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Abstract
A series of N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)arylamides was synthesized by copper-
catalyzed azide–alkyne cycloaddition (CuAAC) and afforded inhibitors of cancer cell growth. For
example, compound 13e had an IC50 of 46 nM against MCF-7 human breast tumor cells.
Structure–activity relationship (SAR) studies demonstrated that (i) meta-phenoxy substitution of
the N-1-benzyl group is important for antiproliferative activity and (ii) a variety of heterocyclic
substitutions for the aryl group of the arylamide are tolerated. In silico COMPARE analysis of
antiproliferative activity against the NCI-60 human tumor cell line panel revealed a correlation to
clinically useful antimicrotubule agents such as paclitaxel and vincristine. This in silico correlation
was supported by (i) in vitro inhibition of tubulin polymerization, (ii) G2/M-phase arrest in HeLa
cells as assessed by flow cytometry, and (iii) perturbation of normal microtubule activity in HeLa
cells as observed by confocal microscopy. The results demonstrate that N-((1-benzyl-1H-1,2,3-
triazol-4-yl)methyl)arylamide is a readily accessible small molecule scaffold for compounds that
inhibit tubulin polymerization and tumor cell growth.
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Introduction
Microtubules, dynamic protein polymers composed of α-tubulin and β-tubulin heterodimers,
are a well-established cellular target for anticancer drugs.1 Dynamic polymerization of
tubulin is a necessary and tightly controlled process during mitosis.2 Perturbing microtubule
dynamics with small molecules blocks the cell cycle in the metaphase/anaphase transition
and leads to apoptosis.3 Thus, molecules4 that target tubulin halt rapid cell division, a
characteristic of cancer cells.5 This therapeutic strategy has been validated by the clinical
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success of antimicrotubule drugs such as paclitaxel, docetaxel, vincristine, and vinblastine.
Nonetheless, neurotoxicity and P-glycoprotein-mediated drug resistance limit the clinical
utility of these drugs.6 New-generation taxoids, vinca alkaloids, and other novel chemotypes
that modulate microtubule dynamics have been synthesized in efforts to overcome these
limitations.7 For example, small molecule modulators of tubulin polymerization that do not
elicit neurotoxicity in mice have been identified,8 suggesting that neurotoxicity is not
intrinsically linked to antimicrotubule agents. Nonetheless, few of these new
antimicrotubule agents have produced useful clinical results. The key limitation to the
development of new antimicrotubule drugs is a narrow therapeutic window.9 A new
antimicrotubule scaffold amenable to rapid derivatization and combinatorial library
synthesis would provide an exceptional opportunity for the discovery of an efficacious
antimicrotubule agent with an improved therapeutic window.

Herein we report the synthesis, in vitro antiproliferative activity against select cancer cell
lines, and structure–activity relationships of compounds containing the N-((1-
benzyl-1H-1,2,3-triazol-4-yl)methyl)arylamide scaffold. We also report mode of action
studies based on in silico, in vitro and cell culture experiments, which reveal the potent
antimicrotubule activity of this scaffold. The discovery of this scaffold stemmed from our
work on Mycobactin S (1),10 a natural product produced by Mycobacterium smegmatis that
exhibits anti-tuberculosis activity11 (Chart 1). All synthetic intermediates encountered
during our group’s total synthesis of Mycobactin S12 were screened for biological activity.
Surprisingly, benzyl ester 2, a small fragment of the natural product, exhibited anti-
tuberculosis activity similar to that of Mycobactin S. Furthermore, in contrast to Mycobactin
S, compound 2 provided a scaffold that was amenable to rapid structure–activity relationship
studies, which led to the discovery of more potent anti-tuberculosis agents.13 While
exploring derivatives of 2, we found that 2-phenyl-oxazole-4-carboxamide derivative 3 was
also active against M. tuberculosis. 2-Phenyl-oxazole-4-carboxamides are known inhibitors
of histone deacetylase,14 Stat3,15 phosphodiesterase,16 phosphatase,17 thromboxane
synthase,18 and kinase proteins,19 and known activators of cellular caspase activity.20 We
synthesized derivatives of 3 to identify a more potent anti-tuberculosis agent.13 One of the
derivatives, compound 4e, had weak anti-tuberculosis activity, but broader biological
screening serendipitously revealed that 4e and related derivatives have potent
antimicrotubule activity in cancer cells, as disclosed in this report.

Results and Discussion
Chemistry

2-Phenyl-oxazole-4-carboxylic acid 7 was synthesized according to the protocols shown in
Scheme 1.11,12 Coupling benzoyl chloride to serine benzyl ester hydrochloride afforded β-
hydroxy amide 5. Dehydrative cyclization and oxidation of β-hydroxy amide 5 with
diethylaminosulfurtrifluoride (DAST) and DBU/BrCCl3 yielded oxazole 6.22 Catalytic
hydrogenolysis of the benzyl ester provided 2-phenyl-oxazole-4-carboxylic acid 7.

Our strategy for exploring the chemical space around the 2-phenyl-oxazole-4-carboxamide
fragment employed “click chemistry.”23 More specifically, we selected the Cu(I)-catalyzed
azide–alkyne cycloaddition (CuAAC) reaction24 because of its wide scope, high efficiency,
and recognized utility for drug discovery.25 Following this strategy, N-((1-benzyl-1H-1,2,3-
triazol-4-yl)methyl)-2-phenyl-oxazole-4-carboxamides 4a–e were synthesized as shown in
Scheme 2. Coupling propargylamine to freshly prepared 2-phenyloxazole-4-carboxyl
chloride (derived from the corresponding carboxylic acid 7) provided alkyne 8. With the
terminal alkyne precursor in hand, we turned our attention to the syntheses of azides 10a–e.
Benzyl bromides 9a–e were treated with NaN3 to afford benzyl azides 10a–e.26 Exposing
terminal alkyne 8 to benzyl azides 10a–e in the presence of catalytic Cu(I) produced 1,4-
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disubstituted triazoles 4a–e in high regioselectivity. Aqueous CuAAC conditions (H2O/t-
BuOH, 2:1) facilitated precipitation of the products, which were isolated with high purity.24

In order to explore the structure–activity relationships of the aryl amide group, a more
general N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)arylamide scaffold was synthesized
according to the protocols shown in Scheme 3. The simplicity of reaction Scheme 2 and
Scheme 3 is anticipated to allow the synthesis of a large library of 1,2,3-triazole-based
structures. Moreover, the CuAAC reaction is the convergent synthetic step. Both the
arylamide and benzyl groups, attached to opposite sides of the central triazole, are important
components of the pharmacophore, as shown by the structure–activity studies described
below. The convergence of the synthesis will allow both sides of the scaffold to be
systematically varied in future SAR studies.

In Vitro Antiproliferative Activity
The antiproliferative activity of compounds 4a–e against cancer cells was discovered during
broad biological screening of a series of compounds originally anticipated to have anti-
tuberculosis activity. Although compounds 4a–e had negligible anti-tuberculosis activity,
they inhibited the proliferation of cancer cells in vitro. Therefore, we determined the
antiproliferative activities (IC50 values) of hit compounds 4a–e against the breast tumor-
derived cell line MCF-7 (Table 1). Because the IC50 of 4e (0.56 µM) was significantly lower
than those of 4a–d (IC50 = 7.3–16 µM), we conserved meta-phenoxy benzyl substitution at
triazole N-1 in the second series of analogs (Scheme 3).

The structure–activity relationships of the triazole C-4 substituent were investigated by
changing the carboxamide group (Table 2). In this SAR study, antiproliferative activity was
investigated with the MCF-7 cell line and human lymphoma cell line U937. Addition of
electron withdrawing or electron donating groups to the para-position of the 2-
phenyloxazole group (13a–c) had a significant effect on antiproliferative activity, revealing
an avenue for future optimization. Before performing an extensive SAR study via
substitution of the 2-phenyloxazole group, we wanted to know if the 2-phenyloxazole was
necessary for antiproliferative activity. If simpler aryl groups could replace the 2-
phenyloxazole, the three-step synthesis of the 2-phenyloxazole-4-carboxylic acids could be
bypassed by using commercial aryl acids. Thus, we conducted a systematic truncation of the
2-phenyloxazole-4-carboxamide group found in 4e. Removing the 2-phenyl group (13d) did
not significantly change the activity. Following this lead, which suggested that we could use
simpler aryl groups, we synthesized 2-pyridyl derivative 13e. Against the MCF-7 cell line,
the IC50 of 13e (46 nM) was significantly lower than that of 4e (560 nM). Likewise, a
significant decrease in IC50 was observed with the U937 cell line. Therefore, replacing the
2-phenyloxazole group with simpler aryl groups represents a significant opportunity to
improve antiproliferative activity. Phenyl derivative 13f had improved antiproliferative
activity compared to 4e, but was less active than 2-pyridyl derivative 13e. Replacing the aryl
group with a methyl group (14) gave a meaningful loss of antiproliferative activity and
demonstrated the importance of the aryl carboxamide group.

Time Dependence of In Vitro Cellular Antiproliferative Activity
In order to distinguish cytotoxic activity from cytostatic activity, the time dependence of the
effect of 13e on MCF-7 cells was determined (Figure 1). At a concentration of 39 nM, 13e
slowed the cell proliferation rate. At higher concentrations (78 nM and 156 nM), cellular
proliferation was halted, but 13e did not decrease the number of cells. Thus, at
concentrations moderately higher than the IC50, 13e is cytostatic rather than cytotoxic
against MCF-7 cells.
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Broad-Spectrum In Vitro Antiproliferative Activity
The NCI-60 anticancer drug screen is an in vitro assay consisting of 60 different human
tumor cell lines.27 Organized by disease type, the NCI-60 panel includes various leukemia
cell lines and cell lines derived from solid tumor sources. Cell line selectivity guides further
biological evaluation. In the NCI-60 panel, compounds 4b, 4c, 4d, and 4e induced broad-
spectrum antiproliferative activity against tumor cell lines derived from leukemia, non-small
cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer,
prostate cancer, and breast cancer (see Supplemental Information). Of these four
compounds, 4e (NCI-60 mean GI50 = 870 nM) was more than twenty times more potent
than the other three compounds (Table 3). This result is consistent with the results from our
MCF-7 and U937 assays and further emphasizes the importance of meta-phenoxy benzyl
substitution of triazole N-1 for optimal activity within this scaffold. With respect to
selectivity among the 60 cell lines in the NCI-60 panel, all four compounds tested in the
panel showed greater than average potency against human leukemia cell line HL-60, breast
cancer cell line MCF-7, and melanoma28 cell line MDA-MB-435 (Table 3).

COMPARE Analysis Revealed a Correlation to Antimicrotubule Drugs
For a given compound, the antiproliferative activity measured in the NCI-60 differs by cell
line. Furthermore, antitumor agents with similar mechanisms of action can produce similar
patterns of differential antiproliferative data. We used the matrix COMPARE algorithm29 to
measure the correlations between compounds 4b, 4c, 4d, and 4e with respect to differential
antiproliferative activity. The matrix produced by the analysis showed that 4c and 4d have
highly correlated activities (r = 0.968) (Table 4). On the contrary, 4e (the most potent
compound tested in the NCI-60) had low correlations (r < 0.5) with the other three
compounds. These matrix COMPARE results suggest that 4c and 4d have the same
mechanism of action, but the mechanism of 4e is distinct. Future studies will further
investigate the importance of the meta-phenoxy substituent found in 4e for its mechanism
action. In the studies reported here, we focused on 4e and related analogs, which also have
the meta-phenoxy substituent, because of their superior potency.

The COMPARE algorithm can also compare the differential antiproliferative activity of a
new compound to those of compounds with known mechanisms of action in the NCI
Standard Agent Database.31 Standard COMPARE analysis has been used previously to
identify the cellular targets of antitumor agents.32 Thus, the pattern of differential
antiproliferative activity of 4e was used to probe the NCI Standard Agent Database for
correlations. We used all three measures of activity provided by the NCI-60 screen (GI50,
50% growth inhibition; TGI, total growth inhibition; and LC50, 50% lethal concentration). A
standard COMPARE analysis of 4e (Table 5) showed correlations to paclitaxel, maytansine,
vincristine, vinblastine, and rhizoxin, all of which affect microtubule polymerization. Given
this in silico result, we hypothesized that 4e targets microtubules and directly tested this
hypothesis in vitro. In contrast, the first-ranked COMPARE hits for 4b–d did not include
antimicrotubule agents (see Supplemental Information).

Inhibition of Tubulin Polymerization In Vitro
The polymerization of microtubules from purified tubulin can be monitored in vitro by
measuring an increase in light scattering. This in vitro experiment removes complicating
factors, such as microtubule-associated proteins (MAPs), which might be part of a putative
target that leads to disruption of microtubules as observed with microscopy. In order to test
our hypothesis that the target of the N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)arylamide
scaffold is tubulin, and not a MAP, we monitored the polymerization of tubulin after
treatment with 4e, 13a, and 13e (Figure 2). In this experiment, paclitaxel, a microtubule
stabilizer, enhanced the rate of tubulin polymerization, while nocodazole, a microtubule
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destabilizer, prevented the polymerization of tubulin. Similar to nocodazole, 4e, 13a, and
13e completely inhibited tubulin polymerization at 10 µM. Thus, the triazole-based
compounds prevent the formation of microtubules in vitro. We followed this in vitro assay
with cell culture experiments to see if microtubules are the primary cellular target.

Cell Cycle Analysis Demonstrated G2/M-Phase Arrest
Antimicrotubule agents induce M-phase arrest. Flow cytometry can quantitatively determine
the population of cells in each phase of the cell cycle by measuring the DNA content of
individual cells. Cells in G2-phase or M-phase have twice as much DNA as cells in G1-
phase. Thus, we conducted flow cytometric cell cycle analysis of HeLa cells treated with 4e,
13a, 13d, 13e, and 14. Consistent with the hypothesized mechanism of action, compounds
4e, 13a, 13d, and 13e significantly increased the population of cells in G2/M-phase (Figure
3). Upon treatment with these four compounds, the population of G2/M-phase cells
increased from 13% in the control to over 90%. Compound 14, however, did not induce
significant G2/M-phase arrest, which suggested that the arylamide moiety is important for
the antimitotic activity of the N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)arylamide scaffold.

Confocal Microscopy Showed M-phase Arrest and Disruption of Microtubules
Visual evidence for M-phase arrest can be obtained with confocal microscopy due to DNA
condensation resulting in enhanced staining by propidium iodide. This outcome is in
contrast to the diffuse staining of DNA in interphase cells. Visual evidence for the disruption
of microtubules can be obtained concurrently using a fluorescein isothiocyanate-conjugated
anti-tubulin antibody. We therefore used confocal microscopy to examine HeLa cancer cells
treated with compounds 4e and 13e. Both DNA condensation and disruption of microtubules
were observed at 5 µM of 4e or 13e (Figure 4). Together, these images show that 4e and 13e
induce M-phase arrest and interfere with microtubule formation in whole cells.

Conclusion
In summary, we identified N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)arylamide as a novel
and proprietary33 small molecule scaffold for potential antitumor agents. Elucidating
structure–activity relationships by subtraction from initial hit compound 4e (MCF-7 IC50 =
560 nM) led to the discovery of 13e (MCF-7 IC50 = 46 nM), a foundational compound for
further study. Compound 13e (and related compounds) induced M-phase arrest in HeLa cells
at 5 µM and inhibited tubulin polymerization in vitro at 10 µM, providing strong support for
antimicrotubule activity as the primary mechanism of action. The NCI-60 screen
demonstrated broad-spectrum antitumor activity and prompted further biological evaluation.
Compound 13c was recently evaluated by the National Cancer Institute Developmental
Therapeutics Program (NCI DTP) for acute toxicity in vivo, and 100, 200 and 400 mg/kg
intraperitoneal (IP) doses were well tolerated in non-tumor bearing mice. Ongoing studies in
collaboration with the NCI DTP will evaluate in vivo efficacy in hollow fiber assays.34

Extensive SAR studies and the development of a combinatorial library are accessible
because compounds based on the N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)arylamide
scaffold are readily synthesized with the CuAAC reaction. Our findings will facilitate the
design and optimization of potent, cell-permeable antimicrotubule agents.

Experimental Section
2-(4-methoxyphenyl)-N-((1-(3-phenoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl)oxazole-4-
carboxamide (C27H23N5O4, 13c)

2-(4-Methoxyphenyl)oxazole-4-carboxylic acid (11c, 0.951 g, 4.3 mmol) was suspended in
anhydrous CH2Cl2 (12 mL) under argon. Oxalyl chloride (0.45 mL, 5.2 mmol) and N,N-
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dimethylformamide (20 µL) were added carefully to the mixture because of gas evolution.
The reaction slowly turned to a light yellow homogeneous solution over 3 h. The solution
was concentrated in vacuo to give 2-(4-methoxyphenyl)oxazole-4-carbonyl chloride (1.0
grams, 97%) as an yellow solid, which was used immediately in the next reaction without
characterization.

2-(4-Methoxyphenyl)oxazole-4-carbonyl chloride (1.0 g, 4.0 mmol) was dissolved in
anhydrous CH2Cl2 (15 mL) under argon and cooled to 0 °C (ice bath). Propargyl amine
hydrochloride (0.443 g, 4.8 mmol) and N,N-diisopropylethylamine (2.1 mL, 12.0 mmol)
were added with stirring. The reaction was allowed to warm to room temperature. After
stirring for 20 h, TLC analysis indicated completion of the reaction. The mixture was poured
into a solution of 10% aqueous NaHCO3 and extracted with CH2Cl2 (2x). The organic layer
was separated, washed with 10% aqueous NaHCO3 and brine, dried with Na2SO4, filtered,
and concentrated in vacuo. The resultant crude material was purified by column
chromatography (SiO2, EtOAc/CH2Cl2 stepwise elution, 1:1 to 10:1) to give 2-(4-
Methoxyphenyl)-N-(prop-2-ynyl)oxazole-4-carboxamide (12c) as an off white solid (0.788
g, 77%). mp 151–152 °C; 1H NMR (300 MHz, CDCl3) δ 8.06 (s, 1H), 7.82 (d, J = 8.5 Hz,
2H), 7.13 (bs, NH, 1H), 6.84 (d, J = 8.5 Hz, 2H), 4.15−4.07 (m, 2H), 3.72 (s, 3H), 2.15 (s,
1H); 13C NMR (126 MHz, CDCl3) δ 161.82, 161.57, 160.40, 140.49, 136.44, 128.83,
128.29, 119.13, 114.26, 113.69, 79.17, 71.69, 55.37, 28.66; HRMS–FAB (m/z) [M+H]+

calcd for C14H12N2O3, 257.0921; found, 257.0930.

2-(4-Methoxyphenyl)-N-(prop-2-ynyl)oxazole-4-carboxamide (12c, 300 mg, 1.17 mmol)
and 1-(azidomethyl)-3-phenoxybenzene (290 mg, 1.29 mmol) were suspended in a 2:1
mixture of water and tert-butyl alcohol (4.7 mL total volume). Sodium ascorbate (0.12
mmol, 0.12 mL, 1 M) and copper(II) sulfate (0.012 mmol, 0.12 mL, 0.1 M) were added
sequentially. After stirring for 4 days at room temperature, TLC analysis indicated complete
consumption of the reactants. The reaction mixture was diluted with water (5 mL) and
cooled on ice. The white precipitate was isolated by vacuum filtration and washed with cold
water (3 × 5 mL) and cold diethyl ether (3 × 3 mL) to afford 506 mg (90%) of pure product
(13c) as a white powder. TLC Rf = 0.42 (EtOAc); HPLC tr = 6.82 min (9:1 hexanes/2-
propanol); m.p. 119.1 – 119.4 °C; 1H NMR (300 MHz, CDCl3) δ 8.18 (s, 1 H), 7.99 − 7.93
(m, 2 H), 7.60 (bs, NH, 1 H), 7.55 (s, 1 H), 7.39 − 7.28 (m, 3 H), 7.16 − 7.09 (m, 1 H), 7.03
− 6.90 (m, 7 H), 5.47 (s, 2 H), 4.72 (d, J=6.1 Hz, 2 H), 3.88 (s, 3 H); 13C NMR (151 MHz,
CDCl3) δ 161.83, 161.56, 160.84, 158.04, 156.36, 145.05, 140.26, 136.70, 136.29, 130.46,
129.85, 128.31, 123.79, 122.46, 122.27, 119.26, 119.18, 118.56, 118.04, 114.28, 55.40,
53.84, 34.46. HRMS–FAB (m/z) [M+H]+ calcd for C27H23N5O4, 482.1823; found,
482.1803.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Abbreviations

CuAAC copper-catalyzed azide–alkyne cycloaddition

MIC minimum inhibition concentration to kill 90% of the bacterium

GI50 50% growth inhibition

TGI total growth inhibition

LC50 50% lethal concentration, IC50, half maximal inhibitory concentration
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TB Mycobacterium tuberculosis

GAST medium of glycerol-alanine-salts-Tween 80 without added iron

DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene

S.E.M. standard error of the mean
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Figure 1.
Time and concentration dependence of the antiproliferative activity of 13e against MCF-7
tumor cells. Time is in terms of time elapsed after addition of the compound. Cell counts are
shown relative to the cell count observed in the vehicle control 96 h after addition of the
0.5% DMSO solution.
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Figure 2.
Inhibition of tubulin assembly by 4e, 13a, and 13e in vitro. All compounds were tested at a
concentration of 10 µM. Effects of compounds on tubulin polymerization were assessed by
monitoring the increase in light scattering, measured as optical density (O.D.), at 340 nm.
Standards of 10 µM nocodazole (a tubulin assembly inhibitor) and 10 µM paclitaxel (a
tubulin assembly promoter) were used for direct comparison.
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Figure 3.
Effects of 4e, 13a, 13d, 13e, and 14 on the cell cycle distribution of HeLa cells as measured
by propidium iodide staining and flow cytometry. HeLa cells were treated with 5 µM
compound for 18 h in triplicate.
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Figure 4.
Confocal microscopy images of HeLa cells after 18 h incubation in the presence of 5 µM
compound. Nocodazole is a known tubulin polymerization inhibitor. Nuclear DNA was
stained with propidium iodide (red channel) and tubulin was stained with FITC-conjugated
anti-α-tubulin antibody (green channel). Compounds 4e and 13e disrupted normal
microtubule structures, caused fragmentation of mitotic spindles, and induced M-phase
arrest.
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Scheme 1.
Synthesis of 2-phenyloxazole-4-carboxylic acid.
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Scheme 2.
Synthesis of N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-2-phenyl-oxazole-4-carboxamide
scaffold.
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Scheme 3.
Synthesis of N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)arylamide scaffold.

Stefely et al. Page 16

J Med Chem. Author manuscript; available in PMC 2011 April 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Chart 1.
Structures of anti-tuberculosis compounds 2 and 3 and antimicrotubule compound 4e, all
derived from a fragment of mycobactin S (1). MIC values indicate in vitro anti-tuberculosis
activity against M. tuberculosis H37Rv in GAST medium21, and IC50 values indicate in
vitro antiproliferative activity against human breast cancer cell line MCF-7.
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Table 1

In vitro antiproliferative activity of compounds 4a–e, colchicine, and 2-methoxyestradiol against human breast
cancer cell line MCF-7.

IC50 (µM)

Compound R1 MCF-7

4a H 15.9

4b p-CH3 7.59

4c p-CF3 7.33

4d m-OCH3 8.35

4e m-OPh 0.56

Colchicine 0.013

2-methoxyestradiol 0.84
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Table 2

Antiproliferative activities (IC50) of compounds 4e, 13a–f, 14, colchicine, and 2-methoxyestradiol against
human breast cancer cell line MCF-7 and human lymphoma cell line U937.

Compound R2
IC50 (µM)a

MCF-7 U937

4e 0.56 ± 0.11 1.40 ± 0.18

13a 0.33 ± 0.045 1.13 ± 0.44

13b 1.9 ± 1.4 nd

13c 0.66 ± 0.31 3.75 ± 1.78
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Compound R2
IC50 (µM)a

MCF-7 U937

13d 0.64 ± 0.35 2.19 ± 0.58
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Compound R2
IC50 (µM)a

MCF-7 U937

13e 0.046 ±
0.022

0.58 ± 0.42
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Compound R2
IC50 (µM)a

MCF-7 U937

13f 0.245 ± 0.007 nd
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Compound R2
IC50 (µM)a

MCF-7 U937

14 6.4 ± 1.3 28 ± 19

Colchicine 0.0134 0.008 ± 0.003

2-methoxyestradiol 0.842 ± 0.090 2.91 ± 1.17

a
IC50 values represent the concentration at which the cell count was inhibited to 50% of that measured in the vehicle control. Error is S.E.M., n≥3.
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Table 3

Antiproliferative activity of compounds 4b, 4c, 4d, and 4e against selected cell lines in the NCI-60 screen.

GI50 (µM)

compound mean HL-60 MCF-7 MDA-MB-435

4b 21.9 1.53 8.93 3.71

4c 16.6 2.34 3.83 1.94

4d 17.8 2.37 4.16 2.12

4e 0.87 0.39 0.36 0.18

J Med Chem. Author manuscript; available in PMC 2011 April 22.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Stefely et al. Page 25

Table 4

Matrix COMPARE analysis of 4b, 4c, 4d, and 4e. Matrix values (r values) are Pearson’s correlation
coefficients.30

compound 4b 4c 4d 4e

4b 1.000 0.600 0.583 0.489

4c 0.600 1.000 0.968 0.475

4d 0.583 0.968 1.000 0.491

4e 0.489 0.475 0.491 1.000
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Table 5

Standard COMPARE analysis of 4e. The Target Set was the Standard Agent Database and the Target Set
Endpoints were set equal to the Seed Endpoints (GI50, TGI, and LC50). Correlation values (r) are Pearson’s
correlation coefficients. Some hits appear multiple times because they were tested by the NCI for the Standard
Agent Database at multiple concentration ranges.

rank compound r

Based on GI50 Mean Graph

     1 paclitaxel 0.541

     2 maytansine 0.534

     3 vincristine sulfate 0.500

     4 trimetrexate 0.480

     5 soluble Baker's Antifol 0.460

Based on TGI Mean Graph

     1 paclitaxel (hiConc = 10−5 M) 0.654

     2 paclitaxel (hiConc = 10−6 M) 0.646

     3 paclitaxel (hiConc = 10−4.6 M) 0.642

     4 maytansine 0.621

     5 vinblastine sulfate 0.606

Based on LG50 Mean Graph

     1 rhizoxin (hiConc = 10−9 M) 0.681

     2 rhizoxin (hiConc = 10−4 M) 0.650

     3 vinblastine sulfate (hiConc = 10−7.6 M) 0.558

     4 α-2'-deoxythioguanosine 0.545

     5 vinblastine sulfate (hiConc = 10−4 M) 0.540
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