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Introduction
The gene LOC791917 Danio rerio (zebrafish) encodes a protein annotated in the UniProt
knowledgebase1 as the “middle domain of eukaryotic initiation factor 4G domain containing
protein b” (MIF4Gdb). Its molecular weight is 25.8 kDa, and it comprises 222 amino acid
residues. BLAST searches revealed homologues of D. rerio MIF4Gdb in many eukaryotes
including humans.2 The homologues and MIF4Gdb were identified as members of the Pfam
family, MIF4G (PF02854), which is named after the middle domain of eukaryotic initiation
factor 4G (eIF4G).3-5 eIF4G is a component of eukaryotic translational initiation complex,
and contains binding sites for other initiation factors, suggesting its critical role in
translational initiation.6 The MIF4G domain also occurs in several other proteins involved in
RNA metabolism, including the Nonsense-mediated mRNA decay 2 protein (NMD2/UPF2),
and the nuclear cap-binding protein 80-kD subunit (CBP80).5 Sequence and structure
analysis of the MIF4G domains in many proteins indicates that the domain assumes all
helical fold and has tandem repeated motifs.5,7 The zebrafish protein described here has
homology to domains of other proteins variously referred to as NIC-containing proteins
(NMD2, eIF4G, CBP80). The biological function of D. rerio MIF4Gdb has not yet been
experimentally characterized, and the annotation is based on amino acid sequence
comparison. D. rerio MIF4Gdb did not share more than 25% sequence identity with any
protein for which the three-dimensional structure is known and was selected as a target for
structure determination by the Center for Eukaryotic Structural Genomics (CESG). Here, we
report the crystal structure of D. rerio MIF4Gdb (UniGene code Dr.79360, UniProt code
Q5EAQ1, CESG target number GO.79294).

Materials and Methods
The gene coding for MIF4Gdb was selected as a target as part of a group of genes chosen to
code for proteins that are as dissimilar as possible to structures previously deposited in the
Protein Data Bank, and also as dissimilar as possible to targets that CESG had previously
selected. It was assigned a project database identifier of GO.79294. Complete, detailed
protocols for the production of this protein can be found in PepcDB.8 Briefly, the gene was
cloned into pVP33K, the first production Flexi®Vector 9 used on our project, and
selenomethionyl protein was purified following the standard CESG pipeline protocol for
cloning,10 protein expression,11 protein purification12 and overall information management.
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13 Initial crystallization screens were conducted at 4 and 20 °C, in Corning 3775 plates,
using a local screen called UW-192. Crystal growth was monitored using Bruker Nonius
Crystal Farms at 4°C and 20°C, and scored using Crystal Farm Navigator (Nexus
Biosystems, Inc.). A Tecan Genesis RSP 150 robot assembled precipitant solutions for
optimization experiments. Diffraction quality crystals were grown in hanging drop batch
experiments. Crystals were grown from 10 mg/ml protein solution in buffer (50 mM NaCl, 3
mM NaN3, 0.3 mM TCEP, 5 mM BisTris pH 7.0) mixed with an equal amount of reservoir
solution containing 7% (w/v) PEG 4K, 0.4 M NaCl, 100 mM MES/ acetate pH 5.5 at 20 °C.
The crystals were cryoprotected in 15% (w/v) ethylene glycol, 10% (w/v) PEG 4K, 100 mM
MES/ acetate pH 5.5 and were flash-frozen in liquid nitrogen.

Diffraction data were collected at Southeast Regional Collaborative Access Team (SER-
CAT) 22-ID beamline at the Advanced Photon Source (APS), Argonne National Laboratory
at 100 K. The diffraction images were processed with HKL2000.14 The selenium
substructure of the crystal was determined by using SHELXD15 and HySS from PHENIX,
16,17 and the selenium positions were used for single wavelength anomalous diffraction
phasing in autoSHARP.18 The initial model was built by the automatic tracing procedure of
ARP/wARP,19 and the structure was completed using alternating cycles of manual building
in COOT20 and refinement in REFMAC5.21 The stereochemical quality of the final model
was assessed using MolProbity.22 PyMol was used to generate figures.23 The final
coordinates were deposited in the RCSB Protein Data Bank24 with accession number 2I2O.

Results and Discussion
The crystal structure of MIF4Gdb from D. rerio was determined to a resolution of 1.92 Å
using single wavelength anomalous diffraction. Data collection and refinement statistics are
summarized in Table 1. The asymmetric unit of the structure contains two MIF4Gdb chains
(residues 7–217 for chain A; residues 8–217 for chain B). Several N- and C-terminal
residues were not included in the model due to insufficient electron density.

The structure of the MIF4Gdb monomer reveals a crescent shaped molecule consisting
entirely of helices (13 α- and two 310-helices) and connecting loops (Figure 1). Except for
the two terminal ones (h1 and h15), the 13 helices (h2–h14) are arranged as four HEAT-like
(huntingtin-elongation-A subunit-TOR-like) motifs containing armadillo repeats.25 Each
HEAT-like motif consists mainly of two antiparallel α-helices (termed A and B) that are
held together by hydrophobic interactions along their adjacent sides. The eight longer α-
helices (h3, h5, h6, h8, h10, h12– h14) serve as the main constituents of the four HEAT-like
motifs forming the characteristic antiparallel α-helical pairs, and the five shorter helices (h2,
h4, h7, h9 and h11) are located either within a motif or between motifs mediating turns
between adjacent helices. Each subunit has a nickel (or perhaps zinc) atom bound on the
concave side of the crescent-shaped dimer. Whether there is a physiological role for bound
metal ion is unknown.

The consecutive HEAT-like motifs are stacked on each other and the polypeptide chain
forms a right-handed solenoid. The stacking of the four HEAT-like motifs is parallel. That
is, the helices of the same type (A or B) in the motifs are located side by side. This parallel
arrangement of the four HEAT-like motifs generates a double layer of α-helices in which the
four A helices forms one face and the four B helices comprise the other. The structure has an
extended hydrophobic core, which is essentially the area between the two layers formed by
the A and B helices. The hydrophobic core is stabilized by salt bridges and Van der Waals
interactions between the conserved nonpolar residues.
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Tandem arrays of HEAT-like motifs are found in a wide variety of proteins where they serve
as scaffolding modules for assembly of large multi-protein complexes.25 They include
huntingtin protein, protein phosphatase 2A (pp2A), importin β, elongation factor 3, and
many others. The closest structural neighbors of the MIF4Gdb monomer identified by
VAST search are the middle segment of eukaryotic initiation factor 4GI (eIF4GI) from
Saccharomyces cerevisiae (PDB ID: 2VSX) and the middle domain of human eIF4GII
(PDB ID:1HU3).26,27 The MIF4Gdb structure described here superposes onto the
homologous chain of the yeast structure with VAST score 12.4, 2.5 Å RMSD and 20.4 %
sequence identity over 167 aligned residues. The overlay with the human protein is
comparable, with a score of 12.5, 2.4 Å RMSD Å, and 24.7% identity over 154 amino acids.
The next closest structure in the list is the pp2A (PDB ID: 3GFA) with only 8.9% sequence
identity. The comparison of these structures reveals the same overall fold with slight
differences in the orientation of the N-terminal and C-terminal helices. All three appear to be
dimers in the physiological state. The dimeric interfaces amongst these three most similar
proteins are also conserved, based on analysis with the PISA server28, giving a Q score of
0.371 and 0.370 for 1HU3 and 2VSX with our structures, respectively.

The yeast eIF4GI is one of the two isoforms (eIF4GI and eIF4GII) of the translation
initiation factor eIF4G, a modular adaptor protein that recruits the components necessary for
the initiation of protein synthesis in eukaryotes.29,30 In the yeast complex, the helical
domains of eIf4G serve to orient DEAD-box sequence motifs of an RNA helicase in a way
that they become active. Some eIF4G proteins also bind other eukaryotic initiation factors
and picornaviral IRES (internal ribosome entry site) elements.31 Previous structural and
mutational studies identified several residues of eIF4G involved in eIF4A and IRES binding.
27,32 Although some of these residues are also present in MIF4Gdb, it is not straightforward
to make a prediction about eIF4G-like function of MIF4Gdb on this basis since the ligand-
binding residues are poorly conserved even among the eukaryotic eIF4G homologues.32

In a more recent study, a human protein with 72% sequence identity to the zebrafish
eIF4Gdb was shown to be involved in stem loop rather than polyA mediated translation33,
which is common for histone mRNA’s. This human protein has been named SLIP1, for
SLBP (Stem Loop Binding Protein) interacting protein 1. Given the sequence identity and
the known role of similar proteins, it seems quite possible that the purpose of the protein
whose structure is defined here is also to act as a scaffold that helps assemble components of
translation machinery.
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Figure 1.
Crystal structure of D. rerio MIF4Gdb. (A) Ribbon diagram of D. rerio MIF4Gdb structure.
A rainbow gradient is used to color each polypeptide chain from its N-terminus (blue) to C-
terminus (red). Pairs of α-helices can be seen to form an extended sheet. The C-termini form
dimer contacts and the N-terminal regions are available for interaction with other proteins,
in keeping with other homologs. (B) Representative lectron density of the MIF4Gdb
structure. Amino acid residues are colored by atom types (carbon: green; oxygen: red;
nitrogen: blue), and the 2Fobs - Fcalc map is contoured at 1.5σ.
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Table 1

Summary of crystal parameters and data collection and refinement statistics (values in parentheses are for the
highest-resolution shell).

Space group C2

Unit cell parameters a=317.80Å, b=40.95Å, c=40.92Å, β=90.26°

Wavelength (Å) 0.97925

Data collection statistics

Resolution range (Å) 40.61 – 1.92 (1.99 – 1.92)

Number of reflections, measured/unique 254650/39789

Completeness (%) 97.5 (95.5)

Rmerge
a 0.074 (0.245)

Redundancy 6.40 (5.40)

Mean I/σ(I) 13.38 (5.40)

Refinement statistics

Resolution range (Å) 40.61 – 1.92 (1.97 – 1.92)

Number of reflections, total/test 39773/1998

Rcryst
b/Rfree

c 0.190/0.235 (0.231/0.277)

RMSD bonds (Å) 0.015

RMSD angles (deg) 1.357

Average B factor (Å2) 8.56

Number of water molecules 418

Ramachandran favored (%) 97.7

Ramachandran allowed (%) 99.8

a
Rmerge =∑h∑|Ii(h) - <I(h)>|/∑h∑iIi(h), ,where Ii(h) is the intensity of an individual measurement of the reflection and <I(h)> is the mean

intensity of the reflection.

b
Rcryst, = ∑h∥Fobs∣ - ∣Fcalc∥/∑h∣Fobs∣, where Fobs and Fcalc are the observed and calculated structure factor amplitudes, respectively.

c
Rfree was calculated as Rcryst using 5.0% of the randomly selected unique reflections that were omitted from structure refinement.
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