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The brain’s energy supply determines its information processing power, and generates functional
imaging signals, which are often assumed to reflect principal neuron spiking. Using measured
cellular properties, we analysed how energy expenditure relates to neural computation in the
cerebellar cortex. Most energy is used on information processing by non-principal neurons:
Purkinje cells use only 18% of the signalling energy. Excitatory neurons use 73% and inhibitory
neurons 27% of the energy. Despite markedly different computational architectures, the granular
and molecular layers consume approximately the same energy. The blood vessel area supplying
glucose and O2 is spatially matched to energy consumption. The energy cost of storing motor
information in the cerebellum was also estimated.
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Introduction

The processing power of computational devices is
limited by their energy supply (Sarpeshkar, 1998;
Laughlin and Sejnowski, 2003), but how the brain’s
energetic resources are allotted to different parts of a
neural computation is unknown. Fundamental ques-
tions, which will determine how the neural and
vascular architecture are structured, include: for a
particular neural algorithm, what is the ratio of
energy needed for excitatory and inhibitory neurons;
is it energetically more economical to use small or
large neurons; how much energy is used on informa-
tion processing in dendritic trees, compared with
distributing the computed results along axons; and
how is the blood supply matched to the energy used
by different neurons or subcellular compartments
of neurons? Understanding the cellular and subcel-
lular distribution of energy use, and its relationship
to the vascular architecture, is also relevant to
understanding how functional imaging signals are
generated (Attwell and Iadecola, 2002). To address

these issues, we analysed the energy used by the rat
cerebellar cortex: a brain area for which the cellular
properties and computations performed have been
well studied.

The cerebellar cortex receives information on the
environment and body position from sensory recep-
tors, and on the desired motor output from the
cerebral cortex, and modulates the motor output to
make movements smoother and more accurate
(reviewed by Tyrell and Willshaw, 1992). Informa-
tion arrives in the granular layer along mossy fibres
(Figure 1A). The granule cells are small neurons that
recode the information they receive on approxi-
mately four small dendrites (each with a mossy fibre
input) into action potentials which pass along their
axons, the parallel fibres, into the molecular layer to
excite the output cells of the cerebellar cortex, the
Purkinje cells. These large cells, with extensive
dendritic trees, send axons to inhibit neurons in
the deep cerebellar nuclei. Information arriving on
approximately 13,000 mossy fibres (Ito, 1984) is thus
recoded into action potentials on a much larger
number (B174,000; Harvey and Napper, 1988) of
parallel fibres, which synapse onto the output
Purkinje cells. Purkinje cells also receive a single
powerful excitatory synapse from a climbing fibre
from the inferior olive: this input may decrease the
strength of active parallel fibre synapses during
learning of motor patterns (reviewed by Tyrell and
Willshaw, 1992). Inhibitory interneurons, the Golgi,
basket and stellate cells (Figure 1A), moderate the
activity of the whole network.
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The cerebellar circuitry results in a very different
organization to the information processing in the
granular and molecular layers, raising the question of
whether these different styles of neural computation
expend energy differently, and require a different

vascular density. Using the measured electrical
and anatomical properties of each cerebellar cell
type, we calculate the energy expended on signalling
during the retrieval of stored patterns of motor
behaviour.
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Figure 1 Predicted energy use for cerebellar cortex with all cell types firing at their physiological rate. (A) Schematic diagram
showing the cell types considered. Note that parallel fibres in reality make en passant (non-terminal) synapses. (B) Cellular
distribution of predicted energy use (ATP used per cell). Key: P, Purkinje cell; Go, Golgi cell; s, stellate cell; b, basket cell; g, granule
cell; mf mossy fibre; cf, climbing fibre; a, astrocyte; Bg, Bergmann glia. (C) Cellular distribution of energy use, taking density of cells
into account (ATP use per class of cell). (D) Energy distribution among subcellular processes (summed over all cell types, weighted by
cell densities). Resting potentials account for approximately 42% of the energy use, action potentials 36%, postsynaptic receptors
17%, neurotransmitter recycling (ATP used in glia and on packaging transmitter into vesicles in the releasing cell) 2%, and
presynaptic Ca2 + entry and vesicle cycling 3%. (E) As D, but including non-signalling energy use, assumed to be 4 mmol ATP per g
per min (see text). Housekeeping tasks account for 19% of the energy use, resting potentials 34%, action potentials 29%,
postsynaptic receptors 14%, neurotransmitter recycling (ATP used in glia and on packaging transmitter into vesicles in the releasing
cell) 2%, and presynaptic Ca2 + entry and vesicle cycling 2%.
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Materials and methods

Calculation of ATP Usage

Most signalling-related energy in the brain is expended on
pumping of Na+ ions out of cells (Siesjo, 1978; Attwell and
Laughlin, 2001). We estimated the signalling energy
expended on different cellular processes in the rat
cerebellar cortical grey matter as follows. Published
anatomical and electrophysiological data on the different
cerebellar cells were used to calculate the ATP used to
reverse the Na+ influx producing excitatory synaptic
currents and action potentials, the Na+ influx occurring
at the resting potential, the Ca2 + entry driving neurotrans-
mitter release, and the ATP expended on other less energy
consuming processes inherent in cerebellar information
processing described in Supplementary Information. Our
analysis differs from previous energy budgets for the
cerebral neocortex (Attwell and Laughlin, 2001) and
olfactory glomerulus (Nawroth et al, 2007) in that, as far
as possible, it uses experimentally measured parameters
for each cell type being considered, rather than average
values from a range of cell types (e.g., Attwell and Laughlin
(2001) used an average charge entry through non-NMDA
receptors, which varies greatly between cell types). This is
possible because the cerebellum has been far more
intensively studied electrophysiologically and anatomi-
cally than other brain areas. Thus, we gathered B300
parameters from the literature (on cell action potential
firing rates, the number of vesicles released by each
synapse, the conductances activated postsynaptically,
etc.) to define the energy consumption by the nine different
cell classes in the cerebellar cortex. Only one important
parameter needed for our analysis was not directly
available from the literature, the mean firing rate of granule
cells (see below).

Measured ion fluxes were converted into values for ATP
consumption using the fact that the Na+/K+-ATPase
consumes one ATP per 3Na+ extruded, whereas the Ca2 +-
ATPase (or 3Na+/Ca2 + exchange followed by Na+ extru-
sion) uses 1 ATP per Ca2 + extruded. Similarly, the ATP
needed to restore Ca2 + to intracellular stores, and expended
on transmitter and vesicle recycling, were estimated
(Attwell and Laughlin, 2001). The energy expended on
restoring Cl� gradients after inhibitory transmission was
estimated to be < 1% of that needed to restore an equivalent
change of the Na+ gradient (see Supplementary Informa-
tion), and was ignored. Full details of the calculations are
given in the Supplementary Information. We initially con-
sider only the energy used on signalling (including the
resting potential), and ignore smaller non-signalling
energy use on mitochondrial proton leak and housekeeping
tasks (Attwell and Laughlin, 2001) which is discussed
below.

Estimation of Mean Granule Cell Firing Rate

The exact value of this parameter is uncertain for several
reasons. First, most studies are on anaesthetized animals
and anaesthesia lowers firing rates (ketamine/xylazine
reduces by 75% the parallel fibre response to stimulation;

Bengtsson and Jorntell, 2007). Second, their small size
means that few papers report the firing rate of individual
granule cells. Finally, most studies report only peri-
stimulus firing changes and not the mean frequency
including the baseline spontaneous rate, which can be
significant and varies from one cerebellar area to another.

To constrain this parameter, we used two different
approaches. First, we assessed a likely range for the mean
firing rate of granule cells in vivo from published data. In
decerebrate cat, granule cell spontaneous firing occurs at
2.96 Hz (Jorntell and Ekerot (2006): calculated from the
extracellular data in their Table 2, weighted by the
occurrence of cell types in their Table 4). This places a
lower bound of 3 Hz on the average firing rate, on top of
which stimuli will increase the mean firing rate, but
possibly not by much as stimulus-evoked firing occurs
only briefly, for example, short bursts of 3.3 excitatory
postsynaptic currents (EPSCs; Chadderton et al, 2004).
This suggests a mean firing rate of just over 3 Hz.
An upper limit including sensory input can be estimated
using the total energy consumption of the cerebellar
cortex, which is 20.5mmol ATP per g per min in conscious
rats (from the glucose consumption (Sokoloff et al, 1977)
of 66 mmol per 100 g per min, assuming 31 ATP/glucose
are produced (Attwell and Laughlin, 2001)). Of this,
we assume B68%, that is, 13.9 mmol ATP per g per min,
is used on action potential-driven processes (as in rat
neocortex there is an average 68% reduction of energy
use during deep anaesthesia (Nilsson and Siesjo, 1975;
Sibson et al, 1998), compared with awake animals).
To reproduce this expenditure on pumping out the ion
entry associated with synaptic and action potential
signalling in the cerebellar cortex, we had to set the
mean firing rate of granule cells in our model to
be 5.5 Hz.

Second, we estimated the mean firing rate of granule
cells using the charge transfer produced into Purkinje cell
dendrites when action potentials occur in the parallel
fibres, and the contribution this excitatory input makes to
the cell’s input resistance. Purkinje cells in awake mice
have a resistance of 22.6±2.8 MO (n = 11, K Kitamura and
M Kano, personal communication), less than in brain slices
because of ongoing synaptic input (for inhibitory input see
Hausser and Clark (1997)). We assume that this resistance
reflects the time-averaged presence of an excitatory input
conductance evoked by parallel fibre activity, gGlu, with a
reversal potential of VGlu = 0 mV, as well as a potassium
conductance, gK, with reversal potential VK =�100 mV, and
a time-averaged inhibitory synaptic conductance, gCl, with
a reversal potential VCl somewhere between VK and the
mean resting potential of Vrp =�53 mV (see Supplementary
Information). By equating the total membrane current to
zero at the resting potential, the mean value of gGlu can thus
be calculated to be between 20.8 nS (if VCl = VK) and 11.4 nS
(if VCl is at the resting potential: calculated assuming
that gK/(gK + gCl) = 49.5/121.5 MO from the input resistance
data of Hausser and Clark (1997) in the absence and
presence of GABAA receptor blockers by assuming there
is no excitatory input in cerebellar slices). The exci-
tatory current through this conductance at the resting
potential must equal the time averaged current generated
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by granule cell input, so

gGlu � ðVGlu � VrpÞ ¼ N�Fpf�Prelease�Q

�ðmean granule cell firing rateÞ

where N = 174,000 is the number of parallel fibres imping-
ing on each Purkinje cell (Napper and Harvey, 1988),
Fpf = 0.15 is the fraction of parallel fibres making functional
synapses in adult rat (Isope and Barbour, 2002),
Prelease = 0.36 is the vesicular release probability at the
parallel fibre synapse (Marcaggi et al, 2003), Q is the charge
entry when a vesicle is released at a bouton, and the mean
granule cell firing rate is the parameter we wish to
determine. Q was estimated to be 3.7� 10�14C from the
measured parallel fibre EPSC (see Supplementary Informa-
tion, charge entry at the parallel fibre synapse). Using these
numbers, the estimated values for gGlu gave the mean firing
rate as 1.7 Hz (for VCl = Vrp) or 3.2 Hz (for VCl = VK). Here we
ignored the contribution to gGlu of the climbing fibre input:
correcting for this using charge entries derived from our
model predicts that for VCl = Vrp or VCl = VK these values
would become 1.5 and 2.9 Hz respectively.

The independent estimates described above suggest a
mean granule cell firing rate between 1.5 and 2.9 Hz (based
on the Purkinje cell input resistance) or 3 and 5.5 Hz (based
on in vivo data and total energy consumption). We therefore
assumed a mean granule cell firing rate of 3 Hz, and also
investigated the effect of varying this parameter (Figure 3A).

Quantifying the Blood Vessel Distribution in
Cerebellum

Postnatal day 21 rats (killed by cervical dislocation) were
used as most parameters in this work are from studies on
juvenile rats. To label blood vessels, we incubated 200 mm
sagittal cerebellar slices for 45 mins in artificial cerebrosp-
inal fluid (aCSF) containing fluorescein isothiocyanate
(FITC)-conjugated isolectin-B4 (50 mg/ml). Slices were
washed in aCSF for 30 mins, then fixed in 4% paraformal-
dehyde in phosphate-buffered saline for 40 mins at B251C.
Fluorescence was excited at 488 nm and emission was
collected at 535 nm, as confocal stack images were taken
with image planes separated by 5.5 to 6.67mm or 2.76 to
3.03 mm (at � 10 or � 20 magnification).

Isolectin-B4 labels endothelial cells on the outside of
blood vessels, and so delineates the vessel surface area
available for O2 and glucose exchange, that is, a measure of
the potential O2 and glucose supply to the tissue (e.g.,
Valabregue et al (2003, Equation 5) suggest that the brain O2

consumption sustainable by a given [O2] gradient across
the capillary wall is proportional to capillary surface area).
Although this technique does not distinguish different
types of blood vessel, it is acceptable to include the surface
area of arterioles and venules, as well as capillaries,
because oxygen diffuses through the walls of arterioles
and venules to the surrounding tissue (Duling and Berne,
1970; Vovenko, 1999). To quantify the relative blood vessel
surface area in the molecular and granular layers, we
therefore summed all the pixels containing isolectin-B4
labelling in each layer. A minimum threshold was applied
to each image and the image was binarized, so each

fluorescent pixel contributed a value of 1 to the pixel count.
Surface area was summed over 12 to 53 image planes for each
of 7 to 12 cerebellar lobules, and data were then averaged
over three animals. Vessels measured had diameters in the
range 5 to 9.4mm. Microglia (also labelled by isolectin-B4)
contributed < 2% of the fluorescent signal observed, and
were ignored. Images were analysed using MetaMorph
software (Molecular Devices, Downington, PA, USA).

Results

Cellular Distribution of Energy Consumption

We analysed the signalling energy used on each cell
type in the cerebellar cortex, with all the cells firing
action potentials at their measured physiological
rates, that is, the mossy fibre input firing at 40 Hz
(Maex and De Schutter, 1998), granule cells at 3 Hz
(see above), Purkinje cells at 41 Hz (simple spikes,
LeDoux and Lorden, 2002) and 1 Hz (complex spikes,
Lang et al, 1999), Golgi cells at 10 Hz (Vos et al,
1999), stellate and basket cells at 12 Hz (Hausser and
Clark, 1997), and the climbing fibre input at 1 Hz (Ito,
1984). These firing rates need not be produced by
synaptic input but could partly reflect the intrinsic
voltage-gated currents in the cells. Different lobules
perform different tasks, so the fractions of energy
used per cell class in a particular lobule may vary;
here we present an average view taken over the
cerebellum as a whole, using the available data in the
literature.

Larger cells were found to use significantly more
ATP per sec per cell than small cells (Figure 1B).
This reflects the fact that larger areas of membrane
mediate larger ion fluxes that require more ATP to be
pumped back. Thus, each of the largest cerebellar
neurons, the Purkinje cells, uses 1.24� 1010 mole-
cules of ATP per sec, which is far greater than the
1.72� 108 molecules of ATP per sec used by each of
the smallest, granule, neurons, and the intermediate
size inhibitory interneurons are in between (Figure
1B; cf Niven et al (2007) who found that large
photoreceptors consumed more energy than smaller
photoreceptors). Nevertheless, when multiplied by
the number of neurons present, the 274-fold higher
density of granule cells results in them dominating
the energy use of the whole cerebellar cortex (Figure
1C), consuming 67% of the total signalling energy,
whereas the principal Purkinje neurons use only
18% of the total.

Our predicted total signalling energy consumption
for the cerebellar cortex is 16.5 mmol ATP per g per
min, which is similar to the value measured in
conscious rats of 20.5 mmol ATP per g per min
(Sokoloff et al, 1977). Housekeeping energy use on
non-signalling tasks, such as turnover of macromo-
lecules, axoplasmic transport, and mitochondrial
proton leak (Attwell and Laughlin, 2001; Nawroth
et al, 2007), which are not included in our calcula-
tion, may account for the B20% difference between
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the predicted and measured energy use. This agree-
ment shows that it is possible to generate an energy
budget from the bottom up, based on the measured
properties of the ion channels generating synaptic
and action potentials, which estimates fairly accu-
rately the total energy used on signalling in the
cerebellar cortex.

Subcellular Distribution of Energy Consumption

The subcellular distribution of energy use varies
dramatically between different neuron types in the
cerebellar cortex (Figure 2). Purkinje cells, which
receive approximately 174,000 excitatory synaptic
inputs (of which B26,000 are active as 85% of these
synapses have zero weight after learning (Isope and
Barbour, 2002), see below), and fire action potentials
at a high rate, use the majority (94%) of their
signalling energy on action potentials (68%) and
postsynaptic receptors (26%), and only 6% on the

resting potential. By contrast, for the much smaller
granule cells, which receive only four excitatory
synaptic inputs, but have to propagate their action
potential along, and maintain the resting potential of,
a very long (B4.5 mm) axon, most of the signalling
energy goes on the resting potential (55%) and action
potentials (31%). Of the inhibitory interneurons,
basket and stellate cells use similar amounts of
energy on the resting potential, action potentials, and
postsynaptic currents, whereas Golgi cells use most
of their energy on postsynaptic currents (Figure 2).

The predicted distribution of signalling energy
expenditure on subcellular tasks in the whole
cerebellar cortex was calculated by summing the
energy used on action potentials, synaptic currents,
the resting potential, and so on, over all cells,
weighted by their area density (Figure 1D). This
differs from that predicted for the cerebral cortex
(Attwell and Laughlin, 2001). Although in both areas
B40% of signalling energy goes on action potentials
(36% in cerebellum and 47% in cortex), and only a
small fraction goes on transmitter release and
recycling, much more energy is used on resting
potentials in the cerebellum (mainly in granule cells)
than in the cerebral cortex (42% versus 13%), and
much less on postsynaptic currents (17% versus
34%). The distribution in cerebellum also differs
from that predicted for an olfactory glomerulus in
response to a single sniff (Nawroth et al, 2007) in that
a greater fraction of energy is used on action
potentials in the cerebellum (36% versus 23% in
olfactory glomerulus) and on resting potentials (42%
versus 17%), whereas less is used on postsynaptic
currents (17% versus 32%).

Figure 1E shows the predicted distribution of total
energy expenditure if we assume that housekeeping
tasks are responsible for the difference between our
predicted energy use on signalling (16.5 mmol ATP
per g per min), and the total energy use measured
in conscious rats (20.5 mmol ATP per g per min;
Sokoloff et al, 1977).

Energy Use by Different Stages of Cerebellar
Computation

Because a quarter of cerebellar signalling energy is
predicted to be expended on granule cell action
potentials and the postsynaptic currents they evoke
in Purkinje cells, if the firing frequency of granule
cells alone is varied in the model then the total
cerebellar energy expenditure is predicted to vary
dramatically (Figure 3A). In contrast, varying the
assumed simple spike firing rate of Purkinje cells
alone has little effect on energy consumption.
Similarly, varying the complex spike rate of Purkinje
cells has little effect on predicted energy consump-
tion (a 2-fold change for a change of complex spike
rate from 0 to 100 Hz (data not shown), compared
with a 15-fold change for the same change of granule
cell spike rate; Figure 3A). Thus, the total signalling
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Figure 2 The subcellular distribution of energy use varies
according to cell type. (A) Granule cells. Most energy is used to
propagate action potentials and maintain the resting potential
along the long parallel fibres. (B) Purkinje cells. Most energy is
used on action potentials and postsynaptic receptors. (C, D)
Inhibitory neurons use most energy on postsynaptic currents
and action potentials. (C) Molecular layer interneurons. (D)
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syn, postsynaptic receptors; re-cyc, transmitter recycling (ATP
used on glial uptake of transmitter and its metabolic processing,
and on packaging transmitter into vesicles in the releasing cell);
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energy use need not correlate well with the firing rate
of the principal neurons in this part of the brain.

Little is known of the contribution of inhibitory
neurons to the energy use of the brain (Buzsaki et al,
2007). To examine the allocation of energy use to
excitatory and inhibitory neurons in the cerebellar
cortex, we summed the energy used on mossy fibres,

climbing fibres, and granule cells, and on Purkinje,
stellate, basket, and Golgi neurons, respectively (we
included as an excitatory cost the much smaller ATP
consumption on recycling glutamate in glia; the
small ATP use on glial resting potentials was
ignored, solely for this calculation). Excitatory
neurons were found to consume 5.1� 1019 molecules
ATP per sec per m2 of cerebellar cortex, whereas
inhibitory neurons consumed only 1.9� 1019 mole-
cules ATP per sec per m2 (Figure 3B).

We can conceptualize the retrieval of motor
patterns from the cerebellar cortex as occurring in
three stages (Tyrell and Willshaw, 1992): remapping
from mossy fibre input action potentials to action
potentials in the granule cell somata (using energy in
mossy fibres, granule cell dendrites and somata,
Golgi cells, and granular layer astrocytes); propaga-
tion of remapped information to Purkinje cells as a
sparse code (using energy in the granule cell axons,
molecular layer interneurons and Bergmann glia);
and computation by Purkinje cells of an output
signal (using energy in the Purkinje cells). By
summing the energy used in the different cell types
participating in these different stages of cerebellar
computation, the relative amounts of ATP used on
these processes were predicted to be 42%:40%:18%
(Figure 3C). Thus, most cerebellar cortical signalling
energy is used on intracerebellar processing of the
incoming information, rather than on computation of
the output signal by the principal Purkinje neurons.

Sensitivity of the Predictions to the Parameters
Assumed

As detailed in the Supplementary Information, the
great majority of the parameters needed to make these
energy use predictions have been measured for each
of the cerebellar cortical cell types and synapses. We
assessed the sensitivity of our predicted energy
budget to the values assumed for the parameters
used, by increasing each parameter by 10% and
examining the effect on the total predicted energy
consumption. As shown in Table 1, the predicted
energy use is most sensitive to changes in the follow-
ing parameters: number of granule cells per Purkinje
cell (a 10% increase gives a 7% increase in energy
use), granule cell resting potential (10% more nega-
tive gives a 4.2% decrease in energy use), granule cell
firing rate (a 10% increase gives a 2.9% increase in
energy use), the percentage of parallel fibre synapses
that have zero weight (2.9% decrease in energy use),
granule cell axon diameter (2.8% increase in energy
use), parallel fibre length (2.7% increase in energy
use), granule cell soma input resistance (2.5%
decrease in energy use), granule cell capacitance per
unit area (2.1% increase in energy use), and the
voltage change throughout the cell during a granule
cell action potential (2.1% increase in energy use).

Our predictions are most sensitive to uncertainties
in the values of four parameters, as summarized in
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Table 2. First, a detailed analysis of parallel fibre to
Purkinje cell connectivity concluded that, in the
adult, after learning of motor programmes has
occurred, 85% of the weights of parallel fibre to
Purkinje cell synapses have been reduced to zero
(Isope and Barbour, 2002). The fact that only a small
fraction (0.15) of these synapses is active has been
suggested to reflect either optimizing the information
storage in the cerebellum (Brunel et al, 2004) or
optimizing cerebellar noise processing (Porrill and
Dean, 2008), and has a major effect on the predicted
total signalling energy consumption, lowering it from
21.4 to 16.5 mmol ATP per g per min. The idea that a
large majority of silent synapses exist is supported by
in vivo experiments on cat (Ekerot and Jorntell,
2001), however, an error in the measurement of

the fraction of inactive synapses would have a
corresponding effect on our predicted total energy
use. We assumed that this zero synaptic weight
reflects an absence of glutamate release. If, alterna-
tively, glutamate is released in the absence of
postsynaptic receptors, the total energy consumption
of the cerebellar cortex would increase (because of
ATP usage on presynaptic processes controlling
glutamate release) by only 3%.

Second, the resting membrane properties of the 4.5
mm long granule cell axon are unknown, because
measuring the input resistance at the soma probably
only determines the conductance of the soma, the
short dendrites, and the part of the axon near the
soma: much of the axon is too electrotonically distant
to contribute. We therefore calculated the axon

Table 1 Sensitivity of the predicted energy use to changes in parameter values

Cell type Parameter that was increased by 10% Change in signalling energy
use of cerebellar cortex (%)

Granule cell Number of granule cells per Purkinje cell 7
Resting potential (increase means more negative) �4.2
Firing rate 2.9
Percentage of zero-weight parallel fibre synapses �2.9
Axon diameter 2.8
Parallel fibre length 2.7
Soma input resistance �2.5
Specific membrane capacitance 2.1
Action potential amplitude throughout cell 2.1
Number of mossy fibre boutons per dendrite 1.2

Purkinje cell Specific membrane capacitance 1.2
Action potential amplitude throughout cell 1.2
Simple spike firing rate 1.1

Mossy fibre Firing rate 1.3
Release probability at mossy fibre–granule cell synapse 1.2

The table shows the parameters for which a 10% increase in value results in a change in predicted total energy of greater than 1%.

Table 2 Effect of significant parameter uncertainties on the predicted total signalling energy use

Parameter Assumption Change to assumption Effect on predicted signalling energy use

Number of parallel fibre–
Purkinje cell synapses that
are silent

85% of synapses are silent
after learning

Assume all synapses are active Increases from 16.5 to 21.4mmol ATP
per g per min (30% increase)

Synapses are silent because of
absence of glutamate release

Assume synapses are silent
because of absence of
postsynaptic glutamate
receptors in the presence of
glutamate release

Increases to 16.9mmol ATP per g per
min (3% increase)

Resting membrane
properties of granule
cell axon

Resting membrane properties
of axon different to soma,
calculated from hippocampal
space constant measurements

Assume resting membrane
properties of axon are the
same as those of the soma

Increases from 16.5 to 50.6mmol ATP
per g per min (a 3.1-fold increase)

Granule cell mean firing
rate

Assume a time averaged firing
rate of 3 Hz

Increase the firing rate by 1 Hz Increases by 1.59mmol ATP per g per
min (a 9.6% change, see Figure 3A)

Factor by which minimum
ion entry needed to charge
cell capacitance during
action potential is
multiplied to calculate
Na+ entry

4 from Hodgkin (1975) 1.3 from Alle et al (2009) Reduced by 24% to 12.6mmol ATP per
g per min (also reduces the fraction of
signalling energy used by Purkinje cells
from 18% to 13% of the total signalling
energy)
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membrane conductance from measurements of the
space constant of hippocampal axons (Alle and
Geiger, 2006) (scaled to the dimensions of the
parallel fibres: see Supplementary Information). This
gave a specific resistance for the axon membrane that
was 20.7-fold higher than that of the soma and
dendrites. If we assumed the axon membrane had the
same specific resistance as the membrane around the
soma, then this would increase the ATP consump-
tion on the axonal resting potential by a factor of 20.7
over the value we actually use in the model,
increasing the total signalling energy expenditure
in the cerebellar cortex to 51 mmol ATP per g per min,
2.5-fold larger than the experimentally measured
cerebellar cortical energy expenditure (Sokoloff et al,
1977).

The third uncertain parameter in our analysis is
the mean firing rate of granule cells. Using two
independent approaches, we estimated this to be
B3 Hz (see Materials and methods), and explored the
effect of varying this parameter (Figure 3A). If this
parameter were chosen wrongly it would have a large
effect on the predicted energy use of the cerebellar
cortex. Although an in vivo measurement of this
parameter is beyond the scope of this study, and
indeed has not yet been reported in the literature, the
following argument suggests that 3 Hz is a reasonable
estimate for the mean granule cell firing rate. Given
that a Purkinje cell has 174,000 inputs, assuming a
release probability at the parallel fibre to Purkinje
cell synapse of 0.36 (Marcaggi et al, 2003) and that
85% of these synapses are silent, a granule cell firing
rate of 3 Hz implies 28,188 EPSCs per sec arriving at
the Purkinje cell. From the charge entry per vesicle
in the Supplementary Information, the mean current
produced by these EPSCs would be B1 nA. Would
this current produce the observed in vivo mean
Purkinje cell simple spike rate of 41 Hz (LeDoux and
Lorden, 2002)? In cerebellar slices, a current of
B0.6 nA is needed to produce Purkinje cell firing
at 41 Hz (Khaliq and Raman, 2006). Although there is
not perfect agreement between the values of 0.6 and
1 nA, this is likely to be explained by the twofold
higher input resistance of Purkinje cells in slices
(49.5 MO, Hausser and Clark, 1997) than in vivo
(22.6 MO, see above), which occurs because there is
much less ongoing synaptic input in slices. Thus, in
vivo, a mean granule cell firing rate of 3 Hz is
expected to be necessary to generate the observed
in vivo mean Purkinje cell firing rate of 41 Hz.

Finally, Alle et al (2009) suggested that the Na+

and K + currents producing action potentials in
hippocampal axons overlap in time less than
originally thought (Hodgkin, 1975). If this is true
for cerebellar axons, the Na+ entry underlying action
potentials should be calculated by multiplying the
minimum charge needed to charge the cell capaci-
tance by a factor of 1.3 (Alle et al, 2009), rather than
by 4 (Hodgkin, 1975) as used in the Supplemental
Information. This would reduce threefold the calcu-
lated action potential costs (allowing housekeeping

energy to be higher than suggested above as the total
measured energy use (Sokoloff et al, 1977) is un-
changed). The distribution of ATP use on subcellular
processes would also alter, with a higher percentage
of ATP use being on other processes, predominantly
synaptic currents (and the resting potential for
granule cells). Importantly, the idea that energy use
is mainly on principal cell firing would be further
undermined if action potential costs are lower than
we predict (Table 2).

Relationship of Energy Use to Energy Supply

The organization of the cortex is often matched by
the distribution of the microvasculature: brain areas
with a higher metabolic demand show a higher
vascular density (see Weber et al, 2008, and refer-
ences therein). We tested whether the energy use
predicted in this paper was correlated with the
energy supply available to the cerebellar layers.

The predicted laminar distribution of energy use
across the cerebellar cortex was calculated by
summing energy consumed in the parts of the
neurons and glial cells in the molecular layer and
the granular layer (Figure 4A, including half of the
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Figure 4 Comparing the predicted laminar distribution of energy
use with the observed distribution of blood vessels. (A)
Cerebellar slice from a postnatal day 21 rat. The molecular
layer (ML) and granular layer (GL) are labelled. (B) Predicted
energy use in the molecular and granular layers. (C) Slice in A
with blood vessels labelled with FITC-conjugated isolectin-B4
(projection image of a confocal z stack). (D) Measured
distribution of blood vessel surface area (±s.e.m., n = 3)
between molecular and granular layers in 24 lobules from three
rats. **P < 0.02.
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Purkinje cell somata in each layer). The large amount
of ATP consumed by the granule cell action and
resting potentials, and by postsynaptic currents and
action potentials in Purkinje cells, results in the
molecular layer being predicted to use 54% of the
total ATP consumption, and the granular layer 46%
(Figure 4B), a ratio of 1.15.

To test how the laminar distribution of energy use
was served by the energy supply provided by blood
vessels, we used confocal imaging of the blood
vessels to measure the surface area available for
oxygen diffusion and glucose transport in each
lamina (Figure 4C). The vessel surface area was
divided between the layers with 58%±3% and
42%±3% (n = 3 rats, P < 0.02) in the molecular and
granular layers respectively (Figure 4D). There is an
approximate match between this distribution and the
predicted energy use in each layer (Figure 4B).

Discussion

We have constructed an energy budget for the
cerebellar cortex from the bottom up, calculating
the energy use on synaptic, action, and resting
potentials of the different cerebellar cortical cells
from their measured anatomical and physiological
properties, defined by B300 parameters. Our analy-
sis reveals interesting features of how energy use
relates to neural computation, and how the cerebel-
lum has been ‘designed’ by evolution. The following
discussion addresses six major unresolved questions
about the use of energy by the brain.

Which Cells Consume the Most Energy in Neural
Circuits?

Although it has been widely assumed that the energy
use of a brain area, and functional imaging signals
based on this, mainly reflect the spiking activity in
the principal neurons of that area, recent reports
have questioned this (Logothetis et al, 2001). We
predict that the principal Purkinje neurons in the
cerebellum use only a small fraction of the energy
consumed by the cerebellar cortex. Energy consump-
tion by the much larger number of granule cells
dominates that of the Purkinje cells (Figure 1C).
Consequently, altering the firing rate of the Purkinje
cells alone has little effect on the total energy
consumption of the cerebellar cortex, whereas alter-
ing the mean firing rate of granule cells alone has a
profound effect (Figure 3A).

How do Inhibitory Neurons Contribute to Energy Use
and Functional Imaging Signals?

Although it is commonly accepted that signals
generated by glutamate signalling, rather than energy
use, drive blood flow (Attwell and Iadecola, 2002),
we have limited information on how inhibitory

neurons contribute to energy use or functional
imaging signals (Buzsaki et al, 2007). For the
cerebellar cortex we predict that energy use is split
between excitatory and inhibitory cells in a roughly
2.8:1 ratio (Figure 3B). This reflects the relative
numbers of excitatory and inhibitory cells present,
but also their size. Each Purkinje cell consumes 72
times more energy than each granule cell (Figure 1B),
because of the larger ion fluxes across its much
larger membrane. Although each inhibitory neuron
is metabolically costly compared with each granule
cell, when the number of cells is taken into account,
inhibitory cells use far less energy than excitatory
cells. Furthermore, although reversal of the ion
movements generating synaptic currents consumes
a significant fraction of the cerebellar cortical
energy use (Figure 1D), essentially all of this energy
is used on excitatory synaptic currents: reversal of
the Cl� movements underlying IPSCs costs much
less ATP than reversal of the Na+ entry generating
EPSCs (see Supplementary Information). Despite
reports that GABA and neuropeptides released
from interneurons modulate blood vessel diameter
(Fergus and Lee, 1997; Cauli et al, 2004), the ability
of glutamate (but not GABA) receptor antagonists
(Li and Iadecola, 1994; Mathiesen et al, 1998) to
suppress the neural activity-induced increases
of blood flow that underlie positive BOLD fMRI
signals suggests that the main contribution of
inhibitory neurons to functional imaging signals
may be to modulate the activity of excitatory
neurons, thus altering the glutamate release which
generates blood flow increases (Attwell and Iadecola,
2002).

How is Energy Use Associated with Different Stages of
a Computational Algorithm?

If we divide cerebellar computation into re-mapping
from mossy fibre input action potentials to action
potentials in the granule cell somata, propagation of
the remapped information to Purkinje cells, and
computation by Purkinje cells of an output signal
(Tyrell and Willshaw, 1992), the relative ATP use on
these processes is 42%:40%:18% (Figure 3C). Thus,
most ATP is consumed by the granule cells, and not
by the principal output neurons. If this were true in
other brain areas it would undermine the notion that
most energy use, and functional imaging signals,
reflect activity in the principal output neurons of an
area (see also Logothetis et al, 2001; Niessing et al,
2005; Kocharyan et al, 2008). The high ATP usage in
granule cells suggests that the ability to store a large
number of motor patterns, which is conferred by
their re-mapping of information (Tyrell and
Willshaw, 1992), provided a sufficient advance in
motor performance for evolution to allocate blood
vessels to supply the associated large energy
expenditure in these cells.
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What ‘Design Features’ Reduce the Energy Expended
on Neural Computations?

Cerebellar energy consumption would be much
higher were it not for two key properties of the
granule cells. First, once the cerebellum has stored
patterns of motor information, 85% of the granule
cell parallel fibre synapses generate no synaptic
current (Isope and Barbour, 2002). This is predicted
for optimal information storage by Purkinje cells
(Brunel et al, 2004) or for optimizing cerebellar noise
processing (Porrill and Dean, 2008), but also reduces
the signalling energy consumption of the cerebellar
cortex by 23% (see Results). Second, we predict,
based on measurements of the electrical space
constant of hippocampal axons (Alle and Geiger,
2006), that at the resting potential the axon of granule
cells has a much higher specific resistance than the
soma and dendrites, which reduces 21-fold the
energy expended on maintaining the axonal resting
potential (see Results). Consequently, the energy
consumption of the molecular layer is reduced by
79%. A lower resting Na+ influx per membrane area
of the axon, compared with the soma and dendrites,
may reflect a design principle setting the specific
conductance in the two subcellular areas. The time
scale of processing of subthreshold signals in
dendrites is partly limited by the membrane time
constant, the product of cell resistance and capaci-
tance. In the dendrites and soma the membrane
resistance cannot be too high as this will increase the
time constant and limit the speed with which
synaptic currents can change the membrane poten-
tial (Attwell and Gibb, 2005), but this is not a
constraint in the axon, where the conductance will
increase dramatically as the action potential ap-
proaches. Indeed, previous work has shown that the
space constant in hippocampal axons (700 mm, Alle
and Geiger, 2006) is much longer than that in
neocortical dendrites (400 mm, Ulrich and Stricker,
2000), despite the axon having a smaller diameter,
implying a specific membrane resistivity that is
approximately 20-fold higher.

How Does Energy Use Vary with Different
Computational Architectures?

The neuronal size and synaptic connectivity differ
dramatically between the granular layer, with many
tiny granule cells each receiving very few input
synapses, and the molecular layer, where the much
smaller number of much larger Purkinje cells each
receive a very large number of inputs. Indeed, from
the dimensions of the cells (Supplementary Informa-
tion), neural computation is based on 8.6-fold more
neuronal (mainly parallel fibre) membrane area per
volume of tissue in the molecular layer than in the
granular layer.

We predicted the energy expenditure to be 1.15-
fold larger in the molecular layer than in the granular
layer. The relative thickness of the molecular and

granular layers (with half of the Purkinje cell layer
allotted to each) is 1.50 (Harvey and Napper, 1988),
implying a ratio of energy usage/volume of 0.77:1 for
the molecular/granular layers. Thus, despite their
extremely different neuronal architecture, the cere-
bellum has evolved to have a similar density of
energy usage in the molecular and granular layers,
possibly because energy usage is limited by the
density of blood vessels supplying energy.

To compare neural energy use with energy supply,
we tested whether the vascular surface area in the
different cerebellar layers was matched to the local
energy expenditure. Comparing the 1.15-fold ratio of
predicted energy usage, with the ratio of the blood
vessel surface area in the two layers available for the
supply of oxygen and glucose, revealed an approx-
imate match (Figure 4). Thus, although a more detailed
analysis of vessel area, or of direct indices of energy
use such as glucose uptake or mitochondrion number,
is beyond the scope of this study, the distribution of
blood vessels to the cerebellar layers roughly matches
the ATP consumption needed for the neural computa-
tions performed in the different layers.

How Energetically Expensive is it to Store Information
to Guide Future Behaviour?

We calculate that B1011 ATP molecules per sec are
used on signalling for each Purkinje cell (and
associated neurons and glia). The information sto-
rage capacity of each Purkinje cell is disputed;
Brunel et al (2004) suggest that each Purkinje cell
stores B40,000 input–output associations, or B5 kB
of information, whereas Steuber et al (2007) suggest
B100 patterns stored for 1,000 active parallel
fibre inputs, or 12.5 B of information. Using an
energy production for ATP hydrolysis of 31 kJ/mol,
this implies a resting energy consumption of
between 1 and 400 mW/GB of stored motor patterns,
respectively.
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