
[13:05 13/4/2010 Bioinformatics-btq131.tex] Page: 1271 1271–1272

BIOINFORMATICS APPLICATIONS NOTE Vol. 26 no. 9 2010, pages 1271–1272
doi:10.1093/bioinformatics/btq131

Systems biology Advance Access publication March 24, 2010

TopoGSA: network topological gene set analysis
Enrico Glaab1,†, Anaïs Baudot2,†, Natalio Krasnogor1,∗ and Alfonso Valencia2,∗
1School of Computer Science, Nottingham University, Jubilee Campus, Nottingham, UK and 2Structural Biology and
Biocomputing Program, CNIO, Madrid, Spain
Associate Editor: Jonathan Wren

ABSTRACT

Summary: TopoGSA (Topology-based Gene Set Analysis) is a
web-application dedicated to the computation and visualization of
network topological properties for gene and protein sets in molecular
interaction networks. Different topological characteristics, such as
the centrality of nodes in the network or their tendency to form
clusters, can be computed and compared with those of known
cellular pathways and processes.
Availability: Freely available at http://www.infobiotics.net/topogsa
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1 INTRODUCTION
Functional genomic experiments provide researchers with a wealth
of information delineating gene sets of biological interest. To
interpret these lists of genes, common steps in a functional gene
set analysis include the search for enrichment patterns [for a review,
see (Abatangelo et al., 2009)], e.g. to identify significant signalling
pathways or protein domains, and text mining in the literature
[see review by (Krallinger et al., 2008)]. Another approach for the
functional interpretation of gene sets is the analysis of molecular
interactions in which the genes or their corresponding proteins are
involved, in particular protein–protein interactions. In this context,
some existing bioinformatics tools already allow users to map genes
onto networks of interacting or functionally associated molecules to
identify related genes and proteins (Jenssen et al., 2001; Snel et al.,
2000). However, to the best of the authors’ knowledge, so far these
tools do not take into account topological properties in interaction
networks to analyse and compare gene sets.

In this article, we introduce TopoGSA (Topology-based Gene Set
Analysis), a web-tool to visualize and compare network topological
properties of gene or protein sets mapped onto interaction networks.

2 WORKFLOW AND METHODS

2.1 Analysis of network topological properties
An analysis begins with the upload of a list of gene or protein identifiers
(Ensembl IDs, HGNC symbols, etc.; see webpage for a complete list of
supported formats). Alternatively, a microarray dataset can be used as
input and differentially expressed genes will be extracted automatically
using methods from a previously published online microarray analysis tool
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[arraymining.net (Glaab et al., 2009)]. Moreover, the user can add labels
to the uploaded identifiers to compare different subsets of genes (e.g.
‘up- regulated’ versus ‘down-regulated’ genes).

After submitting the list of identifiers, the application maps them onto an
interaction network (Section 4), and computes topological properties for the
entire network, the uploaded gene/protein set and random sets of matched
sizes. The available network topological properties are:

• The degree of a node (gene or protein) is the average number of edges
(interactions) incident to this node.

• The local clustering coefficient quantifies the probability that the
neighbours of a node are connected (Watts and Strogatz, 1998).

• The shortest path length (SPL) for two nodes vi and vj in an undirected,
unweighted network is defined as the minimum number of edges that
have to be traversed to reach vj from vi. We use the SPL as a centrality
measure, computing the average SPL from each node of interest to all
other nodes in the network.

• The node betweenness B(v) of a node v can be calculated from the
number of shortest paths σst from nodes s to t going through v:

B(v)=
∑

s �=v,s �=t,v �=t∈V

σst(v)

σst
(1)

• The eigenvector centrality measures the importance of network nodes
by applying a centrality definition, in which the score of each node
reciprocally depends on the scores of its neighbours. More precisely, the
centrality scores are given by the entries of the dominant eigenvector of
the network adjacency matrix (see Bonacich et al., 2001, for a detailed
discussion of this property).

Furthermore, user-defined 2D and 3D representations can be displayed
for each individual gene/protein in the dataset and plotted data points are
interlinked with relevant entries in an online annotation database.

2.2 Comparison with known gene sets
The analysis of network topological properties of only a single gene/protein
set does not lend itself to direct functional interpretation. However, TopoGSA
enables the user to compare the properties of a dataset of interest with
a multitude of predefined datasets corresponding to known functional
processes from public databases. For the human species, these include
signalling pathways [KEGG (Kanehisa et al., 2006), BioCarta (Nishimura,
2001)], Gene Ontology [Biological Process, Molecular Function and Cellular
Component (Ashburner et al., 2000)] and InterPro protein domains (Apweiler
et al., 2001). Summaries of network topological properties are provided for
all gene/protein sets, and in the 2D and 3D plots different colours distinguish
different datasets. Users can identify pathways and processes similar to the
uploaded dataset visually, based on the plots or based on a tabular ranking
using a numerical score to quantify the similarity across all topological
properties. The similarity score is obtained by computing five ranks for each
pathway/process set according to the absolute differences between each of
its five median topological properties and the corresponding value for the
uploaded dataset. The sum of ranks across all topological properties is then
computed and normalized to a range between 0 and 1.
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Fig. 1. Example results produced with TopoGSA based on the cancer gene
set by Futreal et al. (2004). (a) Topological properties can be computed and
examined as visual (1) and tabular (2) outputs; (b) The gene set can be
compared with a chosen reference database (here the KEGG database).

3 EXAMPLE ANALYSIS
It has been shown that proteins encoded by genes that are known
to be mutated in cancer have a higher average node degree in
interaction networks than other proteins (Jonsson et al., 2006). This
observation is confirmed by a TopoGSA analysis of the complete
set of genes currently known to be mutated in cancer [Futreal et al.
(2004), http://www.sanger.ac.uk/genetics/CGP/Census]. The cancer
genes are involved in more than twice as many interactions, on
average, than matched-size random subsets of network nodes (with
a difference of >15 SDs for 10 random simulations). Furthermore,
the analysis with TopoGSA reveals that the cancer genes are closer
together in the network (in terms of their average pairwise shortest
path distances) than random gene sets of matched sizes and occupy
more central positions in the interaction network (see Fig. 1a for
details). The 3D plot displaying node betweenness, degree and SPL
reveals in particular the tumour suppressor p53’s (TP53) outstanding
network topological properties.

When comparing the network topological properties of the cancer
proteins with pathways from the KEGG database, considering each
individual pathway as a gene set (Fig. 1b), the cancer proteins appear
to have network properties comparable to several KEGG cellular
processes and environmental information processing pathways
[according to the KEGG-BRITE pathway hierarchy (Kanehisa et al.,
2006), Fig. 1b, purple and brown], whereas they clearly differ
from metabolism-related pathways (Fig. 1b, yellow). Interestingly,
although the network topological properties of cancer genes are in
agreement with their role in promoting cell division and inhibiting
cell death (Vogelstein and Kinzler, 2004), they differ from those of
most disease-related KEGG pathways (Fig. 1b, green).

4 IMPLEMENTATION
The network analysis and gene mapping was implemented in the
programming language R and the web interface in PHP. To build
a human protein interaction network, experimental data from five
public databases [MIPS (Mewes et al., 1999), DIP (Xenarios et al.,
2000), BIND (Bader et al., 2001), HPRD (Peri et al., 2004) and
IntAct (Hermjakob et al., 2004)] were combined and filtered for
binary interactions by removing entries with PSI-MI codes for

detection methods that cannot verify direct binary interactions (these
are evidence codes for co-immunoprecipitation or colocalization,
for example; details on the used method definitions and PSI-MI
codes can be found in the ‘Datasets’ section on the webpage).
This filtering resulted in a network consisting of 9392 proteins
and 38 857 interactions. Additionally, protein interaction networks
for the model organisms yeast (Saccharomyces cerevisiae), fly
(Drosophila melanogaster), worm (Caenorhabditis elegans) and
plant (Arabidopsis thaliana) have been built using the same
methodology as for the human network and the BioGRID database
(Stark et al., 2006) as additional data source (see the help sections on
the webpage for additional details on these networks). TopoGSAwill
be updated periodically twice per year to integrate newly available
protein interaction data and reference gene sets. Moreover, users
can upload their own networks. A video tutorial and instructions on
how to use the web tool are available in the ‘Tutorial’ section on the
webpage.
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