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Abstract
Purpose of review—There is a critical need for meaningful viability and potency assays that
characterize islet preparations for release prior to clinical islet cell transplantation (ICT).
Development, testing, and validation of such assays have been the subject of intense investigation
for the past decade. These efforts are reviewed, highlighting the most recent results while focusing
on the most promising assays.

Recent Findings—Assays based on membrane integrity do not reflect true viability when
applied to either intact islets or dispersed islet cells. Assays requiring disaggregation of intact
islets into individual cells for assessment introduce additional problems of cell damage and loss.
Assays evaluating mitochondrial function, specifically mitochondrial membrane potential,
bioenergetic status, and cellular oxygen consumption rate (OCR), especially when conducted with
intact islets, appear most promising in evaluating their quality prior to ICT. Prospective,
quantitative assays based on measurements of OCR with intact islets have been developed,
validated and their results correlated with transplant outcomes in the diabetic nude mouse
bioassay.

Conclusion—More sensitive and reliable islet viability and potency tests have been recently
developed and tested. Those evaluating mitochondrial function are most promising, correlate with
transplant outcomes in mice, and are currently being evaluated in the clinical setting.
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Introduction
Islet cell transplantation (ICT) is emerging as a promising approach for the treatment of
selected patients with type 1 diabetes mellitus [1–8]. ICT is currently in a phase III
multicenter clinical trial [9] to determine if it will become the standard of care. There is an
urgent need for reliable assays that characterize the islet product for release prior to
transplantation. Development of such assays is mandated by the Federal Drug
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Administration (FDA) and has been the subject of investigation for the past decade. To
provide a framework for understanding the current state of the art, this article first reviews
the numerous approaches that have been proposed and tested, than focuses on the most
recent results and promising assays for clinical ICT.

Current specifications for lot release prior to clinical islet transplantation
The FDA mandates that for any cellular and tissue-based product, the manufacturer must be
able to demonstrate that it can be safely and reproducibly manufactured [10]. This is
generally done by characterizing the product and establishing specifications for product
release. Lot release specifications for islet products include demonstration of safety (i.e.,
sterility, mycoplasma, pyrogenicity/endotoxin, and freedom from adventitious agents) and
assessments of several key product characteristics that include, but are not limited to,
identity, purity, viability, and potency. The current specifications for release of islet
products within the United States are summarized in Table 1. These specifications function
to exclude preparations that are contaminated, highly impure, grossly damaged, or do not
contain significant numbers of islets. It is currently accepted that these specifications
provide reasonable estimates of islet safety, identity, and purity, but do not provide
meaningful measures of viability or potency of the preparation [12–15]. Therefore the
establishment and validation of useful islet viability and potency tests is urgently needed.
The sections that follow focus on existing and emerging islet viability and potency tests,
including those that are based on measurements of oxygen consumption rate (OCR), which
appear to be the most promising.

Limitations of the tests currently used for islet lot release prior to clinical
transplantation

Many of the methods currently used to assess islet preparations were developed nearly 20
years ago [11]. The advantages and limitations of tests currently used for islet product
release, which were recently discussed in detail [16], are summarized in Table 2A.

Sampling from an islet suspension
An important issue in characterizing islet preparations, relevant to all assays, is sampling.
Obtaining a sample from a suspension that is representative of the whole preparation is
critical [11,16]. Nevertheless, maintaining a homogeneous islet suspension while sampling
is challenging, as islets settle rapidly. Differences in size and density of aggregates can lead
to significant differences in settling velocity and exacerbate this problem. The extent of the
systematic error introduced during this type of sampling is unknown. To minimize random
error during sampling, multiple replicates should be collected. However, the additional time
and analysis required for collection of multiple samples, the concern about introducing
contamination and removing islets that otherwise could be transplanted to benefit the
recipient all pose limitations. Currently, only duplicate samples of 100 µL (derived from a
100-mL islet suspension) are collected and counted, an amount that may not represent the
entirety of the preparation.

Measurements of the amount of islet tissue
Quantification of the total amount of islets in an islet preparation is critical because it
ultimately determines the islet dose that is transplanted. The method most widely used
currently is manual, visual counting of islet equivalents (IE) under a light microscope
following dithizone (DTZ) staining to determine the total volume of islet tissue and its
purity. This method has advantages and limitations (See Table 2A) that are described in
detail elsewhere [11,16]. Methods for estimating the total number of cells or volume of
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tissue in a preparation include measurements of intracellular deoxyribonucleic acid (DNA),
cellular nuclei counts, large particle flow cytometry [17], and packed tissue volume. These
methods do not provide islet- or β-cell specific information, so they require an independent
estimate of the purity (fractional volume of islet tissue or β-cells). Such estimates can be
obtained using a variety of methods [16], including morphological analysis with electron
and/or light microscopy [18*], immunohistochemistry with laser scanning confocal
microscopy, or laser scanning cytometry [19]. Recent studies indicate that conventional
DTZ staining overestimates purity by 20–30% as compared to measurements with electron
and light microscopy [20] and total number of IE by as much as 90% [18*] as compared to
recently-developed, more accurate methods that combine nuclei counting with light
microscopy.

Measurements of viability
The current viability assay used for clinical islet product release is based on assessing
membrane integrity with fluorescein diacetate/propidium iodide (FDA/PI) (See Table 1).
Characteristics and limitations of this assay are outlined in Table 2A and detailed elsewhere
[11,16]. A major limitation of this assay is that it does not reflect true viability because it
may not account for cells undergoing early apoptosis or dying by other modes of cell death,
during which cells have not yet developed damage to their cell membrane. Furthermore, it
does not correlate with the diabetic nude mouse bioassay (NMB) or clinical ICT outcomes.

Measurement of islet function (potency)
The β-cells within the islets have a specific, dedicated function, the dynamic release of
insulin in response to a glucose stimulus. Therefore, one would expect that assessment of
islet function should be straightforward, particularly if the insulin secretion rate of a
preparation can be easily measured. Measurements of basal and glucose-stimulated insulin
secretion (GSIS) could theoretically be used to provide a meaningful measure of the amount
of viable and functional IE (or β-cells) in a preparation if one assumes that insulin secretion
from an islet population is relatively constant when normalized on a per viable IE or per
viable β-cell basis. Unfortunately, GSIS does not correlate with clinical transplant outcomes
[14–15,21]. There are several likely reasons for this persistent finding. Stresses associated
with pancreas preservation, islet isolation, and islet purification may lead to extensive
degranulation and/or insulin leakage (from dead or dying islet cells). Conceivably, islets that
do not secrete insulin at expected rates, but are nonetheless viable, may recover when
transplanted into the recipient. In other words, low GSIS may not necessarily imply
irreversibly impaired secretory function and, thus, GSIS does not correlate with clinical
outcomes. Furthermore, insulin leakage from dead or damaged cells may be difficult to
account for (because this contribution to the total insulin cannot be reliably estimated), may
interfere with proper calculation of insulin secretion rate and stimulation index, and may
complicate the interpretation of the results of the GSIS assay. Insulin secretion is also
particularly sensitive to the local partial pressure of oxygen (pO2) and assay procedures
usually do not account for that [22].

The mouse bioassay as an in vivo islet potency test and a surrogate islet
potency validation tool

According to the FDA [10], a suitable potency assay is one that demonstrates that the
clinical product possesses the specific ability to provide the desired clinical effect. The
diabetes reversal (DR) resulting from islets engrafted under the kidney capsule of
immunodeficient nude mice correlates with clinical transplant outcomes and is currently
accepted as the gold standard for testing islet potency [14–15,23–24]. However, the time
(days to weeks) required for this assay to produce interpretable results renders it
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retrospective. Nonetheless, correlation of real-time, in vitro tests with transplant outcomes in
the NMB can establish other such tests as acceptable surrogate potency tests. Several
recently-proposed islet potency tests are therefore being judged based on their ability to
predict DR in the NMB [19,25–36*,**]. Even though the NMB is the premiere method
available to researchers for the assessment of islet potency, it suffers from numerous
limitations (See Table 2B). These limitations include the length of time required to obtain a
meaningful outcome, the complexity of the surgical procedure, the difficulties in
maintaining diabetic mice and timing diabetes induction with the unpredictable availability
of human islets, the negative impact of impurities on outcome [15,37–39], the transplant site
(kidney capsule), which may be more prone to the presence of impurities and/or dead tissue
than the clinical transplant site (the liver), and the inability to account for immune rejection
or the effects of immunosuppressive drugs that are present in the clinical setting. There have
been recent attempts [40–41] to provide other in vivo islet potency tests that are alternatives
to the diabetic NMB. These alternatives can potentially overcome some, but not all of the
limitations of the NMB.

Desired characteristics of islet potency tests
The assays under consideration for use as potency tests for islet characterization prior to
clinical transplantation should be reliable, cost-effective, operator-independent,
reproducible, and transferable to other labs, work with relatively small (yet representative)
islet numbers (100–500 IE), not require islet handpicking (which may bias the results), and
should be able to provide real-time results (i.e., completed within hours). Given the
heterogeneity of islet preparations and the intrinsic difficulties in characterizing them, assays
that possess all of the desired characteristics may be very difficult to develop. This difficulty
is reflected in the fact that, despite the intense effort dedicated to develop, implement, and
validate a number of assays over the past decade, consensus behind any single assay has not
yet been reached. Key viability and potency assays under consideration for the assessment
of clinical islet preparations are described next.

Islet viability and potency tests under consideration
Table 2C summarizes some of the more recently explored assays used in islet quality
assessment, highlighting their key strengths and identified weaknesses. Despite the
landscape of flavors available to researchers, many of these assays are most valuable when
used in the study of individual cells rather than cell aggregates.

Islets are three-dimensional, multi-cellular aggregates composed of several different cell
types, including the β-, α-, δ- and PP-cells. Most assays used to assess cellular viability,
apoptosis, or mitochondrial health, have been designed for suspensions or cultures of
individual cells, not aggregates. Consequently, the development of techniques to study the
quality of an islet preparation provides unique challenges. Because the diameter of an islet
equivalent is 150 µm, it is necessary to consider mass transport limitations, particularly if an
assay relies on the availability of molecular oxygen. The relatively large size of the islet
makes fluorescence microscopy difficult, subjecting any such analysis to background signal
and operator bias that is simply unique to the study of intact multi-cellular clusters. To
circumvent some of the islet shape and size limitations, techniques have been developed to
break apart the islets. Digestion with serine proteases and mechanical agitation may be used
to dissociate islets into suspensions of their constituent cells, but these techniques result in
significant damage to the cells and possibly death by anoikis [43–44], leading to the loss of
as much as 50% of the original cell populations [45–47]. To minimize the problems
associated with islet disaggregation, gentler formulations have been created and used [19].
Yet, it is unclear whether the negative effects of dissociating individual islet cells from one
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another can be fully minimized. Furthermore, islet preparations have varying amounts of
impurities, which complicates the use of any technique designed with the expectation that
the studied tissue is comprised entirely of islets. Differentiating the non-endocrine tissue
from the islets poses additional difficulties.

Cell Membrane integrity tests
These assays interrogate the integrity of the cellular plasma membrane and rely on
differential staining using newer combinations of both cell membrane permeable and
impermeable dyes [12,16], but have been unable to fully obviate the problems encountered
with the current viability stains used prior to product release (i.e., FDA/PI). In fact, some of
these proposed stains introduce new issues, such as islet toxicity [16]. 7-aminoactinomycin
D (7-AAD, a membrane impermeable dye) has been used on disaggregated cells in
combination with flow cytometry (FACS) to enable quantification of the fraction of cells
that are viable by membrane integrity, but the method nonetheless requires the undesirable
dissociation of the intact islets [16]. An alternative approach relies on sequential staining of
membrane compromised cells within intact islets using 7-AAD. After initially staining with
7-AAD, the nuclei of the entire preparation are released from intact islets using a detergent
and subsequently counted by hemacytometer or FACS [48–49]. The initial count (of non-
viable cells) is divided by the second count (of total nuclei) to present a ratio equivalent to
fractional viability (FV). This technique bypasses the limitations associated with islet
disaggregation of multi-cellular spheroids, such as islets; however, as a membrane integrity
test, it only accounts for dead cells with compromised cell membranes [16,49].

Other cell death and mitochondrial assays
Several assays attempt to characterize the degree of apoptosis within islet preparations [29*,
31**]. These assays may depend on the timing of the measurement as it relates to the onset
of apoptosis. The magnitude and timing of the responses may also vary between cell types
and the unique nature, intensity, and duration of encountered stresses [16]. Importantly,
these cell death markers may not be reliable indicators of irreversible damage. Even though
mechanistic information regarding the cell death process can be obtained, individual assays
may not capture all dying cells and still suffer from limitations that are related to islet size
and its three-dimensional structure. A recent report describes a method to study several
apoptosis and cell death-related markers (including VADFMK, Annexin V, and Fura Red)
simultaneously using FACS and shows that this sort of multi-parametric analysis may more
reliably characterize the quality of an islet sample [29*]. Another paper [31**] describes an
elegant approach to combine fluorescence imaging of mitochondrial membrane potential
(MMP) and Ca2+ leakage with measurements of insulin secretion, determined by enzyme-
linked immunosorbent assay (ELISA). The system involved perfusing a microfluidic chip
containing intact islets. The future of islet quality assessment may continue to leverage these
types of multimodal techniques in the attempt to map a quality “fingerprint” of islet
preparations prior to their consideration for transplantation.

Assays have also been developed to probe the state of mitochondrial health, which span a
range of relevant indicators, through assessing the ability of a cell to reduce tetrazolium salts
[16,33], to replenish ATP [27*,28,30*,42**], or to maintain MMP [16,19,31**].
Tetrazolium assays like MTT have fallen slightly out of favor because many variables or
conditions, not limited to mitochondrial activity, can affect the ability of a preparation to
reduce tetrazolium salts [16]. In contrast, tests that measure the relative abundance of high
energy phosphates (or the ADP/ATP ratio) have reportedly shown promise in predicting ICT
outcome in mice [27*–28]. However, the ADP/ATP ratio must be interpreted with caution,
because the concentrations of these metabolites fluctuate rapidly with changing conditions.
Furthermore, as recently pointed out [42**], the ADP/ATP ratio does not reflect the true
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viability of an islet preparation and unlike the ATP/DNA ratio fails to account for non-
viable cells containing no ADP or ATP. Additionally, even though ATP and ADP
measurements are simple, inexpensive, and quick to obtain, islet ADP measurements based
on luminescence may be unreliable as they have frequently provided negative concentration
estimates [42**]. MMP dyes are used as surrogate measures of mitochondrial health, in that
they preferentially accumulate in healthy and polarized mitochondria. Both laser scanning
cytometry [19] and the microfluidic system described earlier [31**] have been used to
correlate MMP with the quality of preparations composed of dissociated and intact islets,
respectively.

Oxygen Consumption Rate (OCR)
Measurements based on OCR, which is related to mitochondrial function, have been
extensively used to assess the viability and health of cells in a variety of fields [50–55],
including islets [26,32–34**,56,57**,58] and β-cell lines in tissue engineered constructs
[59–61]. Several groups have recently focused their efforts on characterizing islet viability
and potency using OCR measurements and in some cases correlating these measurements
with outcomes in the NMB [26,32,34**,57**]. Reports on islet respiratory activity include
measurements based on scanning electrochemical microscopy [27*] and oxygen sensitive
phosphorescence lifetime or fluorescence intensity in a variety of configurations [26,32–
34**,56,57**,58]. The instrumentation and methodologies employed along with the
strengths and limitations of each approach are outlined in Table 3. The approach for
indirectly measuring OCR using fluorescence intensity in a multi-well plate oxygen
biosensor system (OBS) has the distinct advantage of being high-throughput and convenient
but in its current form suffers from several major limitations that prohibit its reliable use
[16,26]. Recent efforts to bypass some of the inherent limitations of the OBS [62] may
enable more reliable and effective use of this method in islet potency assessment.

Recently published data obtained with the most basic approach, using optical pO2 sensors in
stirred microchambers [33], demonstrate that transplanted OCR (OCRTX, a measure of the
amount of viable tissue) and OCR/DNA (a measure of viability) are sufficient when used in
combination to predict outcomes in diabetic mice transplanted with rat [56–57**], porcine
[33], and human [26,32,34**,58] islets. These studies suggest that information on the
functional capacity of the islets or β-cells is not necessary for predicting transplantation
outcomes in mice. In fact, the most recently reported study with rat islets transplanted in
immunosuppressed diabetic mice [57**] clearly demonstrated this relationship between
OCRTX and OCR/DNA of the transplanted islets and diabetes reversal in mice. When the
results of these transplantations were plotted such that the ordinate was OCRTX and the
abscissa was OCR/DNA of the transplanted islet sample, the data segregated into three
regions: (1) an upper and right-most portion, where diabetes was reversed in all animals, (2)
a lower left, where diabetes was not reversed in any animals, and (3) a narrow band in the
middle in which both outcomes were represented. In this study, sensitivity and specificity
analyses on OCRTX and OCR/DNA exhibited values of 93% and 94%, respectively, in
predicting diabetes reversal. Importantly, the marginal mass for DR was not fixed [57**] but
rather depended on OCR/DNA, and increased from 2,800 to over 100,000 IE per kilogram
recipient body weight (KgBW) as OCR/DNA decreased. These findings are consistent with
reports that neither OCRTX nor OCR/DNA, when used individually, correlated with
transplant outcomes in mice [15,63].

Correlation of transplantation outcomes with rat islets was substantially better than that
obtained with human islet preparations [32]. There are several likely explanations for this
finding, which include: (a) the absence of non-islet tissue in rat preparations, (b) the large
fraction of nonviable tissue at low OCR/DNA, and (c) the large number of human islets, in
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contrast with the small number of rat islets, required to reverse diabetes in mice. The
predicted probabilities of DR with rat islet transplants were sharply defined with a large
domain at 100% cure, whereas the analogous plot for human islet transplants [32] had
angled contours of roughly constant slope with virtually no domain of 100% cure, although
such a domain might have been attainable if there had been preparations of higher OCR/
DNA. The absence of data in the high OCR/DNA range was a limitation of the study with
human islets [32].

Data obtained with a porcine-to-non-human primate (xenogeneic) model suggest that
sustained insulin independence is dependent on both OCRTX per KgBW and OCR/DNA
(unpublished observations). Interestingly, initial data obtained with pure and impure clinical
autologous and single-donor, allogeneic islet transplants suggest that in these cases
(especially islet auto-transplants), the OCR dose normalized per KgBW alone may
sufficiently correlate with clinical outcomes (unpublished observations).

Of particular interest are attempts to extract information on islet potency based on glucose-
stimulated OCR, which may be more representative of β-cells and their functional capacity
[26–27*,34**,56,58]. This index has been represented either as a ratio of the measured OCR
in the presence of high glucose divided by the OCR in low glucose (OCRhglc/OCRlglc) or
simply the difference in measured OCR in the presence of high and low glucose (ΔOCRglc)
[34**,56,58]. Publications detailing these procedures report reasonable correlations with the
NMB and suggest that there may be an advantage in using these indices for clinical islet
potency assessment. It remains to be seen if the challenges associated with widespread
implementation and inherent limitations of these complicated methodologies [16] can be
overcome and whether the promising results attained with research models will translate into
the clinical setting. Work currently under way with clinical auto- and allo- and pre-clinical
xeno- transplant models is expected to provide further insight into these issues and help
identify and establish islet potency tests that are truly predictive of transplant outcomes.

Conclusion
The islet product release criteria that screen preparations before clinical allogeneic ICT are
currently unable to predict post-transplant success from failure. More sensitive and reliable
islet viability and potency tests have been recently developed and tested. Those assessing
mitochondrial function, particularly those that measure the OCR of an islet preparation,
appear to be the most promising and correlate with transplant outcomes in the NMB. These
tests are currently being evaluated in the clinical setting and preliminary results are
encouraging. Assays that characterize cell composition and molecular profiles may be useful
in further defining the islet product and may provide useful information on islet
immunogenicity and pro-inflammatory potential. The recent clinical success in reversing
diabetes with single-donor, allogeneic transplants, will further enhance our ability to define
potency tests and islet characteristics that are predictive of transplant outcome.

Abbreviations

ICT Islet cell transplantation

OCR Oxygen consumption rate

FDA Federal Drug Administration

EU Endotoxin unit

IE Islet equivalent(s)
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DTZ Dithizone

FDA/PI Fluorescein diacetate/propidium iodide

NMB Nude mouse bioassay

DNA Deoxyribonucleic acid

GSIS Glucose-stimulated insulin secretion

pO2 Partial oxygen partial pressure

DR Diabetes reversal

SLM Standard light microscopy

FM Fluorescence microscopy

C Calcein AM

EH Ethidium homodimer

EB Ethidium bromide

SYTO® Green membrane permeable fluorescent dye

AO Acridine orange

FACS Fluorescent-activated cell sorting (or flow cytometry)

7-AAD 7-aminoactinomycin D

VADFMK Membrane permeable caspase ligand (inhibitor)

PS Phosphatidylserine

MTT Tetrazolium salt, 3-(4;5-dimethylthiazol-2-yl)-2;5-diphenyl
tetrazolium bromide

ATP Adenosine triphosphate

ADP Adenosine diphosphate

MMP Mitochondrial membrane potential

FV Fractional viability

ELISA Enzyme-linked immunosorbent assay

ΔOCRglc Defined as the measured increment in OCR when stimulated by
glucose

OCRTX Transplanted OCR, which represents viable islet dose

OCR/DNA Measure of OCR normalized to DNA represents the FV of cellular/
islet preparation

OCRGS Glucose-stimulated OCR

OCRhglc/OCRlglc Defined as the Stimulation Index a ratio of OCR measured at high
glucose concentrations (16.7 or 33.3 mM) to OCR measured at high
glucose concentrations (2.8 or 5.6 mM)

ΔOCRglc/DNA Defined as the OCR Index a ratio of the estimated ΔOCRglc
normalized to DNA

OBS BD Biosciences Oxygen Biosensor System®

KgBW Kilogram body weight (of transplant recipient)
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TABLE 1

Product release criteria for clinical islet preparation

TYPE OF TEST PRODUCT TEST SPECIFICATION TYPE OF SAMPLE

Safety Endotoxin < 5 EU/kg
Supernatant of islet suspension
in transplant mediaGram stain No organisms detected within

limits of assay

Identity Islet count (IE/kg) 5,000–20,000 (1st transplant)
Islets in transplant media3,000–20,000 (Re-transplants)

Purity ≥ 30%

Viability Dye exclusion (FDA/PI) ≥ 70% Islets after overnight culture
and in transplant
media

Potency Glucose stimulated insulin
release (ELISA)

Stimulation Index >1 Islets after overnight culture

EU = Endotoxin unit
IE = Islet equivalent, defined as a volume of islet tissue equal to that of a sphere having a 150 µm diameter [11]
DTZ = Dithizone
FDA/PI = Fluorescein diacetate/propidium iodide
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TABLE 2

TABLE 2A

Strengths and limitations of assays currently used prior to islet product release for clinical transplantation

ASSAY STRENGTHS LIMITATIONS

Islet count (IE) Relatively easy to perform
Counts
Experienced islet isolation
centers have standardized
procedures

Visual assessment of 3D islet in 2D planes contributes to error
Sample may not be representative of whole preparation
Presence of contaminant tissue (e.g., exocrine cells, ganglia, etc) may complicate counts

Purity (DTZ) Stain differentiates between
exocrine and islet tissue
Relative ease of use
Rapid assessment

Visual assessment of 3D islet in 2D planes contributes to error
Provides no information regarding viability of preparation

Cell membrane
integrity (FDA/PI)

Relative ease of use
Can be performed
prospectively
Fractional viability can be
estimated by dye exclusion

Visual assessment of 3D islet in 2D planes contributes to error
Impossible to identify irreversibly damaged cells whose plasma membranes have not yet
been
permeabilized
FDA may be additionally cleaved by lipases or esterases from non-endocrine tissue, over-
estimating the true islet viability
Visual counting is operator dependent
Background fluorescence (with certain combinations or high concentrations of dyes) can
obscure approximations
Counterstain may not provide enough contrast
Dyes rely on diffusion to penetrate into islet core
Lack of correlation with mitochondrial function assays, NMB and clinical outcomes
Does not discriminate endocrine (islet) from exocrine (contaminant) tissue

Glucose-stimulated
insulin secretion
(GSIS)

May provide information
regarding potency of islet
preparation

Unable to predict true islet potency or transplant outcome
Islets may not be as responsive to glucose stimulus in vitro but may still reverse diabetes
in vivo
Difficult to account for degranulation of β cells following glucose stimulus or “leaky”
cells with
damaged plasma membranes

TABLE 2B

Strengths and limitations of the diabetic nude mouse bioassay

ASSAY STRENGTHS LIMITATIONS

Nude mouse
bioassay (NMB)

Most reliable in vivo
assessment of islet potency
Results correlate with
clinical outcome

Assay can only be used retrospectively (days to weeks for
outcomes)
Impure preparations may yield false negative transplant outcomes
The severity and duration of the diabetic state of the mouse affects
the predictive outcome of the assay
Islets are transplanted into the kidney capsule, not into the hepatic
portal system (thereby not fully representing the current clinical
protocol)
Mice are susceptible to developing other conditions (e.g., infection)
that can also affect outcome
Does not account for immunologic rejection or the effect of
immunosuppressive agents on islets
The assay carries several practical challenges (e.g., induction of
diabetes needs to be timed with islet isolation)
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TABLE 2C

Advantages and disadvantages of assays being under consideration for clinical islet quality assessment

ASSAY REFERENCES ADVANTAGES DISADVANTAGES

Membrane integrity tests

 SLM/FM
  C/EH
  SYTO®/EB
  AO/PI

[12,15,16] Similar advantages as FDA/PI
(See Table 2A)
Some stains may exhibit greater
sensitivity in
detecting islet cell membrane
damage

Similar disadvantages as FDA/PI (See Table 2A)
Certain dyes are chemically unstable or form
crystals which can manifest as visual artifacts
Some dyes can exhibit islet toxicity
(fragmentation, e.g., C)

 FACS
  7-AAD†

  Topro3†

[16,19,29] Minimizes diffusion limitations
More quantitative
Minimizes operator dependence
Allows possibility of β-cell
specificity
Membrane integrity can be
approximated using the
7-AAD sequential staining
procedure

Requires dissociation (except sequential staining
with 7-AAD) of islet aggregates, resulting in
irreversible cell damage and loss (i.e., anoikis)
Relative subjectivity in gating cellular
subpopulations in FACS
Requires expensive equipment and training

Other cell death and mitochondrial assays

  Caspase activation
  (VADFMK†)

[25,29] Detects early apoptotic events
Rapid measurement

Provides “snapshot” of early apoptotic events, but
may not detect late apoptotic or necrotic
cells
May not account for caspase independent
mechanisms of cell death
May require dissociation of islets

  PS Externalization
  (Annexin V†)
  DNA Fragmentation
  (TUNEL†)
  Ca2+ Leakage(Fura Red†)

[25,29,31] May detect both apoptosis and
necrosis

Difficult to use prospectively, because the assay
may require histological staining and subsequent
analysis (i.e., Annexin V)
May require dissociation of islets

 Reduction potential
 Tetrazolium salts

[16,33] Detects reducing capacity of islets
Relative ease of use
Inexpensive
Useful in comparing effects of
single variables on
the oxidative state of a preparation
Can be performed on intact islets

Reduction of salts involves complex reactions and
may reflect local pO2 changes or differences in
the compositions of cell culture media
Accumulation of insoluble byproduct of reduction
reaction (in MTT assay) is toxic to assayed cell
preparation

 Bioenergetic status
  ADP/ATP
  ATP/DNA
  ATP/protein
  ATP/IE

[27–28,30,42] Relative ease of use
Inexpensive
Low islet requirement (∼100 IE)
ATP and ADP play a particularly
critical role in
insulin secretion (ie, islet function)
Can be performed on intact islets

ATP concentrations fluctuate rapidly (short half-
life) and are sensitive to transient changes in local
conditions (i.e., glucose levels, pO2, pH)
Islets are difficult to assay because of differences
between environmental conditions experienced
by cells located in the core versus the periphery
ADP/ATP measurements do not account for non-
viable cells
ADP measurements by luminescence assay may
be unreliable

 Mitochondrial membrane
 potential
  JC-1
  TMRE†
  Rh123

[16,19,31] Detects loss of mitochondrial
polarization, which
occurs during early apoptosis and
during necrosis

Difficult to quantify absolute changes in MMP
May require dissociation of islets

IE = Islet equivalent, defined as a volume of islet tissue equal to that of a sphere having a 150 µm diameter [11]
DTZ = Dithizone
FDA/PI = Fluorescein diacetate/propidium iodide
NMB = Nude mouse bioassay
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Abbreviations and Legend
SLM = Standard light microscopy
FM = Fluorescence microscopy
C = Calcein AM, green membrane permeable fluorescent dye
EH/EB= Ethidium homodimer or ethidium bromide, red-orange membrane impermeable fluorescent dye
FDA = Fluorescein diacetate, membrane permeable dye that fluoresces green after cleavage by non-specific esterases
PI = Propidium iodide, red membrane impermeable fluorescent dye
SYTO® = Green membrane permeable fluorescent dye
AO = Acridine orange, green membrane-permeable fluorescent dye
IE = Islet equivalent, defined as a spherical aggregate of pancreatic endocrine cells of 150 µm diameter
FACS = Fluorescent-activated cell sorting (or flow cytometry)
7-AAD = 7-aminoactinomycin D, membrane-impermeable fluorescent dye
VADFMK = Membrane permeable caspase ligand (inhibitor)
PS = Phosphatidylserine
MTT = Tetrazolium salt, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
DNA = Deoxyribonucleic acid, measured using commercial fluorimetric assay
ATP = Adenosine triphosphate
ADP = Adenosine diphosphate
MMP = Mitochondrial membrane potential

†
Assay has been used on islets in conjunction with FACS, which requires the dispersal of islet clusters. Dissociating islets typically involves harsh

enzymatic digestion with serine proteases that results in the disruption of cell-matrix interactions, cellular damage and death (e,g., anoikis). It is
important to note that FACS analysis in itself is associated with inherent limitations, including the relative subjectivity of gating cell sub-
populations, the large sample required for analysis (∼1000s IE), high cost of equipment, extensive training and complex methodology that is
susceptible to error
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