integrative ME model:
once the p∗ genes are selected using one of the proposed variable
selection procedure on the training samples L, both datasets X∗

L and
ZL are combined to learn the parameters of integrative ME using the
outcome yL . The class of the test samples T is then predicted using
X∗

T , ZT and the parameters learnt in integrative ME. The predicted
class is then compared to the real class label yT . This is performed
K times to predict all samples in the study and to assess the predictive
power of integrative ME.

Step 3: biological interpretation: the final aim of the analysis is to
evaluate the biological relevance of the p∗ genes that were selected
with the different variable selection methodologies (1), (2) or (3).
Indeed, it would be extremely useful to the clinician to investigate
whether these genes can be considered as potential biomarkers
for cancer prognosis. Furthermore, this would also validate the
biological relevance of the proposed integrative methodology.

3 RESULTS AND DISCUSSION

3.1 Cancer datasets
The performance of integrative ME is compared to other related
approaches on three cancer studies. The characteristics of the clinical
data can be found in Supplementary Material S2.

Prostate data: we analyzed the gene expression and clinical
data used in Stephenson et al. (2005). The dataset was built from
tissue samples obtained from 79 patients all treated by radical
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Table 1. Mean error rate percentage using 10-CV (10 validation trials)
obtained on X∗ and Z alone

Prostate Breast CNS

Z RF 29.36 (1.43) 29.96 (1.15) 49 (3.61)
multinom 29.74 (2.93) 28.16 (1.18) 40.33 (3.49)

X∗ RF 27.72 (6.35) 33.94 (2.60) 41.83 (3.88)
RFE 39.11 (3.93) 29.49 (0.2) 41.83 (4.61)
NSC 35.44 (0.6) 31.79 (0.6) 36.67 (3.14)
PLS-RF 33.64 (4.51) 28.58 (0.84) 36.99 (4.43)

ME/X∗ t-test (1) 26.45 (2.89) 28.83 (1.01) 40.67 (4.17)
RF (2) 28.86 (5.53) 34.88 (1.82) 46.17 (7.03)
sPLS (3) 26.71 (2.42) 28.94 (2.22) 41.33 (6.75)

For X∗, the wrapper approaches perform internal variable selection, with p∗ =5.

prostatectomy. There were 37 samples that were classified as
recurrent and 42 as non-recurrent primary prostate tumor. Gene
expression analysis was carried out using the Affymetrix U133A
human gene array and the prefiltered dataset contains 7884 features
and eight clinical variables.

Breast data: The dataset from van de Vijver et al. (2002) contains
gene expression of tumors from 256 patients who were all treated
by modified radical mastectomy or breast-conserving surgery, 75 of
them were classified as recurrent and 181 as non-recurrent metastasis
within 5 years. The preprocessed data contain 5537 genes spotted on
Agilent Hu25K microarrays. Eight prognostic factors were available
and categorized as indicated by the authors.

CNS data: medulloblastomas are embryonal tumors of the CNS.
Pomeroy et al. (2002) investigated this malignant brain tumor of
childhood as the response of therapy is difficult to predict. The
biopsies of 60 patients were obtained before they received any
treatment, 21 patients died within 24 months and 39 survived. The
expression level of 7128 genes were available, as well as five clinical
variables.

3.2 Assessing classification performance
As a baseline, classification performance was first assessed on each
separate dataset X and Z with different methodologies (Table 1).
For the analysis of the clinical dataset Z only, RF, (Breiman,
2001) or a logistic regression (multinom) were applied. For the
analysis of the X microarray dataset only, we compared the wrapper
approaches RFs, recursive feature elimination (RFE; Guyon et al.,
2002) and nearest shrunken centroids (NSCs; Tibshirani et al.,
2002). These approaches include an internal variable selection step
and the evaluation was, therefore, performed on the p∗ most relevant
genes that were selected within these approaches. We also applied
the PLS-RF methodology from Boulesteix et al. (2008) on X∗, where
variable selection is performed beforehand with a t-test. Integrative
ME was applied on X∗ with the three proposed variable selection
procedures defined in Section 2.3.

In Table 2, we compared integrative ME with a logistic regression
(multinom), PLS-RF and cforest, which is based on conditional
inference trees (Hothorn et al., 2006), on the combined datasets
X∗Z . With ME, the three gating functions were tested: independence
function (indep), multinomial logit function (multinom) and the
location function (loc) and the genes were selected with either
t-test (1), RF (2), sPLS (3) for p∗ =5. Figure 2 also displays the

Table 2. Mean error rate percentage using 10-CV (10 validation trials)
obtained on both datasets X∗Z together

Gene selection t-test (1) RF (2) sPLS (3)

Prostate PLS-RF 28.98 (4.16)
cforest 24.65 (4.91)
multinom 27.09 (2.47) 26.33 (3.03) 26.96 (4.74)
ME-indep 29.24 (4.44) 28.86 (5.53) 31.64 (3.48)
ME-multinom 26.32 (4.77) 25.82 (4.74) 27.59 (5.62)
ME-loc 25.44 (3.70) 26.83 (2.44) 23.54 (2.61)

Breast PLS-RF 28.20 (1.86)
cforest 31.15 (1.60)
multinom 27.89 (1.69) 31.33 (1.53) 28.59 (2.02)
ME-indep 27.81 (1.47) 30.19 (1.73) 27.77 (1.28)
ME-multinom 27.65 (1.45) 29.88 (1.80) 27.89 (1.46)
ME-loc 27.85 (1.51) 29.92 (1.25) 27.26 (1.16)

CNS PLS-RF 38.68 (2.18)
cforest 38.33 (6.90)
multinom 33.67 (5.49) 36.83 (7.51) 37.17 (4.16)
ME-indep 43.83 (6.5) 42.81 (6.57) 41.83 (4.81)
ME-multinom 33.00 (6.08) 39.67 (6.08) 35.67 (6.34)
ME-loc 31.67 (6.98) 35.16 (5.63) 35.33 (5.37)

Classification performances which were as good or better than X∗ or Z alone (see
Table 1) are indicated in bold (p∗ =5).

averaged error rate of some of the tested approaches where p∗ varies
from 5 to 30.

Table 3 investigates the gain in accuracy when the clinical
variables are also selected based on the outcome status y (q∗ =3)
and Table 4 compares the sensitivity and specificity measures of the
tested approaches on X∗, Z and X∗Z for p∗ =5.

3.3 Statistical results
Tables 1 and 2 show that the combination of clinical and microarray
data improves the prognosis prediction in the three studies when the
number of genes p∗ is small. It is interesting to see that integrative
ME solely applied on X∗ data can give competitive results compared
to the other related approaches (Table 1). Both experts and gating
network, therefore, play an important role in the classification
performance, first by soft partitioning the variable space (the experts)
and second by weighting the experts that perform the best at solving
the problem (the gating network). However, the inclusion of clinical
variables is still necessary to improve the accuracy. Table 2 shows
that the gain in the prediction performance using X∗ only to the
integration of X∗ and Z can increase from 3% (ME/X∗ versus ME-
loc) for prostate, from 1.5% (PLS-RF versus ME-loc) for breast
and from 4% (NSC versus ME-loc) for CNS if we consider the best
results obtained in both tables. These statistical results are consistent
with the findings of the few related studies in the literature. For
example, Boulesteix et al. (2008) found that their proposed PLS-
RF methodology led to a 4% improvement in the accuracy on a
colorectal dataset.

Following the results obtained in Tables 1 and 2, we further
assessed the classification performance of some of the tested
approaches with respect to the number of selected genes. The
average values of the error rate estimates are plotted in Figure 2
to compare the performances of the approaches RFE, NSC, RF and
integrative ME applied on the dataset X∗ alone, integrative ME with
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Fig. 2. Average error rates of different methods on prostate (a) breast (b) and CNS (c) with respect to the number of selected genes. Black lines, wrapper
approaches on X∗ only; red lines, integrative ME on X∗ and Z and blue line: logistic regression on Z only.

Table 3. Mean error rate percentage using 10-CV (10 validation trials)
obtained when variable selection is performed on both X∗Z∗ (p∗ =5 and
q∗ =3)

Gene selection t-test (1) RF (2) sPLS (3)

Prostate PLS-RF 29.36 (5.99)
cforest 24.72 (3.62)
ME-indep 26.45 (4.11) 27.97 (4.24) 25.95 (3.44)
ME-multinom 24.81 (2.25) 24.68 (2.25) 23.67 (2.53)

Breast PLS-RF 27.15 (1.73)
cforest 31.60 (1.74)
ME-indep 27.19 (1.22) 29.02 (1.29) 26.21 (2.14)
ME-multinom 28.05 (2.16) 31.76 (2.51) 27.46 (1.93)

CNS PLS-RF 38.68 (5.64)
cforest 37.46 (4.65)
ME-indep 36.5 (5.90) 38.54 (5.87) 42.83 (8.92)
ME-multinom 38 (3.49) 36.67 (6.67) 36.5 (5.58)

Classification performances which were as good or better than X∗Z (see Table 2) are
indicated in bold.

the multinomial or the location model with a t-test variable selection,
and PLS-RF and cforest on X∗Z . Generally, it is encouraging to
see that integrative ME can perform better than clinical variables
alone (horizontal line). In prostate and CNS studies, integrative
ME on X∗Z improves the prediction performance compared to X∗
alone when the number of selected genes is small (5–10). This
argues in favor of a reduced number of potential gene markers and,
therefore, of reduced costs in biomarkers driven prognosis. Only
cforest on prostate seems to be competitive with integrative ME. For
breast dataset, the results are also encouraging as no other wrapper
approach is able to perform better than integrative ME, even when
the number of selected genes increases. This improvement suggests
a better hybrid signature of gene markers and clinical factors than a
gene signature alone.

The variable selection step plays an important role in the
predictive ability of the integrative ME model. Often, the best results
were obtained with a t-test or a sPLS selection (Table 2). In addition,
when clinical variables were also selected, the accuracy improved
from 1% to 2% for prostate (breast) where Gleason stage, extra
capsular extension and seminal vesicle invasion (histological grade,
tumor diameter and age) were selected, when compared to the use
of all clinical variables (Table 3 versus Table 2, independent and
multinomial gating functions). These results could be explained by

Table 4. Comparison of sensitivity and specificity percentages using 10-CV
(10 validation trials) obtained on X∗, Z and X∗Z using different approaches
(p∗ =5)

Sensitivity Specificity

Prostate Breast CNS Prostate Breast CNS

Z RF 66.22 90.61 15.24 76.43 20.93 70.26

X∗ RF 71.62 81.27 33.81 74.28 29.47 70.00
PLS-RF 64.05 85.63 36.67 72.86 35.2 73.07
ME+(1) 65.94 75.19 44.28 70.95 54.67 69.49
ME+(2) 67.02 71.71 31.90 74.76 49.20 65.64
ME+(3) 70.81 78.45 43.33 75.47 53.20 66.92

X∗Z PLS-RF 62.97 89.28 10.95 77.62 28.40 92.05
cforest 71.35 89.83 11.42 81.19 21.07 84.87
ME-indep (1) 67.56 84.42 42.38 73.57 42.67 63.85
ME-indep (2) 67.02 83.87 42.38 74.76 35.87 63.85
ME-indep (3) 64.05 84.75 42.38 72.42 42.00 66.67
ME-multi (1) 64.86 85.25 47.14 81.42 41.20 77.69
ME-multi (2) 69.72 84.31 39.52 78.09 35.87 71.54
ME-multi (3) 66.76 84.81 40.95 77.38 41.47 76.92
ME-loc (1) 75.67 84.42 40.95 73.57 42.53 76.92
ME-loc (2) 75.67 84.42 40.95 73.57 35.47 76.92
ME-loc (3) 76.49 84.70 48.57 76.42 43.87 73.33

(1), (2) and (3) indicate the variable selection procedure used (see Section 2.3).

the relevance of the selected clinical variables. For prostate, for
example, these three clinical factors have been described many
times as very good markers for prognostic outcomes (Griebling
et al., 1997; Montie, 1996). The accuracy improved up to 7% in
CNS (age, tumour type and chemotherapy Cx selected). However,
these results were not as good as when using the location gating
function in integrative ME. The location model may, therefore,
suffice when q is small as the most correlated clinical factors are
replaced by a unique categorical variable, the location variable (see
Supplementary Material S2 for the chosen locations).

Interestingly, both sensitivity and specificity criteria were
improved when combining both datasets X∗Z compared to X∗ or
Z alone. With integrative ME, good improvements were obtained
on prostate and CNS for both measures. Breast seems to be a
particular case were the Z data tend to improve the sensitivity
(i.e. classifying the recurrent cases), whereas the X∗ data tend to
improve the specificity (i.e. classifying the non-recurrent cases).
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Table 5. Most relevant selected genes with a potential biomarker status in
prostate

Gene name (symbol) Lvl
Gene selection method
[rank]

Etoposide induced 2.4 mRNA
(EI24)

+ t-test[1], RF[1], sPLS[1]

Erythrocyte membrane protein band
4.9 (EPB4.9)

− t-test[2], sPLS[2]

CHMP1A − t-test[5], RF[2], sPLS[5]
ASNS + RF[4]
PTMA + RF[5]

Expression level in subjects with respect to class ‘recurrent’ is indicated: overexpressed
(+), underexpressed (−).

PLS-RF significantly improved the specificity in CNS, but not the
sensitivity. Compared to the other approaches applied on X∗Z (PLS-
RF and cforest), these results show that integrative ME makes a good
compromise to classify both recurrent and non-recurrent patients in
their respective classes.

In overall, the location and multinomial gating functions seemed
to perform the best in terms of classification performance and
specificity/sensitivity when including all clinical variables, whereas
the independent model seemed to be competitive once the clinical
variables were selected on breast and CNS. The location gating
function coupled with a t-test or a sPLS variable selection performed
the best in the three studies.

3.4 Relevance of potential genetic markers
We further analyzed the biological relevance of the selected p∗
genes that were integrated with the clinical factors in integrative
ME. The most relevant genes for the prostate dataset are presented
in Table 5 and are discussed below (see Supplementary Material S3
for a detailed analysis of the other datasets).

In the prostate cancer study, the best classification performance
was obtained with the sPLS gene selection method. This result
could be explained by the selection of very relevant genes closely
linked to cancer phenotype. EPB4.9 gene is located on chromosome
8p21.1, a region frequently deleted in prostate carcinoma and could
have a possible role in cell shape alteration, tumor progression
and metastasis (Lutchman et al., 1999). EI24 is also located in
a region frequently altered in several malignancies (Gu et al.,
2000). EI24/PIG8 is a member of PIGs encoding proteins with
activities related to the redox status of cells (Polyak et al., 1997),
and has been linked to apoptosis modulation (Zhao et al., 2005).
Chromatin-modifying protein 1A (CHMP1A) was recently found
underexpressed in pancreatic tumors as well as in numerous cancers
and was proposed as a tumor suppressor (Li et al., 2008). Several
other genes selected by the sPLS method were related to the
cellular metabolism in general (GCAT, ACAT2, etc.). Numerous
studies highlighted the modification of cellular metabolism in
cancer cells (Weinberg and Chandel, 2009). In addition, sPLS
selected interesting genes amongst which STIP1, OGN and ITGB4
could be of relative importance (see Supplemental Material S3
for details). The t-test selection method gave similar prediction
rate. Three important genes that could be considered as potential
biomarkers were also present in the top list of the selected genes

(EBP4.9, EI24 and CHMP1A). The RF gene selection method
gave less performant results, nonetheless, these results were better
than using microarray or clinical variables alone. Interestingly, the
genes selected by RF were high of high interest. For example,
asparagine synthetase (ASNS) and prothymosin alpha (PTMA).
The ASNS expression is linked to cell growth and ASNS mRNA
content is controlled in accordance with changes in the cell cycle
(Greco et al., 1987). Numerous studies showed that a high level
of ASNS expression was correlated with drug resistance in T-cell
acute lymphoblastic leukemia (T-ALL; Richards and Kilberg, 2006).
Recently, Estes et al. (2007) demonstrated that ASNS silencing
could revert T-ALL cells to drug sensitivity. PTMA is an histone
H1-binding protein ubiquitously expressed and correlated with
several cancer progression. Suzuki et al. (2006) demonstrated that
PTMA is involved in the differentiation and progression of prostate
adenocarcinomas and could become a candidate target for therapy
and diagnosis. Although these genes have been either implied in
the numerous cancers, or identified as potential biomarker, further
investigations need to be performed to clarify the contribution of
these selected genes to prostate carcinoma recurrences.

4 CONCLUSION
We have presented a method to combine categorical clinical factors
and continuous gene expression variables in a hybrid signature.
We have shown that the gene selection step did yield important
biological insights into the cancer studies. These genes should be
investigated further to validate them as potential biomarkers.
The ME methodology was improved by proposing different gating
networks function to combine clinical factors and gene expression.
In addition, three different gene selection procedures were proposed
that improved the prognosis prediction accuracy on three cancer
studies. We also investigated the gain in accuracy when selecting
clinical variables based on the outcome status. The accuracy was
improved for the independent gating function in integrative ME,
but in general, we showed that the location model sufficed to
give good results as the number of clinical variables was small.
Furthermore, we showed that sensitivity and specificity criteria were
generally improved with integrative ME. Therefore, both types of
variables should not be neglected or separately analyzed. Indeed,
although microarray data can help uncover new features into cancer
cell biology, cancer prognosis cannot solely rely on microarray
data without taking into account the clinical characteristics of the
patients. Conversely, clinical factors have valuable information
about the risk of recurrence but they lack accuracy to determine the
need of systemic adjuvant therapy. The availability of larger-scale
studies involving the records of a larger number of clinical variables
will undoubtedly allow better improvements in the prediction
accuracy, as we will be able to select disease-specific clinical
variables that are more closely related to the cancer study.
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