
LINKAGE AND SELECTION: NEW EQUILIBRIUM PROPERTIES
OF THE TWO-LOCUS SYMMETRIC VIABILITY MODEL*

BY SAMUEL KARLIN AND MARCUS W. FELDMAN
DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY

Communicated by Sewall Wright, November 12, 1968

Abstract and Summary.-In the two-locus symmetric viability model with
recombination, conditions for the existence and stability of a new class of poly-
morphic equilibria are given. These "unsymmetric" equilibria, which exist for
relatively loose linkage, can be explicitly obtained, in contrast to the previously
known symmetric equilibria which are generally given by the solutions of a cubic
equation.
For sufficiently tight linkage, there is always at least one stable symmetric

equilibrium. Seven is the precise maximum for the number of interior equilibria.
The qualitative consequences of these results are briefly examined. In par-
ticular it is pointed out that since for some linkage values no stable polymorphic
equilibria exist, there is no "overdominance theorem" comparable to the single-
locus case.

Lewontin and Kojima,l Bodmer and Parsons,2 and Bodmer and Felsenstein3
have used the term "symmetric viability" model to describe the situation when
the selection values for the genotypes in the two-locus model have the matrix
representation

AA Aa aa
BB 1-5 1-A 1-ax
Bb 1-Y 1 1-'y (1)
bb 1-a 1-, 1-6

Wright4 has considered the case ,3 = y and especially the case 2(Q + -y) = a +
6. The model examined by Kimura5 can be set in the form (1) taking 6 = (-s +
t)/(1 + t), a = (s + t)/(1 + t), 3 = t/(1 + t), y = 0. Lewontin and Kojima,
in their analysis, assumed a = 6, whereas Bodmer and Parsons dealt principally
with the case f3 = y.

Let x1, x2, X3, and X4 be the frequencies of the chromosomes AB, Ab, aB, and ab,
respectively, and r the recombination fraction. Then corresponding to (1), the
recursion relations relating the frequencies XI',x2I,X3', and X4' in the next genera-
tion to xi, x2, x3, and X4 have been shown to be5 1, 3

XI= - X12- X1X2-yX1Xa-rD

WX2 = X2- x1x2 - aX22 -X2X4 + rD

2~~~~~~~~~~2WX3 = - -X1X3-a-X3 X3X4 + rD

WX4' = - -X2X4-x3X4 -X42- rD,

70



VOL. 62, 1969 GENETICS: KARLIN AND FELDMAN 71

where W = 1 - 5(XI2 + X42) - a(X22 + X32) -2:(X3X4 + X1X2) - 2y(X1X3 + X2X4)
and D = xlx4 -x2x3 is usually called the linkage disequilibrium value.'
Most of the authors mentioned above have assumed that, since there is sym-

metry in the viability pattern, all polymorphic equilibria (i.e., interior equilibrium
solutions of (2)) must be of the form £, = X and X2 = X3; that is, at any poly-
morphic equilibrium the chromosomes AB and ab have equal frequencies and so
do Ab and aB. Equilibria of this form, which we shall call symmetric equilibria,
are given by xl = X4 = 1/4 + 1 and X2 = X3 = 1/4- 15, where the value of D
is a solution of the cubic equation2, 3

64 1D3-16mD2 -4(l-8r) D + m =O. (3)

satisfying I'A < 1/4. Here, l = 2(8 + y) - (a + 5) and m = a- a.
Our purpose in this note is to describe some rather surprising results obtained

from a more complete mathematical analysis of the system (2) than has pre-
viously been made. Specifically we have found classes of stable polymorphic
equilibria in which the chromosomes AB and ab or the chromosomes Ab and aB
have unequal frequencies. Proofs of these assertions, further discussion of the
properties of the symmetric equilibria, and more numerical details will appear
elsewhere.6
Results.-Assume that a, fl, y, and 5 are all positive. For tight linkage, the

following can be concluded.
THEOREM 1. For linkage sufficiently tight and any set of selection coefficients

there always exists a locally stable symmetric equilibrium.
This fact can be deduced to a large extent by suitably combining results ob-

tained by previous authors. Thus, for instance, it is easily established3 that if
fB + y > a, then for r small enough there is a locally stable equilibrium near
XI = X4 = 0, X2 = X3 = 1/2- Similarly if i + -y > 5, there is a locally stable
equilibrium near xI = X= 1/2, X2 = = 0, when r is small enough. When
r = 0, (2) reduces to the equations for the dynamics of a four-allele system at a
single locus. If in addition a > $ + y, A > # + -y and r is sufficiently small, the
well-known properties7 of multiallelic systems can be readily exploited to prove
global convergence to a unique interior equilibrium.
There have been a number of analytical studies of the stability of the sym-

metric equilibria." 3. 5. 8 A complete study of the stability of the symmetric
equilibria will appear later.6 For loose linkage only numerical results have so
far been obtained9' 10 except in special cases. The next two theorems which
are relevant when linkage is loose demonstrate the surprising properties of the
unsymmetric equilibria.
Assume that $ = y (see below for f $y). We then have the following

theorem.
THEOREM 2. Let

~~J~a r B/r a- Br (4)
{2 2(r - 6);|{ 2 6 + 2(r-5)(

and
R =Z2-r(l-Z)2/(r-5) (5)
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Assume that r > 6 and a/2 -br/2(r - 5) > a > ,3 = a. Then two unsymmetric
equilibria exist and are locally stable if and only if k > 0. These equilibria are
given by

X= 1/2( + V ), X2 = X3 = 1/2(1 -Z) X4 = 1/2(ZVA/R) (6)
and

X1= '/2(Z - V),*2 = X3 = 1/2(1-Z),X = 1/2(Z + Vk). (7)

Examples of parameter sets for which Theorem 2 holds, and the corresponding
equilibrium values, are:

a = 0.03, A= 0.004, 6 = 0.005, r = 0.05

xi = 0.8878 x2 = 0.0542 X3 = 0.0542 X4 = 0.0038

xl = 0.0038 x2 = 0.0542 X3 = 0.0542 X4 = 0.8878

and

a = 0.1, f= 0.005, 6 = 0.01, r = 0.02

xi = 0.866 x2 = 0.0625 X3 = 0.0625 X4 = 0.009

xl= 0.009 x2 = 0.0625 X3 = 0.0625 X4 = 0.866.

Theorem 2 remains true if we interchange a and a, provided that in both (6)
and (7) xi and x2 are interchanged and also X3 and X4.
THEOREM 3. Let Z and R be as in Theorem 2 and let Z* and R* be the corre-

sponding quantities obtained by interchanging a and a in (4) and (5). Assume that
r > band r > a and

a Sr S ai-

2 2(r- )' 2 2(r-a) (8)

Then four unsymmetric equilibria exist, provided that R > 0 and R* > 0. The
equilibria are given by (6) and (7) and

Xa = X4 = /(1/ - Z*), X2 = 1/2(Z* + V), X3 = 1/2(Z* -\I*) (9)
and

X1 = X4 = 1/2(1 -Z*), X2 = 1/2(Z* -VR*), X3 = 1/2(Z* + VRa). (10)

These four unsymmetric equilibria are locally unstable.
Examples of parameter sets for which Theorem 3 holds, and the corresponding

equilibrium values, are:
a = 0.02, f = 0.04, 5 = 0.03, r = 0.04

xl= 0.1539 x2 = 0.6562 X3 = 0.0360 X4 = 0.1539

x1= 0.1539 x2 = 0.0360 X3 = 0.6562 X4 = 0.1539

xl = 0.8888 x2 = 0.05 X3 = 0.05 X4 = 0.0112

XI = 0.0112 x2 = 0.05 X3 = 0.05 X4 = 0.8888
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and
a = 0.05, p3=0.07, 5= 0.06, r= 0.1

Xi = 0.9191 x2 = 0.0385 X3= 0.0385 X4 = 0.0039

xi = 0.0039 x2 = 0.0385 X3= 0.0385 X4 = 0.9191

Xi= 0.0909 x2 = 0.8131 X3= 0.0051 X4 = 0.0909

Xi= 0.0909 X2 = 0.0050 X3= 0.8130 X4 = 0.0909.

For13 -y there may exist four unsymmetric equilibria of the form xl 0 X4,
X2 $ X3. In this case a complete description of the equilibria has been obtained
but in terms of some very cumbersome algebraic expressions. For certain special
relations between the selection parameters, theorems similar to the above are
available.

In view of the fact that there may be three symmetric equilibria, from Theorem
3 we infer that there may be as many as seven interior equilibrium solutions of
(2). MVoran"' conjectured that five was the maximum number possible in the
general two-locus model. For the symmetric viability model, the precise
maximum is seven, and an example where this occurs is a = 5 = 0.1, 3 = y =
0.8, r = 0.3735 (see also Ewens8). For these parameter values there are three
symmetric equilibria (of which two are stable) and four unsymmetric equilibria.

Discussion.-If a recombination reducing mechanism is introduced into a
population such as that represented by the model treated here, the fate of the
mechanism will depend largely on the state of the population prior to its intro-
duction. Indeed, any theory for the evolution of supergenes or tightly linked
clusters of loci must take into account the equilibrium properties of the model.
Theorems 1, 2, and 3 show that theory based on the knowledge of the sym-

metric equilibria alone (see, e.g., Turner,'2 page 211) applies in general for rela-
tively tight linkage. For looser linkage we must contend with the possible
existence of stable unsymmetric equilibria. Theorem 1 asserts the intuitive
fact that for tight linkage the behavior of the system is governed by the proper-
ties of the corresponding four-allele model. When linkage is looser, the effects
of the separate genes become more pronounced so that the individual selection
parameters are decisive in determining which of a possible seven equilibrium
states will be reached. Theorems 2 and 3 indicate to some extent how this de-
termination is made. They also provide some insight into the domains of
attraction to the various equilibria.

If we combine Theorems 2 and 3 with the known properties of the symmetric
equilibria, the stability patterns are seen to be quite complicated. Ewens8 has
given an example of the complications which can arise for moderate linkage
values. When a = 5, he showed that, although for tight and loose linkage
stable symmetric polymorphisms exist, there may be an interval of moderate
recombination values for which no symmetric equilibrium is stable. It is pos-
sible to show further that for this interval the unsymmetric equilibria do not
exist.
Theorems 2 and 3 and the anomaly discovered by Ewens demonstrate that in

the symmetric viability model there is no "overdominance theorem" comparable
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to the single-locus case. Even though the double heterozygotes are most fit,
there may exist a region of moderate linkage values allowing no stable interior
equilibrium. A more detailed discussion of this point is warranted.6
The fact that unsymmetric equilibria exist in one of the simplest two-locus

models indicates that in multilocus models with selection and several recombina-
tion parameters, unsymmetric equilibria will also exist. Further, if such models
are analyzed solely in terms of some average disequilibrium function, these
equilibria will not be found.
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