
Journal compilation © 2009 Royal Statistical Society 0964–1998/10/173331

J. R. Statist. Soc. A (2010)
173, Part 2, pp. 331–349

Estimating stroke-free and total life expectancy in
the presence of non-ignorable missing values

Ardo van den Hout and Fiona E. Matthews

Medical Research Council Biostatistics Unit, Cambridge, UK

[Received October 2008. Revised June 2009]

Summary. A continuous time three-state model with time-dependent transition intensities is
formulated to describe transitions between healthy and unhealthy states before death. By using
time continuously, known death times can be taken into account. To deal with possible non-
ignorable missing states, a selection model is proposed for the joint distribution of both the state
and whether or not the state is observed. To estimate total life expectancy and its subdivision
into life expectancy in health and ill health, the three-state model is extrapolated beyond the
follow-up of the study. Estimation of life expectancies is illustrated by analysing data from a
longitudinal study of aging where individuals are in a state of ill health if they have ever experi-
enced a stroke. Results for the selection model are compared with results for a model where
states are assumed to be missing at random and with results for a model that ignores missing
states.
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1. Introduction

Multistate models can be used to describe transitions between states over time. A three-state
illness–death model describes a situation where the first two states are living states and the third
state is the absorbing death state. If the first state is the healthy state and the second state is the
illness state, healthy life expectancy (LE) at a specified time point (such as an age or a number
of years after an operation) is the expected remaining lifetime spent in the first state.

It is important to know how total LE subdivides into LE in health and ill health. Survival
is not only about total LE but also about whether or not remaining lifetime will be spent in
good health. A statistical model where transitions between the states are described conditional
on covariates values can help to investigate possible risk factors for the onset of ill health. An
example of a longitudinal survey where the methodology can be applied is a study where patients
are followed after a surgical operation. Other examples are studies where stages of a disease
are monitored after an infection, or longitudinal epidemiological studies. The research in the
current paper was suggested by an investigation into the occurrence of stroke, i.e. individuals
are in state 2 if they have experienced one or more strokes.

The longitudinal data that will be analysed in this paper will be detailed later, but the design
of the study is quite common. Individuals are followed up over time and their health status
is measured at prescheduled interviews. The three-state illness–death model that describes the
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heath status is progressive, i.e. a transition from state 2 back to state 1 is not possible. Time
between interviews can vary within and between individuals. Transition times for the death state
are known exactly but times for the transitions from state 1 to state 2 are interval censored.

Often longitudinal studies will be subject to missing data. Regarding missing states, two forms
of missing values can be defined: intermittently missing values and missing values due to dropout
from the study. In the presence of right censoring at the end of follow-up, these two forms cannot
always be distinguished. For example, if ‘·’ denotes a missing state, c denotes a right-censored
state and the states are denoted by their number, the missing values in the sequence 1, 1, ·, ·, c

are of unknown origin if there is no additional information. In case the probability of observing
a state depends on the state itself, missing states are called non-ignorable (Little and Rubin,
2002; Rubin, 1976). For example, if individuals do not undertake an interview because they are
in state 2, then the missing states are non-ignorable.

This paper discusses a selection model that describes both the transitions between the three
states and the probability of observing the living states. The fitted model is used to estimate
healthy LE and total LE.

Cole et al. (2005) discussed a selection model for longitudinal data subject to non-ignorable
missing values. Their selection model encompasses a multistate model and a missing data model.
With regard to the model for the ignorable missing states, we use the same method. Our multistate
model, however, is different. Cole et al. (2005) used a discrete time multistate model whereas we
model time continuously, which enables us to take exact death times into account. In addition,
our model allows for right censoring and time-dependent transition intensities. The latter are
modelled by using age as a time-dependent covariate. Several reasearchers have considered the
interval-censored continuous time multistate model, be it with or without exact death times and
right censoring; see, for example, Jackson et al. (2003), Satten and Longini (1996), Kay (1986)
and Kalbfleisch and Lawless (1985). Equally there are references on generic longitudinal data
modelling with non-ignorable missing values; see, for example, Little (1995), Molenberghs et al.
(1997) and Albert and Follman (2003). When there are no interval-censored transition times,
there is an alternative way to specify and estimate multistate models; see Putter et al. (2007) and
the references therein.

A continuous time multistate model that includes a model for non-ignorable missing values
has not yet been formulated. Modelling of missing values is of interest especially in the field of
healthy LE (Izmirlian et al., 2000; Lièvre et al., 2003) where the analysis of missing data is not
yet fully developed.

Our model for the transitions between the states is a three-state model with a partial Markov
property (Commenges (1999), page 319). The model cannot be called a Markov model as tran-
sition intensities are related to time-dependent covariates via log-linear regression. The model
is also not semi-Markov since the time since entry to the state is unknown and not taken into
account.

In this paper, intermittently missing values and missing due to dropout are not distinguished.
Right censoring is modelled separately since it is a different process. We use logistic regres-
sion models for the probability that a state is observed. When intermittently missing values
and missing due to dropout can be distinguished, there are three possibilities for the states: an
observed state, an intermittently missing state and a state missing owing to dropout. For this
situation, the same framework can be used, but the logistic regression models are to be replaced
by three-category multinomial–logit regression models (see Li et al. (2007)). The model dis-
cussed can easily be extended to a three-state model where recovery from state 2 is possible.
However, in that situation the partial Markov assumption is often less likely as a previous stay
in state 2 might be of importance for the probability of a transition from state 1 to state 2.
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There are several ways in which we can deal with missing values. In the application, we
compare the results of our model with the results of two other approaches. The first approach
consists of ignoring the missing states, and the second is a missingness at random (MAR) model
(Rubin, 1976) treating missing states as intermittently censored without any further modelling
of the censoring.

Section 2 introduces the model. In Section 3, we discuss the inference, including the estima-
tion of LE. A simulation study in Section 4 shows that not taking into account non-ignorable
missing states can lead to biased results. Section 5 discusses the application and Section 6 is the
discussion.

2. The model

In the data, individuals are measured over time, where both time points and time intervals may
vary between and within individuals. Let t denote the time since the start of the study. At time
t � 0, the state of an individual is Xt ∈ {1, 2, 3}. States 1 and 2 are living states and state 3 is
the absorbing death state. We assume that death if it occurred is always observed and that we
have exact transition times for the death state. At t = 0, Xt �= 3. Let Rt denote the observation
indicator at time t, i.e. Rt =1 if Xt is observed and Rt =0 otherwise.

We shall model Xt and Rt jointly by using a selection model (Little and Rubin, 2002) and
specifying a time continuous three-state model for the states and two logistic regression models
for the observation indicator, i.e. one model for Rt = 1 conditional on Xt = 1, and one model
for Rt =1 conditional on Xt =2.

We start with the three-state model. A transition from state r to state s, r �= s, occurs with inten-
sity qrs.t/, where qrs.t/�0 for .r, s/∈{.1, 2/, .1, 3/, .2, 3/}, and qrs.t/=0 for .r, s/∈{.2, 1/, .3, 1/,
.3, 2/}. The intensity qrs.t/ represents the instantaneous risk of moving from state r to state s
at time t. Intensities that are not restricted to 0 are regressed on covariate vector z.t/ by the
log-linear model log{qrs.t/}=β′

rs z.t/, where βrs = .βrs:0, :: , βrs:p/′ and z.t/= .1, z2.t/,.. , zp.t//′.
We approximate the time dependence by assuming that the intensities do not change within an

individually observed time interval. As a consequence, transition probabilities for a generic time
interval .t1, t2] are given by the 3×3 matrix P.t1, t2/= exp{.t2 − t1/Q.t1/}, where the transition
intensity matrix Q.t/ for time t �0 is given by

Q.t/=
(−{q12.t/+q13.t/} q12.t/ q13.t/

0 −q23.t/ q23.t/

0 0 0

)
: .1/

The rs-entry of P.t1, t2/ is P{Xt2 = s|Xt1 = r, z.t1/}, for r, s ∈ {1, 2, 3}. The piecewise constant
approximation assumes a homogeneous time continuous three-state process within interval
.t1, t2]. As a consequence, the above definition of Q.t/ implies that P.t1, t2/ is a stochastic matrix
in the sense that every row is a distribution (Norris (1997), theorem 2.1.2).

In the application, time dependence of the intensities is modelled by using age as a time-
dependent covariate. For an interval .t1, t2], age as a covariate is defined as age midway through
the interval, i.e. as age at time .t2 − t1/=2. This is possible because age is an external covariate in
the sense that its value is known in advance at any future time (Collett (2003), section 8.1).

For the models for the observation indicator, we follow Cole et al. (2005) and define the
conditional probability that Xt =x is observed by px.t/= P{Rt = 1|Xt =x, z.t/}, for x∈{1, 2}.
For ease of notation, we use the same covariate vector as above—other choices are available as
will be illustrated in the application. We assume that the probabilities of observing the states
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can be described by logistic regression models logit{px.t/}=γ′
x z.t/, where γx = .γx:0, . . . , γx:p/′

for x∈{1, 2}.
The selection model for the bivariate distribution of Xt2 and Rt2 for an observed time interval

.t1, t2] is now given by

P{Xt2 =x, Rt2 =v|Xt1 , z.t1/}=P{Xt2 =x|Xt1 , z.t1/}px.t2/v{1−px.t2/}1−v: .2/

In what follows, we assume that the baseline state is always observed, i.e. R0 =1, but modelling
missing baseline states can be undertaken by extending the model.

3. Inference

3.1. Parameter estimation
Estimation of the parameters is undertaken by maximizing the log-likelihood. First, we describe
the complete-data likelihood for a single individual with observation times t1, . . . , tM , where the
state at tM is allowed to be right censored. Let xc denote the trajectory xt1 , . . . , xtM . Owing to
the partial Markov assumption, the contribution of the individual to the likelihood is given by

Lc.xc/=P.Xt2 =xt2 , . . . , XtM =xtM , Rt2 =v2, . . . , RtM =vM |Xt1/ P.Xt1 =xt1/

=Lc
2 × . . . ×Lc

M ×P.Xt1 =xt1/,
.3/

where the conditioning of the covariates is suppressed in the notation. The contributions Lc
j for

j ∈{2, . . . , M} are defined as follows. If the state observed at tj, j ∈{2, ::, M}, is 1 or 2,

Lc
j =P.Xtj =xtj |Xtj−1 =xtj−1/ pxtj

.tj/vj{1−pxtj
.tj/}1−vj :

If the state s observed at tM is death,

Lc
M =P.XtM =1|XtM−1 =xtM−1/q13.tM/+P.XtM =2|XtM−1 =xtM−1/q23.tM/:

So we assume an unknown state at time tM and then an instant death; see, for example, Satten
and Longini (1996). If the state is right censored at tM , we assume that the individual is alive
but with unknown state and define

Lc
M =P.XtM =1|XtM−1 =xtM−1/+P.XtM =2|XtM−1 =xtM−1/;

see, for example, Kay (1986).
Next missing states are taken into account and the likelihood contribution is derived by

summing over all possible missing values, i.e.

L.x/=P.Xt1 =xt1/
∑

xc∈Ω.x/

Lc.xc/

where Ω.x/ is the set with all the trajectories where missing states are replaced by feasible
latent states. Because our three-state model does not allow for recovery, only patterns with
monotone increase are possible. For example, if x = xt1 , xt2 , xt3 , xt4 = 1, ·, ·, 2, 3, then Ω.x/ =
{.1, 1, 1, 2, 3/, .1, 1, 2, 2, 3/, .1, 2, 2, 2, 3/}.

Under the assumption that the parameters for the initial state and the subsequent transitions
are distinct, we can ignore the initial state likelihood when estimating the multistate model (Cole
et al., 2005).

The formulation of the likelihood contributions resembles the formulation in Cole et al.
(2005) where a discrete time model is specified. A continuous time model is defined by transition
intensities, but, for maximum likelihood estimation, the intensities are translated to transition
probabilities: hence the similarity in the likelihoods, even though the models are quite different.
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Taking into account exact death times and right censoring is an extension of the model in Cole
et al. (2005).

Given the above three-state model without recovery where death is monitored, a missing state
after a previously observed state 2 is always state 2. For example, if x=xt1 , xt2 , xt3 , xt4 =1, 2, ·, 3,
then we know that xt3 = 2. The fact that state x3 is not observed is used in the estimation of
the logistic regression model for the probability of observing state 2. Because we do not want
to lose information on the missing data mechanism, we do not impute these kinds of missing
state before the data have been analysed even though we know the unobserved states. In the
application, we briefly discuss the effect of this approach.

3.2. Life expectancies
We assume that time-dependent covariate vector z.t/ is external in the sense that z.t/ is known
for t>0, given z.0/. Expected LE in state s∈{1, 2} given initial state r∈{1, 2} and Z ={z.t/|t �0}
is given by

ers.Z/=
∫ ∞

0
P.Xt = s|X0 = r, Z/dt: .4/

To estimate LE in state s irrespectively of the initial state, we need a model for the baseline
state. Let θ = P{X0 = 2|z.0/}. We use the logistic regression model logit.θ/ = α′ z.0/, where
α= .α0, . . . , αp/′. Marginal LE es and total LE e are now given by

es.Z/= .1−θ/e1s.Z/+θe2s.Z/,

e.Z/= e1.Z/+ e2.Z/:

In the estimation of the three-state model, intensities were assumed to be constant within
an individually observed time interval. To estimate integral (4), we use an analogous piecewise
constant approximation. Firstly, we specify covariate values z.0/ at baseline and create a time
grid u1 = 0, u2, . . . , uM , where the time between two time points, say h, is fixed. Secondly, for
each time interval .uj, uj+1] we specify z.uj/. Finally, we numerically approximate integral (4)
by using the trapezoidal rule with grid u1, u2, . . . , uM . To compute the integrand at a given
grid point uj, j = 2, . . . , M, we use the multiplication P.u1, u2/ P.u2, u3/× . . . × P.uj−1, uj/ to
approximate P.u1, uj/.

Given the recursive scheme above, it is not straightforward to compute the variance of LEs
by the delta method, but it is easy to estimate the variance by simulation, i.e. we consider the
multivariate normal distribution with expectation equal to the maximum likelihood estimate
(MLE) of the parameter vector and the covariance matrix equal to the estimated covariance
matrix at the optimum. By drawing parameter values from this distribution and computing the
LEs for each of the values drawn, the sample variation in the estimation of the LEs will be
reflected (see Aalen et al. (1997)). An alternative is to apply a Metropolis algorithm to capture
the variation around the maximum of the log-likelihood. This is in the spirit of Tanner who
pointed out the use of the algorithm in estimating some functional of the likelihood (Tanner,
1996). Yet another method, which was used in Aalen et al. (1997), is to apply the bootstrap by
resampling from the data.

This simulation with maximum likelihood is fast and easy to apply but relies on asymptotic
properties of maximum likelihood. The advantage of the Metropolis algorithm is that the esti-
mation does not rely on asymptotic properties. Especially if the sample size is small, this can be
important. The disadvantage of the Metropolis algorithm is that it is computationally intensive.
The bootstrap is also computationally intensive because the model must be estimated in every
iteration. The advantage of the bootstrap, however, is that it includes model uncertainty in
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addition to sampling uncertainty (Aalen et al., 1997). In the application, we compare the
maximum likelihood simulation with the Metropolis algorithm. The bootstrap was not feasible
owing to computational limitations.

4. Simulation study

Even though it seems reasonable to take into account missing states, it is not directly evident that
this will lead to better data analysis. A small simulation study will be conducted to investigate
the performance of the selection model in comparison with two other three-state models. The
two alternative models can handle missing states but do not take non-ignorable missingness into
account. Denote the selection model in the previous section model M1. Next we define model
M2 which explicitly allows for missing states but does not model a missing data mechanism,
and model M3 that ‘handles’ missing states by simply ignoring them. To illustrate M3, if an
observed series of states is given by xt1 , xt2 , xt3 = 1, ·, 3, then only the complete data given by
xt1 , xt3 =1, 3 are analysed.

For model M3, we formulate the complete-data likelihood for an individual with observation
times t1, . . . , tM . The contribution of the individual to the likelihood is given by

Kc.xc/=P.Xt2 =xt2 , . . . , XtM =xtM |Xt1/ P.Xt1 =xt1/

=Kc
2 × . . . ×Kc

M ×P.Xt1 =xt1/:

If the state that is observed at tj, j ∈{2, . . ., M}, is 1 or 2,

Kc
j =P.Xtj =xtj |Xtj−1 =xtj−1/:

If the state s that is observed at tM is death,

Kc
M =P.XtM =1|XtM−1 =xtM−1/ q13.tM/+P.XtM =2|XtM−1 =xtM−1/ q23.tM/:

If the state is right censored at tM ,

Kc
M =P.XtM =1|XtM−1 =xtM−1/+P.XtM =2|XtM−1 =xtM−1/:

For model M2, the same formulae as in M3 are used but, owing to missing states, xc is not
always observed. The full likelihood contribution of an individual is derived by summing over
all possible missing values, i.e.

K.x/=P.Xt1 =xt1/
∑

xc∈Ω.x/

Kc.xc/

where Ω.x/ is the set with all the trajectories where missing states are replaced by feasible latent
states.

Models M2 and M3 can be found in the literature on multistate models as referred to in
Section 1. The models can be estimated by using the package msm in R (Jackson et al., 2003). If
there are missing states in the data, model M2 can be fitted to the data immediately. Note that
M2 is an MAR model. For example, if x =xt1 , xt2 , xt3 =1, · , 3, then Ω.x/={.1, 1, 3/, .1, 2, 3/}.
Which element of Ω.x/ is most likely depends on xt1 and xt3 , but not on the unobserved xt2 . Data
for model M3 can be derived from the observed data by simply deleting all the intermittently
missing states.

Van den Hout and Matthews (2009) show how data can be simulated given a time continuous
multistate model with age as time-dependent covariate. In the present simulation study, we used
a balanced design regarding age, i.e., given sample size n = 200, we have age at baseline given
by the integers 60, 61, . . . , 89, where each integer corresponds to the age of eight individuals.
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We simulate a follow-up of 14 years with observations every 2 years. At baseline, 10% of the
individuals are in state 2. States of individual i are observed at times tij for j =1, . . . , Mi, where
ti1 = 0, and Mi − 1 is the number of planned interviews for individual i, and the state at tMi is
either censored or the death state. Data are simulated by using M1. Given an interval .tij, ti,j+1],
the model for the intensities and the probability of an observed state are given by

log{qrs.tij/}=βrs:0 +βrs:A Agei{.tij + ti,j+1/=2}, .5/

logit{p1.ti,j+1/}=γ1:0 +γ1:A Agei.ti,j+1/,

logit{p2.ti,j+1/}=γ2:0 +γ2:A Agei.ti,j+1/:

Age in the models is centred by subtracting 78.5 years and the covariate is evaluated midway
through the interval. For the parameters values in equation (5) we choose .β12:0, β13:0, β23:0/

equal to .−6:4, − 5:4, − 4:5/, and .β12:A, β13:A, β23:A/ equal to .0:10, 0:06, 0:05/. The study
design and the parameter values for the three-state model reflect the situation in the application.
For the missing data model, we choose .γ1:0, γ2:0/= .2:0, 0:5/ and .γ1:A, γ2:A/= .−0:1, − 0:2/,
which correspond to more missing values for state 2 and an increase of missing values for the
older ages. These parameter values reflect a higher likelihood of missing states than the estimated
parameter values in the application. Owing to computational limitations our simulation study
is small with respect to sample size, and .γ1:0, γ2:0/ and .γ1:A, γ2:A/ are chosen such that they
illustrate the difference between the models of interest. After simulating the data by using the
specified parameter values and by imposing the study design, models M1, M2 and M3 are used
to estimate the parameters. For models M2 and M3 the equation for the intensities is given by
equation (5).

Table 1 shows the results of the simulation study. Looking at the bias and the actual coverage
percentage (ACP) of estimated 95% confidence intervals, model M1 seems to have a better
overall performance than the other two models. An exception is the estimation of β13:A, where
model M1 induces a larger bias. The ACPs for model M1 are slightly less than their nominal
value. This may be caused by the sample size that is too small to fulfil the requirements of the
asymptotic properties with respect to the maximum likelihood estimation. The performance
of models M2 and M3 seems similar. These models induce severe bias in the estimation of

Table 1. Results for the simulation study with sample size nD200 and 400 replications†

Parameter True Results for model M1 Results for model M2 Results for model M3
value

Bias ACP Bias ACP Bias ACP

β12:0 −6.40 −0.040 0.95 −0.485 0.72 −0.422 0.78
β13:0 −5.40 0.034 0.92 0.075 0.86 0.102 0.83
β23:0 −4.50 0.065 0.93 0.036 0.95 0.080 0.93
β12:A 0.10 0.005 0.92 −0.065 0.61 −0.067 0.58
β13:A 0.06 −0.012 0.90 0.001 0.95 0.001 0.95
β23:A 0.05 −0.005 0.93 −0.003 0.93 0.004 0.97
γ1:0 2.00 0.105 0.92
γ2:0 0.50 0.211 0.91
γ1:A −0.10 0.002 0.94
γ2:A −0.20 −0.010 0.94

†Bias is the mean of the bias of the parameters estimates.



338 A. van den Hout and F. E. Matthews

β12:0, β13:0 and β12:A. The models underestimate the risk of moving from state 1 to state 2 and
overestimate the risk of moving from state 1 to state 3—a bias that is absent for model M1.

Even though the simulation study is limited in scope, it is clear that the presence of non-ignor-
able missing states can lead to biased inference when the missing data mechanism is ignored in
the multistate analysis.

5. Application

First we briefly discuss the Medical Research Council ‘Cognitive function and ageing study’
(CFAS) (Brayne et al., 2006). Next the three-state illness–death model will be defined where
individuals are in state 2 when they have experienced one or more strokes and in state 1 if they
have never had a stroke. This model was discussed in the previous sections. It will be denoted
by M1 and it includes the modelling of non-ignorable missing states. We shall estimate healthy
LE, which is defined as the remaining years of life spent stroke free.

As in Section 4, model M1 will be compared with two other models: M2 is an MAR model
and for M3 we ignore all intermittently missing states and estimate a complete-data model from
the observed states only.

5.1. Medical Research Council ‘Cognitive function and ageing study’
The Medical Research Council CFAS is a population-based longitudinal study of cognition and
health in the older population of England and Wales. Interviews were conducted in five centres
in England and Wales: Oxford, rural Cambridgeshire, Nottingham, Gwynedd and Newcastle.
The study was designed to have 2500 individuals in each centre. There were 13004 individuals
who undertook the baseline interview in 1991 and since then they have had up to eight inter-
views in the period 1991–2004. All individuals were aged 65 years and above at baseline, and all
deaths up to the end of 2005 have been included. The time between interviews varies between
and within individuals and the number of interviews is not fixed. The last observed state of an
individual at the end of December 2005 is either death or censored and does not count as an
interview.

Of interest are LE free from stroke and total LE. In what follows we describe and analyse
the data from the Newcastle centre with 2512 individuals. At baseline there are 187 individuals
with severe cognitive impairment. For this group, information on stroke history is missing or
potentially unreliable. Although missing states at baseline can be incorporated in our model,
the reliability of observed states poses problems that fall outside the scope of this paper. We
therefore restrict our analysis to individuals who are not cognitively impaired at baseline. This
also make sense clinically. Stroke is a potential cause of cognitive impairment and hence the
stroke prevalence may not be estimated well for the cognitively impaired. Of the remaining 2325
individuals, four have a missing state at baseline. We removed these individuals from the data
as modelling missing the baseline state for such a small group is not worthwhile. Hence there
are 2321 individuals (880 men; 1441 women) in the analysis.

A state is defined to be missing if there is no interview at the scheduled time or if there is an
interview but there is no information about stroke. The total number of interviews in which a
state 1 or state 2 was observed is 5704. The total number of missing states is 2115, and the total
number of censored states is 766. During follow-up 1555 individuals died. The mean length
of time between interviews where a state 1 or state 2 was observed is 22.91 months (standard
deviation 21.35). The mean length of time between dates with either a living state, the death
state, a missing state or a censored state is 31.02 months (standard deviation 27.46).
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Fig. 1 provides information on the observation times for the four states. The CFAS had
planned follow-up for all individuals at years 0, 2 and 10. Additional interviews were under-
taken on selected individuals at years 1, 3, 6 and 8. These individuals are identified at previous
interviews and hence missing interviews are easily identified.

Table 2 presents frequencies of observed transitions between the states in the CFAS when
missing states are included and when missing states are removed. Note that there are no transi-
tions from state 2 to state 1. There are quite a large number of missing states and Table 2 shows
that there are also many missing states that are followed by a missing state, i.e. there are 1200
transitions from a missing state to a missing state. In the CFAS, individuals who refused one
interview are not allowed to be recontacted owing to ethical constraints. The figures in the second
part of Table 2 can partly be derived from the first part: 2966 = 24 + 2942 and 113 = 8 + 105.
It is, however, only given the second part that it becomes clear that 224 − 176 = 48 out of the
542 transitions from a missing state to state 3 are due to missing states in between an observed
state 2 and observed death. Consequently, 542−48=494 transitions from a missing state to the
death states are due to individuals with one or more missing states between an observed state 1
and observed death.

In general, a missing state is not a complication for a continuous time model. The model
allows for varying times between interviews. If an individual misses an interview for unrelated
reasons, then that is not a violation of model assumptions. However, if an individual misses an
interview because he or she recently had a stroke, then the missing state is non-ignorable and
if we ignore this scenario we could bias the estimates. Another problem with ignoring missing
states is that the approximation to the time dependence of the intensities becomes more coarse.
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Fig. 1. Observation times measured in years since baseline and corresponding states: �, death state; �,
state 1 or 2; , missing state; , censored state
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Table 2. Frequencies of observed transitions between the states
in the CFAS when missing states are included and when missing
states are ignored

Frequencies of transitions to the
following states:

Censored Missing 1 2 3

Including missing states
From state Missing 341 1200 24 8 542

1 382 855 2942 105 837
2 43 60 0 304 176

With missing states ignored
From state 1 711 2966 113 1331

2 55 0 304 224

For example, if the sequence is given by xt1 , xt2 , xt3 , xt4 = 1, ·, ·, 3 and the missing states are
ignored, then the time dependence of the intensities in .xt1 , xt4 ] is approximated by using age at
.xt1 +xt4/=2, whereas, if the missing states are not ignored, the time dependence is approximated
by using age at .xt1 +xt2/=2, .xt2 +xt3/=2 and .xt3 +xt4/=2.

5.2. Analysis
Time in the three-state model is the time since baseline in months. States of individual i are
observed at times tij for j =1, . . . , Mi, where ti1 =0, and Mi −1 is the number of planned inter-
views for individual i, and the state at tMi is either censored or the death state. The model for
the baseline state is given by

log.θi/=α0 +αA Agei.ti1/+αS Sexi +αE Educationi: .6/

To model possible time-dependent transition intensities, age in years is added as a time-dependent
covariate in the log-linear model for the intensities. For interval .tij, ti,j+1], j ∈ {1, . . . , Mi − 1},
the model for the intensities and the probability of an observed state are given by

log{qrs.tij/}=βrs:0 +βrs:A Agei{.tij + ti,j+1/=2}+βrs:S Sexi +βrs:EEducationi,

logit{p1.ti,j+1/}=γ1:0 +γ1:A Agei.ti,j+1/+γ1:S Sexi +γ1:E Educationi +γ1:R1.Rtij =0/, .7/

logit{p2.ti,j+1/}=γ2:0 +γ2:A Agei.ti,j+1/+γ2:S Sexi +γ2:E Educationi +γ2:R1.Rtij =0/: .8/

Age in the models is centred by subtracting 78.5 years. Sex and Education are dummy variables
(men ≡ 1, more than 9 years of full-time education ≡ 1). Note that age as a covariate for the
piecewise constant intensities is evaluated midway through the interval.

The selection model M1 that includes the three-state model and the model for the missing
states is estimated by maximizing the log-likelihood in the programming environment R (R
Development Core Team, 2008) by using the general purpose optimizer optim. Within optim
we choose the quasi-Newton Broyden–Fletcher–Goldfarb–Shanno method. The estimated
Hessian is used to derive standard errors. The logistic regression model is estimated in R by
using the function glm for generalized linear models. Parameters for the logistic regression
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Table 3. Parameter estimates (with standard errors in parentheses)

Results for model M1 Results for model M2 Results for model M3

Three-state model
(Intercept) β12:0 −6.441 (0.152) −6.454 (0.144) −6.294 (0.146)

β13:0 −5.401 (0.055) −5.403 (0.052) −5.295 (0.052)
β23:0 −4.534 (0.101) −4.539 (0.103) −4.420 (0.097)

Age β12:A 0.103 (0.016) 0.078 (0.018) 0.065 (0.018)
β13:A 0.062 (0.007) 0.070 (0.006) 0.065 (0.006)
β23:A 0.050 (0.009) 0.046 (0.010) 0.039 (0.010)

Sex β12:S 0.272 (0.193) 0.377 (0.195) 0.274 (0.200)
β13:S 0.308 (0.080) 0.296 (0.075) 0.266 (0.075)
β23:S 0.388 (0.122) 0.396 (0.127) 0.332 (0.126)

Education β12:E 0.345 (0.225) −0.045 (0.228) −0.168 (0.236)
β13:E −0.395 (0.124) −0.256 (0.093) −0.254 (0.090)
β23:E 0.180 (0.137) 0.123 (0.154) 0.067 (0.155)

Models for probability of an observed state Model for baseline state
(Intercept) γ1:0 1.097 (0.056) (Intercept) α0 −2.475 (0.116)

γ2:0 1.305 (0.184) Age αA 0.036 (0.012)
Age γ1:A −0.014 (0.007) Sex αS 0.369 (0.165)

γ2:A −0.066 (0.020) Education αE −0.571 (0.213)
Sex γ1:S 0.288 (0.089)

γ2:S 0.569 (0.286)
Education γ1:E 0.430 (0.108)

γ2:E −0.533 (0.316)
1.Rtij =0/ γ1:R −5.057 (0.211)

γ2:R −4.180 (0.394)

model and the parameters for the three-state model are assumed to be distinct and the models
are estimated separately.

Model M1 has −2 × log-likelihood = 23975.92, whereas the same model with the restriction
γ1:R =γ2:R =0 has −2 × log-likelihood = 26252.87. This difference in the log-likelihood shows
that the model with unrestricted γ1:R and γ2:R is better and that whether or not the previous
state was observed helps to estimate the probability of observing the current state.

Table 3 shows the parameter estimates. As expected, the effect of age on the transition intensi-
ties is positive (β12:A, β13:A, β23:A >0) and men have an increased risk of a transition to stroke as
well as to mortality (β12:S, β13:S, β23:S > 0). Estimated models (7) and (8) for the probabilities of
observing a state show that the older you are the more likely it is that your state is not observed
and that this age effect is stronger for state 2 than for state 1. Estimated model (6) for the baseline
state shows that the probability of having a stroke increases with age (αA > 0).

To estimate LEs we use the piecewise constant approximation as explained in Section 3. Grid
u1, u2, . . . , uM for the trapezoidal rule is defined by using h = 1 month. In what follows, the
conditioning of the LEs on Z ={z.t/|t �0} is suppressed in the notation. Table 4 reports point
estimates and standard errors that are derived from simulating model parameter uncertainty
using the MLE (500 simulated parameter vectors). The mean of the point estimates in the sim-
ulation can differ from point estimates that are calculated by using the MLE directly. This is
due to possible skewness of the density of the LEs—even though the model parameters are
simulated from a multivariate normal distribution. As an example, for men aged 65 years at
baseline, e22 is estimated to be 7.15 years by using the mean of the MLE simulations and 7.08
years by using the maximum likelihood point estimate for the model parameters in equation
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Table 4. Estimated LEs (with estimated standard errors in parentheses) for
women and men given mean level of education

Parameter Results for model M1 Results for Results for
model M2, men model M3, men

Women Men

Aged 65 years at baseline
e11 15.11 (0.36) 12.82 (0.37) 12.72 (0.26) 12.04 (0.25)
e12 1.66 (0.19) 1.20 (0.15) 1.28 (0.12) 1.25 (0.11)
e22 9.55 (0.85) 7.15 (0.69) 7.06 (0.52) 6.50 (0.49)
e1 14.46 (0.36) 12.04 (0.37) 11.93 (0.27) 11.30 (0.27)
e2 2.00 (0.19) 1.57 (0.17) 1.64 (0.13) 1.58 (0.13)
e 16.46 (0.35) 13.60 (0.36) 13.57 (0.24) 12.87 (0.23)

Aged 75 years at baseline
e11 9.77 (0.26) 8.07 (0.26) 8.08 (0.18) 7.85 (0.18)
e12 1.57 (0.20) 1.12 (0.16) 1.05 (0.10) 1.02 (0.10)
e22 6.55 (0.41) 4.78 (0.36) 4.85 (0.28) 4.70 (0.27)
e1 9.18 (0.25) 7.39 (0.25) 7.38 (0.19) 7.18 (0.19)
e2 1.87 (0.20) 1.43 (0.16) 1.38 (0.11) 1.33 (0.11)
e 11.05 (0.23) 8.82 (0.25) 8.76 (0.16) 8.51 (0.17)

Aged 85 years at baseline
e11 5.76 (0.28) 4.64 (0.25) 4.77 (0.18) 4.84 (0.18)
e12 1.42 (0.24) 1.00 (0.19) 0.82 (0.12) 0.79 (0.12)
e22 4.36 (0.33) 3.12 (0.30) 3.26 (0.25) 3.36 (0.28)
e1 5.27 (0.27) 4.09 (0.24) 4.21 (0.18) 4.27 (0.19)
e2 1.67 (0.23) 1.25 (0.18) 1.11 (0.13) 1.10 (0.13)
e 6.94 (0.22) 5.34 (0.22) 5.32 (0.16) 5.36 (0.17)

(4). It is only for e22 that the figures differ slightly—the densities of the other LEs are close to
symmetrical; see Fig. 2 for some of these densities.

In Section 3.2, the Metropolis algorithm was proposed as an alternative simulation method
to estimate the variance of the LEs. We ran four sequences each of which contained 10000 sim-
ulated parameter vectors. For the starting values of the sequences we chose the MLE plus some
random noise. The proposal density was multivariate normal and the algorithm was designed
such that the acceptance rate was around 40%. Running the Metropolis algorithm for model M1
is computationally intensive given that there are 22 parameters to estimate.

We illustrate the results for the marginal and total LEs for men with mean education level.
Fig. 2 shows the comparison with the MLE simulation for men aged 65, 75 and 85 years at base-
line. The two methods produce similar results, which is reassuring with regard to the reliance
on the asymptotic properties of maximum likelihood in the MLE simulation. For women the
comparison (which is not reported) was similar. The MLE simulation estimated slightly wider
densities (bigger variance) for e2, but numerically the differences were small.

To obtain the estimate for men aged 65 years there is a long period of extrapolation and small
differences between methods will have an effect. As can already be inferred from the relatively
low frequencies of observed transitions from state 1 to state 2 (Table 2), and from the relatively
large estimated variance of the parameters for the transition intensity q12.t/ (Table 3), estima-
tion of e12 and e2 is subject to a relatively large variance. In general, the estimated LEs for the
younger ages must be handled with care. Slight misspecification of the model can have a big
effect on the estimation of the LEs because of the extent of the extrapolation.
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Fig. 2. Estimated densities of LEs e1, e2 and e for men aged (a) 65 years, (b) 75 years and (c) 85 years
at baseline with mean education level: a comparison between MLE simulation (- - - - - - - ) and the Metropolis
algorithm ( )

As expected, men have a much lower overall LE than women at all ages. The amount of time
that men spend with stroke is also lower at each age, though the total proportion of life spent
with stroke is similar in men and women. Excluding individuals with cognitive impairment at
baseline will have increased the LE of the remaining individuals as cognitive impairment is
associated with poor survival.
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5.3. Sensitivity analysis
The parameter estimates for models (7) and (8) rely heavily on model assumptions. This is often
so in missing data analysis: values of Xt are only observed when Rt =1, so estimates are driven
by model assumptions rather than by evidence in the data (Little (1995), page 1115). To inves-
tigate the robustness of the missing data models, we discuss a sensitivity analysis that considers
alternative link functions and functional form for the effect of age.

Models (7) and (8) are logit models where the link function is defined by logit.p/ =
log{p=.1 − p/}. An alternative is the probit model that is defined by probit.p/ = Φ−1.p/,
where Φ is the standard normal cumulative probability distribution. Another possibility is the
complementary log–log-model defined by cloglog.p/= log{− log.1−p/}. By using alternative
link functions and comparing results we can investigate—up to a certain extent—whether the
models for the missing data are robust against misspecification of the link function.

Another sensitivity analysis is to investigate functional form for the effect of age in models
(7) and (8), where the slope is assumed to be constant. The assumption can be tested by for-
mulating a spline function that imposes piecewise constant slopes with possible slope change at
so-called knots; see, for example, Greene (2002). For age in years, we choose knots g1, . . . , g5 =
71, 77, 83, 89, 95 and extend models (7) and (8) by adding covariates 1.Age�gk/.Age−gk/ with
regression effect δk, for k = 1, . . . , 5. (In the implementation, we took the centring of age into
account.) Another way to investigate functional form for the effect of age is to work with age
categories. This can be used to investigate the assumption in models (7) and (8) that the effect of
age is linear. The models were adapted by replacing the covariate age by five dummy variables
for the categories 71–77, 77–83, 83–89, 89–95 and older than 95 years, and by using the category
younger than 71 years as reference category.

The Akaike information criterion AIC can be used to investigate the alternatives formulated
above. For model M1 with the logit models we obtain AIC = 23997. Using the probit link we
obtain AIC = 24001 and, using the cloglog-link, AIC = 23994. Using spline regression, AIC
= 24 026. Since model M1 is nested in the model with the splines, the models can be compared
by using the likelihood ratio test: the difference in minus two times the log-likelihood is 13.55,
which is not significant (p-value 0.19). Using the dummy variables for age, AIC = 24021. The
AICs for the models with different link models are similar, and the AICs for the spline regres-
sion and the regression with the dummy variables show that these extensions do not yield better
models.

More relevant is to see how estimated LEs change across the different specifications.
Because of the extrapolation, if there are differences, they will be most pronounced in the
LEs of individuals aged 65 years old at baseline. Both for the probit model and for the
cloglog-model, absolute differences for LEs for women and men are all smaller than 0.1 when
compared with the results in Table 4. Also, for the spline regression and the regression with
the dummy variables for age, absolute differences for LEs for women and men are smaller than
0.1.

The above summary shows that the estimation of the LEs is robust across some of the possi-
ble alternative specifications of the missing data model. Completely ignoring the missing data,
however, does have a relevant effect on the estimation of LEs. This will be shown in the next
section.

As stated at the end of Section 3.1, even though in some cases it is clear that the missing
state is state 2, this state is not imputed before data are analysed. For the CFAS data at hand
this is crucial. If we impute each of the 60 missing states of which we know that it must be
state 2, selection model M1 as formulated in the previous section is difficult to estimate: for
submodel (8) point estimates for γ2:0 and γ2:R are huge (positive and negative respectively) and
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the variance cannot be estimated as the Hessian is not positive definite. By using the restriction
γ2:R = 0, the model can be fitted, but estimated standard errors for submodel (8) are huge and
hamper further statistical inference. This shows that, by not imputing these specific missing
states, we maintain information about the missing data mechanism that is needed to estimate
model M1.

5.4. Comparison with other models
In addition to the selection model M1, models M2 and M3 were introduced in Section 4.
In what follows we compare the results for the three models with regard to the CFAS data.
Although Section 4 showed that the models may yield different results, the true mechanism at
work in the CFAS data is unknown as is how differences between parameter estimates affect
estimation of LEs. We also consider the comparison between M1 and Cox regression models
(Cox, 1972).

Model M2 can be fitted to the CFAS data without any changes and data for model M3 can
be derived from the CFAS data by deleting all the intermittently missing states. Table 2 presents
frequencies of observed transitions between the states in the CFAS when missing states are
removed.

Parameter estimates for the models M2 and M3 are presented in Table 3. If we assess the
significance of the covariates by using univariate Wald tests, then we see that the three models
differ in the estimation of the non-significant effects, especially for education. More education is
associated with better survival and in that sense β̂13:E agrees with our expectation. But β12:E and
β23 are difficult to identify as is indicated by the relatively large standard errors. This may be due
to the relatively small number of individuals who are observed in state 2. In our data analysis,
there is no clear association between the risk of stroke and education. For the significant effects,
point estimates are similar although they differ. The biggest difference is for the effect of age
on the intensity of moving from state 1 to state 2 (β12:A). The increase of this effect follows the
increase of the extent to which we model the missing states: 0.065 in model M3, 0.078 in model
M2 and 0.103 in model M1. Since age increases for all individuals during follow-up, this means
that modelling the missing states leads to a higher estimated risk of a transition from state 1 to
state 2.

Reported estimated standard errors in Table 3 show a pattern: the precision of the esti-
mation of covariate effects for the transitions from state 1 to state 2 and for the transitions
from state 2 to state 3 is highest for model M1. This concurs with the results in the sim-
ulation study where the means of the estimated standard errors (which are not reported in
Table 1) showed that the selection model has a higher precision than the other two mod-
els with regard to the effect of age on transitions from state 1 to 2 and for state 2 to 3. By
modelling possible non-ignorable missing states, the probability that a latent state is state
2 is larger (γ̂2:0 > γ̂1:0) and hence more covariate information is used to estimate the effects
for transitions to or out of state 2. Nevertheless, the differences in standard errors in
Table 3 are small, and for some quantities models M2 and M3 are more efficient than M1;
see, for example, intercept β12:0 and effect β13:S. Overall, combining the data analysis with the
simulation study, the gain of modelling non-ignorable missing states is more about bias than
precision.

For the comparison of the estimated LEs, see the results for the men in Table 4. If we
use the estimated standard errors to construct 95% confidence intervals, then the intervals
overlap across the models for all estimated LEs. This is reassuring regarding the effect of
missing values. However, this does not conceal the fact that the models produce different figures.
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As was to be expected, estimates for those aged 65 years differ the most. This is due to the
extrapolation—differences between the models become more apparent under extrapolation.
The largest difference is for e11, where model M1 estimates 12.85 (0.37) and M3 estimates 12.04
(0.25). Looking at the point estimates, model M2 is an intermediate model, often producing
estimates that are in between the estimates of M1 and M3. For the younger ages, model M1
estimates higher LEs. For these ages, a missing state is less likely to be state 2 according to M1
(Table 3: γ̂2:A < 0). As a consequence, the possibility of a trajectory from an observed state
1 via a latent state 2 is less likely and mortality decreases as state 2 is associated with poorer
survival.

In general, the comparison of a three-state model such as model M1 with a Cox regres-
sion model is of limited use. But here the idea is to fit two Cox models—one for each baseline
state—and to compare survival estimated by the Cox models with survival estimated by the
three-state model. This does not provide information on the risk of a stroke or on healthy LE,
but it is a way to validate part of the three-state model: if there is not too much censoring,
then estimated survival should be similar (see Siannis et al. (2007)). Of course, this is only a
comparison between models and as such not a goodness-of-fit test. Given that observation
times vary within and between individuals and that age is used as a time-dependent variable, we
cannot apply Pearson-type goodness-of-fit tests as described in Aguirre-Hernández and Fare-
well (2002) and Titman and Sharples (2008).

Using the package survival in R, we fitted two Cox models with covariates age, sex and
education as defined for model M1. Age as a time-dependent variable was dealt with by rear-
ranging the data such that every individually observed time interval is a record in the data. This
is the start–stop format; see, for example, Venables and Ripley (2002), section 13.4. An event
is defined as death and age within each record is age midway through the corresponding time
interval.

Fig. 3 depicts the results for men with mean education. For model M1, we used a piece-
wise constant approximation to estimate survival for an individual with covariates specified at
baseline. This is the same approximation as used in the estimation of the LEs. Given time grid
u1, u2, . . . , uM and h= 1 month, survival at time uj for an individual in state s at baseline was
estimated by 1 − P̃.u1, uj/[s, 3], where P̃.u1, uj/ = P.u1, u2/P.u2, u3/ × . . . × P.uj−1, uj/. The
95% confidence intervals were derived from simulating model parameter uncertainty by using
the MLE. For 500 simulated parameter vectors, survival was estimated and 95% confidence
intervals were derived by using percentiles. For estimating survival given the Cox model, we
used the same grid specification and used the function survfit with the option newdata (see
Venables and Ripley (2002), section 13.4).

For men in state 1 at baseline, the two models estimate similar survival. The Cox model will
always overestimate survival as it does not—for censored deaths—take into account a possible
trajectory via state 2. For individuals in state 1 at baseline, 35% of the deaths are censored. (For
individuals in state 2 at baseline, 11% of the deaths are censored.)

For men in state 2 at baseline, the two models estimate different survival for the older men
—noticeably in the first half of the follow-up. This difference is partly due to left censoring.
The Cox model analyses data from men who were in state 2 at baseline. Model M1 analyses in
addition data from men who enter state 2 during follow-up. The former group will on average
be less healthy than the latter group: hence the higher death rate in the first half of the follow-up
according to the Cox model. For the men aged 65 years at baseline this problem does not occur.
For this age group there are no men who enter state 2 during follow-up because 65 years is
the minimum age at baseline. For women, the comparison between the models shows the same
trend (which is not reported).
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Fig. 3. Fitted survival for model M1 ( ; , 95% confidence intervals) and for Cox regression models
(– – –) for men aged (a) 65 (b) 75 and (c) 85 years at baseline with mean education: in each graph the
curves at the top are for baseline state 1 and the curves at the bottom are for baseline state 2
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6. Conclusion

To take into account possible non-ignorable missing values, we fitted a selection model to the
longitudinal data from the Medical Research Council CFAS. The selection model encompasses
a continuous time three-state model to describe stroke history, and a missing data model to
describe missing values. The model can be seen as an extension of the selection model in Cole
et al. (2005). Our model allows for right censoring and, by modelling time continuously, exact
death times are taken into account. The selection model can be used to estimate stroke-free
LE. The goodness of fit was checked graphically by comparing model-based survival with the
survival estimated by the semiparametric Cox regression model.

Whether or not missing states are taken into account has an effect on the estimates of LEs.
Modelling the missing states as non-ignorable leads to higher estimated stroke-free LE for men
aged 65 years and to lower estimated stroke-free LE for the men aged 85 years.

The analysis is restricted to individuals in Newcastle who are not severely cognitively impaired
at baseline. This means that estimated LEs are a little higher than expectancies for the whole
population in Newcastle. Reported total LEs are below the national UK average, but this is
specific to Newcastle and in line with reported estimates elsewhere; see, for example, Matthews
et al. (2006).

There are many ways in which informatively missing data can be ignored. The MAR model
M2 in this paper is rather specific—other MAR models are possible. The comparison between
model M2 and the selection model M1 is not meant as a general comparison between MAR
and missingness not at random models. A comparison which in general would not be very
useful as every fit to observed data, obtained by using a missingness not at random model is
exactly reproducible from an MAR model (Molenberghs and Kenward (2007), theorem 19.2).
Model M1 relies on model assumptions that cannot be linked to evidence in the data. For this
reason, a sensitivity analysis was conducted to investigate functional form of the missing data
model.

An issue that is not discussed in this paper even though it is quite common (and
important) in longitudinal data analysis is missing values of covariates. There is no direct
extension of our model to take into account missing covariate data. Since the model as-
sumes covariates values to be fixed values, taking into account missing values of a covariate
means introducing a distribution for the covariate—an exercise that is beyond the scope of this
paper.

The model presented is flexible. It can be applied to data with more than three states and to
data with backward transitions. The log-linear regression for the intensities makes it possible to
model cohort effects by including calender year as a covariate, or to investigate risk factors that
are associated with poor survival. The model is also intended as an alternative to the discrete
time modelling that is implemented in the software IMaCh (Lièvre et al., 2003). IMaCh has been
used in research on healthy LEs (see, for example, Jagger et al. (2007) and Lièvre et al. (2008)),
but the software always assumes that recovery from a disease or disability state is possible. In
addition, modelling of non-ignorable missing values is not yet possible in IMaCH.

Acknowledgements

The Medical Research Council CFAS is supported by major awards from the Medical Research
Council and the Department of Health (grant MRC/G99001400). This investigation is funded
by grant WBS/U.1052.00.013. The authors thank two referees for feedback that has helped to
improve the manuscript.



Estimating Stroke-free and Total Life Expectancy 349

References

Aalen, O. O., Farewell, V. T., De Angelis, D., Day, N. E. and Gill, O. N. (1997) A Markov model for HIV disease
progression including the effect of HIV diagnosis and treatment: application to AIDS prediction in England
and Wales. Statist. Med., 16, 2191–2210.

Aguirre-Hernández, R. and Farewell, V. T. (2002) A Pearson-type goodness-of-fit test for stationary and time-
continuous Markov regression models. Statist. Med., 21, 1899–1911.

Albert, P. S. and Follmann, D. A. (2003) A random effects transition model for longitudinal binary data with
informative missingness. Statist. Neerland., 57, 100–111.

Brayne, C., McCracken, C. and Matthews, F. E. (2006) Cohort profile: the Medical Research Council Cognitive
Function and Ageing Study (CFAS). Int. J. Epidem., 35, 1140–1145.

Cole, B. F., Bonetti, M., Zaslavsky, A. M. and Gelber, R. D. (2005) A multistate Markov chain model for longi-
tudinal, categorical quality-of-life data subject to non-ignorable missingness. Statist. Med., 24, 2317–2334.

Collett, D. (2003) Modelling Survival Data in Medical Studies, 2nd edn. London: Chapman and Hall–CRC.
Commenges, D. (1999) Multi-state models in epidemiology. Liftime Data Anal., 5, 315–317.
Cox, D. R. (1972) Regression models and life-tables (with discussion). J. R. Statist. Soc. B, 34, 187–220.
Greene, W. H. (2002) Econometrics Analysis, 5th edn. New Jersey: Prentice Hall.
Izmirlian, G., Brock, D., Ferrucci, L. and Phillips, C. (2000) Active life expectancy from annual follow-up data

with missing responses. Biometrics, 56, 244–248.
Jackson, C. H., Sharples, L. D., Thompson, S. G., Duffy, S. W. and Couto, E. (2003) Multistate Markov models

for disease progression with classification error. Statistician, 52, 193–209.
Jagger, C., Matthews, R., Melzer, D., Matthews, F., Brayne, C. and MRC CFAS (2007) Educational differences

in the dynamics of disability incidence recovery and mortality: findings from the MRC Cognitive Function and
Ageing Study (MRC CFAS). Int. J. Epidem., 36, 358–365.

Kalbfleisch, J. and Lawless, J. F. (1985) The analysis of panel data under a Markov assumption. J. Am. Statist.
Ass., 80, 863–871.

Kay, R. (1986) A Markov model for analysing cancer markers and disease states in survival studies. Biometrics,
42, 855–865.

Li, J., Yang, X., Wu, Y. and Shoptaw, S. (2007) A random-effects Markov transition model for Poisson-distributed
repeated measures with non-ignorable missing values. Statist. Med., 26, 2519–2532.

Lièvre, A., Alley, D. and Crimmins, E. (2008) Educational differentials in life expectancy with cognitive impair-
ment among the elderly in the United States. J. Agng Hlth, 20, 456–477.

Lièvre, A., Brouard, N. and Heathcote, C. (2003) The estimation of health expectancies from cross-longitudinal
surveys. Math. Popln Stud., 10, 211–248.

Little, R. J. A. (1995) Modeling the drop-out mechanism in repeated-measures studies. J. Am. Statist. Ass., 90,
1112–1121.

Little, R. J. A. and Rubin, D. B. (2002) Statistical Analysis with Missing Data, 2nd edn. New York: Wiley.
Matthews, F. E., Miller, L. L., Brayne, C., Jagger, C. and Medical Research Council Cognitive Function and

Aging Study (2006) Regional differences in multidimensional aspects of health: findings from the MRC cogni-
tive function and ageing study. BMC Publ. Hlth, 6.

Molenberghs, G. and Kenward, M. G. (2007) Missing Data in Clinical Studies. Chichester: Wiley.
Molenberghs, G., Kenward, M. G. and Lesaffre, E. (1997) The analysis of longitudinal ordinal data with

nonrandom drop-out. Biometrika, 84, 33–44.
Norris, J. R. (1997) Markov Chains. Cambridge: Cambridge University Press.
Putter, H., Fiocco, M. and Geskus, R. B. (2007) Tutorial in biostatistics: competing risks and multi-state models.

Statist. Med., 26, 2389–2430.
R Development Core Team (2008) R: a Language and Environment for Statistical Computing. Vienna: R Foun-

dation for Statistical Computing.
Rubin, D. B. (1976) Inference and missing data (with discussion). Biometrika, 63, 581–592.
Satten, G. A. and Longini, Jr, I. M. (1996) Markov chains with measurement error: estimating the ‘true’ course

of a marker of the progression of human immunodeficiency virus disease (with discussion). Appl. Statist., 45,
275–309.

Siannis, F., Farewell, V. T. and Head, J. (2007) A multi-state model for joint modelling of terminal and non-terminal
events with application to Whitehall II. Statist. Med., 26, 426–442.

Tanner, M. A. (1996) Tools for Statistical Inference. New York: Springer.
Titman, A. C. and Sharples, L. D. (2008) A general goodness-of-fit test for Markov and hidden Markov models.

Statist. Med., 27, 2177–2195.
Van den Hout, A. and Matthews, F. E. (2009) A piecewise-constant Markov model and the effects of study design

on the estimation of life expectancies in health and ill health. Statist. Meth. Med. Res., 18, 145–162.
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S, 4th edn. New York: Springer.


