
A Mixture Theory Analysis for Passive Transport in Osmotic
Loading of Cells

Gerard A. Ateshian, Morakot Likhitpanichkul, and Clark T. Hung
Departments of Mechanical Engineering and Biomedical Engineering Columbia University

Abstract
The theory of mixtures is applied to the analysis of the passive response of cells to osmotic
loading with neutrally charged solutes. The formulation, which is derived for multiple solute
species, incorporates partition coefficients for the solutes in the cytoplasm relative to the external
solution, and accounts for cell membrane tension. The mixture formulation provides an explicit
dependence of the hydraulic conductivity of the cell membrane on the concentration of permeating
solutes. The resulting equations are shown to reduce to the classical equations of Kedem and
Katchalsky (Kedem and Katchalsky, 1958, 1961) in the limit when the membrane tension is equal
to zero and the solute partition coefficient in the cytoplasm is equal to unity. Numerical
simulations demonstrate that the concentration-dependence of the hydraulic conductivity is not
negligible; the volume response to osmotic loading is very sensitive to the partition coefficient of
the solute in the cytoplasm, which controls the magnitude of cell volume recovery; and the volume
response is sensitive to the magnitude of cell membrane tension. Deviations of the Boyle-van't
Hoff response from a straight line under hypo-osmotic loading may be indicative of cell
membrane tension.

Introduction
The fundamental physical mechanisms of solute and water transport across the cell
membrane have long been studied in the field of cell membrane biophysics, and there exist a
number of formalisms aiming to characterize transport through membrane channels and/or
lipid bilayers. These formalisms include a one-parameter (solute permeability) model
(Mazur et al., 1974), a classic two-parameter (water and solute permeability) model (Jacobs
and Stewart, 1932) and a commonly used three-parameter model (water and solute
permeability and a solute-solvent interaction term) developed by Kedem and Katchalsky
(Kedem and Katchalsky, 1958). The parameters of interest (permeabilities) can be extracted
from the formulation when the cell volume change is measured in the experiment, assuming
that the cell volume change is due purely to the volume of the water (and solute) that enters
or exudes from the cell. These formulations have been derived from the general theory of
irreversible thermodynamics (Onsager, 1931a, b; Staverman, 1952).

In more recent decades, the field of rational mechanics has addressed problems in the
mixture of fluids (solvent and solutes) (Mills, 1966) as well as the mixture of fluids and
solids (deformable porous media) (Atkin and Craine, 1976; Bowen, 1980; Mow et al., 1980;
Frank and Grodzinsky, 1987; Lai et al., 1991; Huyghe and Janssen, 1997; Gu et al., 1998).
In this study we propose to apply the theory of mixtures to the analysis of the passive
response of cells to osmotic loading. For ease of comparison with the more classical
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treatment of Kedem and Katchalsky (Kedem and Katchalsky, 1958, 1961), the analysis is
limited to non-electrolytes. However, the formulation is generalized to multiple solute
species; it also incorporates partition coefficients for the solutes in the cytoplasm relative to
the external solution, and accounts for cell membrane tension.

Methods
In this analysis the cell is modeled as a fluid-filled membrane, where the membrane is
described by the mixture theory equations presented below. These equations are generally
valid for neutral solute transport in uncharged porous media. In the following sections, the
general equations of mixture theory are reduced to the case of a thin membrane, specialized
to the case of one permeating and one non-permeating solute, and then compared to the
classical Kedem-Katchalsky model.

Governing Equations of Mixture Theory
In the presentation of the mixture theory equations we use the notation of Gu et al. (Gu et
al., 1998), along with the generalizations to the solvent and solute momentum equations and
solute constitutive equation as described by Mauck et al. (Mauck et al., 2003). The mixture
consists of a solid matrix (α = s), solvent (α = w) and solutes (α ≠ s, w), with each
constituent assumed to be intrinsically incompressible and neutrally charged. The
momentum equations for the mixture as a whole and for the solvent and solutes are given
respectively by

(1)

(2)

where p is the fluid (solution) pressure, σe is the effective (or elastic) stress in the solid
matrix, μ̃α the chemical potential of the solvent or solute, vα is the velocity of constituent α,
fαβ is the diffusive drag coefficient between constituents α and β (with fβα = fαβ), and ρα is
the apparent density of constituent α. In this treatment, the solute-solvent mixture is assumed
to be dilute and ideal (solute activity coefficients and osmotic coefficients of unity) so that
the constitutive relations for the solvent and solute chemical potentials are given by

(3)

(5)

where cα is the solute concentration on a solvent volume basis, Mα is the molecular weight
of solute α, R is the universal gas constant and θ is the absolute temperature. Since the pore
size distribution within the solid matrix may vary, solutes may not have access to all of the
solvent available within the matrix due to steric volume exclusion effects. Mauck et al.
(Mauck et al., 2003) extended the formulation of the solute chemical potential to account for
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this effect by incorporating the partition coefficient κα which, for an ideal solution, is the
solubility of solute α inside the mixture relative to free solution. Thus cα/κα is the
concentration of solute per volume of accessible solvent; κα is assumed to be constant in this
analysis.  is the true density of the solvent and  is the chemical potential of constituent
α in the standard state (when  in the case of solutes, and when all cα = 0 and p = 0
in the case of the solvent). The solute standard state is a constant, usually taken to be 
(Tinoco, 2002). Substituting Eqs. (3)–(4) into Eq.(2) and recognizing that ρα = Mαφwcα (α ≠
s, w), and  where φw is the volume fraction of the solvent in the mixture, yields

(5)

(6)

This formulation is simplified to account for friction between solutes and the solvent and
between solutes and the mixture while neglecting the solute-against-solute diffusive drag.
The non-zero diffusive drag coefficients are given by (Lai et al., 1991; Gu et al., 1998;
Mauck et al., 2003; Meerveld et al., 2003)

(7)

where k is the hydraulic permeability of the solvent in the solid matrix, Dα is the solute
diffusivity in the mixture and  is its diffusivity in free solution. In general, due to steric
exclusion effects and tortuosity, Dα is smaller than . From these equations we can
interpret the diffusion coefficient of a solute in free solution to result only from the frictional
drag of the solute with the solvent (fwα); in the presence of a solid matrix however, the
diffusion coefficient results from the frictional drag between solute and solvent and between
solute and solid matrix (fwα + fws). Substituting Eq.(7) into Eqs.(5)–(6) yields

(8)

(9)

Equation (9) can be solved for vα − vs in terms of vw − vs; substituting this result into Eq.(8)
and rewriting vβ − vw as (vβ − vs)+(vs−vw), these equations can be solved simultaneously to
yield
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(10)

(11)

where

(12)

φw(vw − vs) is the volumetric flux of solvent relative to the solid matrix and φwcα(vα − vs) is
the molar flux of solute α relative to the solid matrix. The material properties of the mixture
include the hydraulic permeability of the solid matrix to pure solvent, k; k̃ is the hydraulic
permeability of the matrix to the solution (solvent + solutes).

In addition to these momentum equations the equations of conservation of mass for the
mixture as a whole and for the individual solutes are given by

(13)

(14)

where, for dilute solutions, we have taken into account that the volume fraction of solutes is
much smaller than that of the solvent, φα ≪ φw.

The equations presented above are generalized relations for diffusion-convection problems
in deformable porous media, where the solution is dilute. In these expressions, φw depends
on the matrix dilatation according to

(15)

where  is the porosity in the reference configuration of zero deformation and F is the
deformation gradient of the solid matrix.

The general form of boundary or interface conditions applicable to mixture problem of this
type are given by

(16)
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(17)

(18)

(19)

(20)

(21)

where [[·]] denotes the difference, across the interface, of the quantity in the brackets, and n
is the unit outward normal to the interface. These equations assume that the interface is
defined somewhere on the solid matrix, which is the most common case (e.g., the cell
membrane surface). Note that if the boundary or interface is not permeable to solute α, then
Eq.(18) is equivalent to φwcα (vα − vs)·n = 0 and Eq.(21) is not applicable. Eqs.(16)–(18) are
kinematic conditions that stipulate continuity of solid matrix velocity, relative solvent flux,
and relative solute molar flux across the interface, respectively. Eqs.(19)–(21) represent
continuity of the total traction, solvent chemical potential, and solute chemical potentials
across the interface, respectively.

Mixture Model for Thin Semi-Permeable Membrane
For transport across a thin membrane of thickness h, the gradients in pressure and
concentration across the membrane may be represented in scalar form by grad p · n ≈ −Δp/h
and grad cα · n ≈ −Δcα/h, where n is the unit normal to the membrane surface. In this
notation, Δp = p(r)− p(r + h), and similarly for Δcα, where r is the coordinate direction
normal to the membrane. The flux vector components normal to the membrane are given by

(22)

(23)

Using Eqs.(10)–(11), these expressions reduce to

(24)
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(25)

where c̅α in the last term now represents the average solute concentration in the membrane.

Evaluating the projection of the vector equation in Eq.(1) along n, and reducing the resulting
expression to the case of a thin spherical membrane under symmetric conditions yields

(26)

where T is the surface tension in the membrane (in units of force per unit length), a is the
spherical membrane radius, and  is the normal effective (elastic) stress in the radial
direction.

According to the mixture formulation the concentrations cα appearing in the above
expressions refer to quantities inside the membrane. To express these equations using
concentrations in the cytoplasm and in the external solution, boundary conditions of the
form given in Eq.(21) are needed. For the interface between the membrane and cytoplasm,

(27)

where pi is the fluid pressure in the cytoplasm;  is the concentration of solute α in the
cytoplasm;  is the partition coefficient of the solute between the cytoplasm and the
external solution and κα is the corresponding partition coefficient between the membrane
and external solution. Similarly, for the interface between the membrane and external
solution,

(28)

where pe is the fluid pressure and  is the concentrations of solute α in the external solution.
Using these relations Δp,  and Δcα can be evaluated from the difference, and c̅α from the
mean, of the respective expressions in Eqs.(27) and (28) to yield

(29)

(30)

Substituting these expressions, along with Eq.(26), into Eqs.(24)–(25) produces
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(31)

(32)

where

(33)

Lp is the membrane hydraulic conductivity (or conductance), Pα is the membrane
permeability of solute α and σα is Staverman's reflection coefficient. These expressions are
consistent with the physical meaning attributed to the material parameters of the Kedem-
Katchalsky model (Kedem and Katchalsky, 1961). For example, Staverman's coefficient is
equal to zero when the solute can diffuse through the membrane as easily as through pure
solvent (no membrane resistance), . Conversely, if the solute cannot diffuse
through the membrane, καDα = 0, which leads to σα = 1 and Pα = 0. Substituting Eqs.(30)2
and (33) into Eq.(12) provides an explicit dependence of Lp on the external concentrations,

(34)

where Lp0 = k/h is the value of Lp in the absence of solutes.

Integrating the mixture continuity of mass equation in Eq.(13) and recognizing that all
velocities are equal to zero at the cell center yields Jw = φw (vw − vs) · n = −vs · n where vs

is the velocity of the cell membrane. It follows from this result that Jw A = −dV/dt where A
is the cell surface area (A = 4πa2) and V is its volume (V = 4πa3/3). By integrating the solute
continuity of mass equation in Eq.(14) over the cell volume, we find that ,
where  is the number of moles of solute inside the cell. Substituting all these results into
Eqs.(31)–(32) yields

(35)

(36)

In these expressions the internal concentrations of solutes are related to the corresponding
number of moles via
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(37)

where  is the average water content (porosity) of the cell. Furthermore, from kinematic
considerations under finite deformation as given in Eq.(15),

(38)

where  and Vr are the cell water content and volume in the reference configuration (in the
initial state prior to osmotic loading), respectively. Note that  for all solute species are
prescribed as boundary conditions. For a non-permeating solute we have κα = 0, which leads
to σα = 1 and Pα = 0 according to Eq.(33), so that Eq.(36) yields . Thus, for a non-
permeating solute,  is constant (i.e., the number of moles of non-permeating solute inside
the cell remains constant). Substituting Eqs.(37)–(38) into Eqs.(35)–(36) produces a set of
coupled nonlinear ordinary differential equations in the unknowns  and V(t) which can
be solved subject to appropriate initial conditions, given a constitutive relation between the
membrane tension T and surface area A.

Permeating and Non-Permeating Solutes
The analysis can now proceed to consider solutes which can permeate across the membrane,
and solutes which cannot. For the case of one permeating (α = p) and one non-permeating (α
= n) solute species, it follows that Jn = 0, so that the only remaining relations are

(39)

(40)

with

(41)

To evaluate the equilibrium response for the system of equations in Eqs.(39)–(40), let dnp/dt
= 0 and dV/dt = 0, which yields

(42)
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This equilibrium solution is equally valid in the reference state (assuming that the reference
state is at equilibrium), so that

(43)

where the subscript r refers to quantities evaluated in the reference state. Substituting Eqs.
(37)–(38) into the above equilibrium solutions and recognizing that the number of moles of
non-permeating solute inside the cell remains constant, , produces an expression for
the equilibrium values of  and V (t),

(44)

Since the cell membrane tension T will generally be a function of its areal strain, the
expression for V/Vr in Eq.(44) would need to be solved nonlinearly for the radius a of the
cell, except in the special case when T = 0. Clearly the equilibrium response to osmotic
loading is independent of solvent and solute transport parameters (LP, Pp, σp). In addition to
being a function of the initial and final concentrations of permeating and non-permeating
solutes, it is dependent on the cell membrane tension, the permeating solute partition
coefficient in the cytoplasm, and the water content of the cell.

Note that under hyper-osmotic loading with very high concentrations of a non-permeating
solute, , the relative volume change can be used to assess the water content  (or
equivalently, the osmotically inactive solid fraction, ) inside the cell under the
reference configuration,

(45)

Three-Parameter Kedem-Katchalsky Model
It can be noted that the above equations reduce to the classical three-parameter (LP, Pp, σp)
Kedem-Katchalsky model (Kedem and Katchalsky, 1958, 1961; Kleinhans, 1998) if the
membrane surface tension is neglected (T = 0) and the permeating solute partition
coefficient is assumed to be unity within the cytoplasm ( ). Thus from Eqs.(31)–(32),

(46)

(47)

where we have replaced 2T/a with pi − pe as per Eq.(29)2 for ease of comparison. However,
even in this special reduced form the hydraulic conductivity is still found to be
concentration-dependent according to Eq.(41),
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(48)

This result suggests that the mixture formulation is more general than the classical
phenomenological equations.

Results
To analyze the influence of the various material parameters on the response of a cell to
osmotic loading, we propose to investigate each parameter independently of others. In
contrast to the classical three-parameter K-K model, the general set of equations in (39)–
(41) has five parameters, Lp0, Pp, σp, κp and , in addition to the need for a constitutive
relation between the membrane tension T and area A. Since the governing differential
equations are nonlinear specific numerical examples are given to illustrate the influence of
the parameters that are not traditionally included in the K-K model. In all cases the
temperature is given by θ = 25°C = 298K and the cell radius and water content in the
reference state are ar = 10 µm, . The hydraulic conductivity of the membrane at zero
solute concentration is taken as Lp0 = 5 × 10−14 m3/N · s; the solute permeability in the limit
when κp = 1 is taken as φwDα/h = 5 × 10−8 m/s; and for simplicity it is assumed that

 so that σα = 1 − κα/2 according to Eq.(33). Integration of the nonlinear ordinary
differential equations was performed numerically using the Runge-Kutta method of order 4
(Conte and De Boor, 1980) in a custom-written program; numerical convergence was
achieved in all cases.

Concentration-Dependence of Membrane Hydraulic conductivity
When examining Eqs.(39)–(41), it can be noted that the parameter κp appears explicitly only
in the expression for Lp in Eq.(41). If we find that the concentration-dependence of Lp has a
negligible effect on the overall response of Eqs.(39)–(41), then the five-parameter model
would effectively be reduced to a four-parameter model (Lp0, Pp, σp and ). This is
investigated numerically using the following representative choice of parameters:

(49)

The response to hyper-osmotic loading with a permeable solute is analyzed, with

(50)

For this analysis the membrane tension is taken as T = 0. The resulting cell volume response,
V/Vr, is presented in Figure 1a. For κp = 1 and 0.5, the volume initially decreases before
recovering to its initial value at equilibrium (as also predicted from the closed-form
equilibrium solution in Eq.(44)). This is the classical response to hyper-osmotic loading,
whereby water initially exudes from the cell due to the higher external solute concentration;
as the external permeating solute slowly diffuses into the cell however, the concentrations of
permeating and non-permeating solutes inside and outside eventually balance themselves
(Figure 1b) and water flows back into the cell until there is complete volume recovery. In
the limiting case of κp = 0 however, the solute is completely excluded from the membrane
and thus cannot permeate across it. Consequently, water will exude from the cell as the
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volume decreases, until the decrease in volume produces a balance between the
concentration of non-permeating solute inside ( ) and the concentrations of permeating and
non-permeating solutes outside (Figure 1b). In this case there is no volume recovery
achieved at equilibrium. The variation of the concentration-dependent Lp as a function of
time is shown in Figure 1c. When the solute can permeate across the cell membrane (κp >
0), the value of Lp drops significantly below that of Lp0, particularly when κp = 1. The
greatest difference observed in V/Vr between concentration-dependent and constant values
of Lp is thus observed at κp = 1 (Figure 1a).

Effect of Permeating Solute Partition Coefficient In Cytoplasm
According to the equations for the equilibrium solution, Eq.(44), the partition coefficient for
the permeating solute between the cytoplasm and external solution, , influences the
equilibrium value of V/Vr. The complete time-dependent response of a cell to hyper-osmotic
loading is investigated for various values of , using the material parameters

(51)

In this analysis, Lp is concentration-dependent, T = 0, and the external solute concentrations
are given by Eq.(50). Note that the limiting case  requires special treatment in the
numerical solution since the permeating solute concentration inside the cell must reduce to
zero, which is equivalent to osmotic loading with a non-permeating solute. Results show that

 has a very significant influence on the relative change in volume of the cell (Figure 2a).
Only partial volume recovery is achieved when . The reason for this outcome is
apparent from Figure 2b, which shows that the internal concentration of permeating solute
decreases with decreasing values of . Interestingly, as  becomes smaller, the volume
response to osmotic loading with a permeating solute becomes qualitatively similar to the
response to loading with a non-permeating solute, as can be construed from the responses at

 and  in Figure 2a. This serves as a cautionary note in the interpretation of
experimental data, namely that the lack of volume recovery following osmotic loading does
not necessarily imply that the solute is non-permeating. The response shown in Figure 2a is
remarkably similar to the recent experimental study of Lucio et al. (Lucio et al., 2003).

Effect of Membrane Tension
To investigate the influence of membrane tension on the volumetric response, we now
provide a constitutive relation between T and the areal strain. In this formulation it is
assumed that the membrane is slack below a threshold value of the areal strain and supports
tensile stresses above that threshold (Guilak et al., 2002),

(52)

where A0 is the cell surface area above which tension develops in the membrane. For
simplicity in the current analysis, it is assumed that this threshold transition point coincides
with the reference configuration of the cell, A0 = Ar. Thus tension will exist in the membrane
under hypo-osmotic loading (swelling) relative to the reference state, but not under hyper-
osmotic loading (shrinking). Furthermore, the power law of Eq.(52) is implemented in its
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simplest form, with β = 1. This leaves the area expansion modulus K as a parameter that can
be varied in the analysis. The numerical example uses the following choice of parameters,

(53)

This range of K is based on values reported for red blood cells (Evans and Waugh, 1977;
Waugh and Evans, 1979) and lipid membranes (Needham and Nunn, 1990). A
representative case of hypo-osmotic loading with a permeating solute is obtained with

(54)

whereas hyper-osmotic loading is obtained with

(55)

The resulting relative volume change of the cell is presented in Figure 3a, showing an
asymmetric response between hyper- and hypo-osmotic loading even in the absence of
membrane tension, as supported from experiments (Curry et al., 2000). When membrane
tension does develop (K > 0), the peak volumetric change decreases and pressure rises inside
the cell as the membrane expands under hypo-osmotic loading. The pressure then returns to
zero as the cell recovers its initial volume (Figure 3b).

The response to loading with a non-permeating solute can similarly be simulated with the
representative conditions

(56)

for hypo-osmotic loading and

(57)

for hyper-osmotic loading. The asymmetric volume response between hyper- and hypo-
osmotic loading is even more apparent with non-permeating solutes (Figure 4a). There is no
volume recovery under loading with a non-permeating solute, and for K > 0 the internal
fluid pressure remains elevated at steady-state, to balance the membrane tension (Figure 4b).
The equilibrium volume increase under hypo-osmotic loading is smaller with increasing
membrane stiffness.

In addition to analyzing the transient response to osmotic loading, we can also plot the
equilibrium volume change in response to osmotic loading with a non-permeating solute, as
V/Vr versus , for various values of the membrane area expansion modulus K. This is
achieved by substituting the constitutive relation of Eq.(52) into the equilibrium solution of
Eq.(44), for the special case A0 = Ar and β = 1,

(58)
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where V/Vr = (a/ar)3 and A/Ar = (a/ar)2. Under hypo-osmotic loading ( ), this is a
non-linear equation in the unknown cell radius a. For a reference configuration ,
the equilibrium response V/Vr is plotted against  in Figure 5. When there is no
membrane tension, the response is linear and corresponds to the classical Boyle-van't Hoff
relation or Ponder plot, which has been confirmed experimentally (Guilak et al., 2002;Xu et
al., 2003). According to Eq.(58) the slope of the line is  and the intercept at the origin is

. In the presence of membrane tension however, the response becomes nonlinear, with
tapering off of the volume increase under hypo-osmotic loading.

Discussion
Mixture theory has been used to formulate the equations for osmotic loading of a fluid-filled
spherical membrane representative of a cell. The fundamental principles of mixture theory
represent a generalization of the phenomenological equations that are based on irreversible
thermodynamics (Onsager, 1931a, b; Staverman, 1952). The mixture theory equations, Eqs.
(10)–(12), are not limited to thin membranes but are applicable to any continuum consisting
of a mixture of a neutral solid, solvent, and solute constituents. The material parameters
appearing in these equations are the familiar properties of transport theory, including the
permeability of the solvent through the porous solid matrix, and the diffusivities of the
solutes in the mixture and in free solution. By reducing these governing equations to the
special case of a spherically-shaped thin membrane a formulation was obtained which is a
generalized form of the classical Kedem-Katchalsky equations. Equivalences were
established between the material parameters of mixture theory and the classical
phenomenological parameters, as presented in Eq.(33). These equivalences are intuitive and
consistent with the physical interpretations attributed to the phenomenological parameters
(Kedem and Katchalsky, 1961). They are also comparable to the relations presented by Gu
et al. (Gu et al., 1993), though it should be noted that these authors included charge effects,
which allows them to model the membrane potential, while neglecting the friction between
solutes and the solid matrix (fsα = 0). One noteworthy generalization over the Kedem-
Katchalsky model is the formulation of a concentration-dependent membrane hydraulic
conductivity as shown in the general expression of Eq.(34) and in the special case of Eq.
(48). The dependence of Lp on concentration has been alluded to in previous studies
(Williams and Comper, 1990), though we believe that the explicit dependence derived from
mixture theory in this study has not been previously reported. Another generalization
relative to the Kedem-Katchalsky model is the incorporation of surface tension in the
reduction to a thin spherical membrane (Evans et al., 1976).

The requisite interface boundary conditions of Eqs.(16)–(21) were applied to the mixture
formulation to investigate the cell response to osmotic loading. One particular feature which
bears note is the incorporation of a partition coefficient for solutes in the mixture, relative to
free solution. The resulting governing equations for osmotic loading of a fluid-filled
membrane, Eqs.(31)–(32), are more general than the three-parameter Kedem-Katchalsky
model, Eq.(46)–(47), though they can be reduced to that model in the limit when the
cytoplasm partition coefficient for permeating solutes is equal to unity and the membrane
tension is neglected.

An assumption which is implicit in the current model as well as the K-K model is that the
diffusion of solutes within the cytoplasm occur at time scales significantly shorter than the
transport of solutes and solvents across the membrane. Therefore homogeneous distributions
of solute concentration are assumed inside the cell. The mixture formulation assumes the
existence of a solid matrix in the cell (the osmotically inactive volume) since the
intracellular (osmotically active) water content ( ) can be less than 100% and the solute
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partition coefficient ( ) can be less than unity. However the stiffness of this matrix, and
resistance to intracellular flow through the matrix, are neglected in the current formulation,
under the assumption that the magnitude of osmotic pressure developing inside the cell (e.g.,
Figure 3b and Figure 4b) is considerably higher than the stress magnitudes resulting from
matrix strains, and resistance to water and solute transport across the cell membrane is
significantly greater than for intracellular transport.

The numerical examples investigated in this study suggest that the concentration-
dependence of the membrane hydraulic conductivity, Lp, can be significant, particularly
when the membrane partition coefficient for the permeating solute, κp, is close to unity
(Figure 1). However, when osmotic loading is performed with a non-permeating solute, Lp
remains constant and equal to Lp0 (Figure 1c), as is apparent from Eqs.(41) and (48) with

. This observation suggests that, experimentally, Lp0 can be determined by osmotic
loading with a non-permeating solute.

The theoretical predictions of this model are in very good agreement with experimental
results available in the literature. For example, the response to hyperosmotic loading with a
permeating solute, as shown in Figure 1 for the case κp ≠ 0 agrees very well with the
experiments of Xu et al. (Xu et al., 2003) where bovine chondrocytes were osmotically
loaded with glycerol (Figure 6a). The asymmetric response to hyper- and hypo-osmotic
loading with a non-permeating solute predicted in Figure 4 is very similar to the experiments
of Curry et al. (Curry et al., 2000) who performed osmotic loading of rabbit spermatozoa
(Figure 6b). It is also interesting that varying the partition coefficient of the permeating
solute in the cytoplasm can produce partial volume recoveries (Figure 2) which are
remarkably similar to experimental measurements by Lucio et al. (Lucio et al., 2003) in
kidney cells treated with various doses of vasopressin hormone (Figure 6c). This agreement
suggests that the role of the partition coefficient in osmotic loading of cells may be quite
significant and should be investigated in greater detail. Quantitative differences in the time
scales and magnitude of volume changes between these experimental studies and the
theoretical predictions of the current study are simply due to differences in cell sizes (radius
a) and choices of material coefficients (Lp and Pp) and boundary conditions (values of 
and ).

Finally, the numerical simulations incorporating cell membrane elasticity show that surface
tension can have a non-negligible influence on the volumetric response to osmotic loading
(Figure 3, Figure 4). Experimental measurements of the equilibrium response to loading
with a non-permeating solute at various concentrations may be used to infer the membrane's
area expansion modulus if the Boyle-van't Hoff relationship is found to significantly deviate
from a straight line under hypo-osmotic loading (Figure 5). For bovine chondrocytes,
measurements to date demonstrate a linear relationship (Guilak et al., 2002;Xu et al., 2003)
more akin to the case K = 0 N/m (“perfect osmometer”) in Figure 5, suggesting that
membrane tension may be negligible for those cells.

Nomenclature

a cell radius

A cell surface area

cα concentration of solute α inside the mixture, on a solvent volume basis

concentration of solute α in the standard state
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c̅α average concentration of solute α inside the membrane

concentrations of solute α in external solution

concentration of solute α in cytoplasm

Dα solute diffusivity in mixture of solid and fluid

solute diffusivity in free solution

F deformation gradient of the solid matrix

fαβ diffusive drag coefficient between constituents α and β

Jw volume flux of solvent across membrane

Jα molar flux of solute α across membrane

k hydraulic permeability of solid matrix to pure solvent

k̃ hydraulic permeability of solid matrix to solution (solvent + solutes)

Lp membrane hydraulic conductivity (or conductance)

Mα molecular weight of solute α

number of moles of solute α inside the cell

p fluid pressure inside the mixture

pe fluid pressure in external solution

pi fluid pressure in cytoplasm

Pα membrane permeability of solute α

R universal gas constant

T surface tension in membrane

V cell volume

vα velocity of constituent α

α = n refers to non-permeating solute

α = p refers to permeating solute

α = s refers to solid matrix

α = w refers to solvent

φα volume fraction of constituent α in the mixture

volume fraction of osmotically active water in the cell

κα partition coefficient of solute α inside mixture relative to free solution

partition coefficient of solute α between cytoplasm and external solution

μ̃α chemical potential of solvent (α = w) or solute

chemical potential of constituent α in the standard state

ρα apparent density of constituent α

true density of solvent

θ absolute temperature
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σe effective stress tensor in solid matrix

normal effective stress in radial direction

σα Staverman's reflection coefficient for solute α
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Figure 1.
Comparison of cell response to hyper-osmotic loading, when the hydraulic conductivity Lp
is taken to be concentration-dependent (solid lines) [Eq.(41)] or assumed constant (dashed
lines) [Lp = Lp0], for various values of the solute partition coefficient in the membrane, κp.
The case κp = 0 is equivalent to hyper-osmotic loading with a non-permeating solute. (a)
Relative cell volume response, V/Vr. (b) Internal concentration of permeating solute, , and
non-permeating solute, . (c) Concentration-dependent normalized membrane hydraulic
conductivity, Lp/Lp0.
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Figure 2.
Response to hyper-osmotic loading for various values of the solute partition coefficient in
the cytoplasm, : (a) Relative cell volume V/Vr, and (b) internal concentration of
permeating solute, .
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Figure 3.
Response to hyper-osmotic and hypo-osmotic loading with a permeating solute, for various
values of the area expansion modulus K. Membrane tension occurs only under hypo-osmotic
loading in this example. (a) Relative cell volume V/Vr, and (b) pressure difference between
the inside and outside of the cell, pi − pe.
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Figure 4.
Response to hyper-osmotic and hypo-osmotic loading with a non-permeating solute, for
various values of the area expansion modulus K. (a) Relative cell volume V/Vr, and (b)
pressure difference between the inside and outside of the cell, pi − pe.
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Figure 5.
Equilibrium response of V/Vr for various values of the area expansion modulus K. When K >
0, a transition occurs from a linear to a non-linear response at .
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Figure 6.
(a) Hyper-osmotic loading of bovine chondrocytes with a permeating solute (1.4 M glycerol)
at 21°C, with solid curve representing prediction from K-K model (Reprinted from Med Eng
Phys, Vol. 25, Xu, X., Cui, Z., Urban, J. P., Measurement of the chondrocyte membrane
permeability to Me2SO, glycerol and 1,2-propanediol, pp. 573–579, Copyright (2003), with
permission from The Institute of Engineering and Physics in Medicine); (b) Osmotic loading
of rabbit spermatozoa at 25°C with non-permeating solutes (sucrose for hyper-osmotic
loading and dilution of cell culture media with distilled water for hypo-osmotic loading)
(Reprinted from Cryobiology, Vol. 41, Curry, M. R., Kleinhans, F. W., Watson, P. F.,
Measurement of the water permeability of the membranes of boar, ram, and rabbit
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spermatozoa using concentration-dependent self-quenching of an entrapped fluorophore, pp.
167–173, Copyright (2000), with permission from Elsevier); (c) Hyper-osmotic loading of
Madin Darby canine kidney cell with sodium chloride in the presence of different
concentrations of the hormone vasopressin, at 25°C (Reprinted figure with permission from
Lucio, A. D., Santos, R. A., Mesquita, O. N., Phys Rev E Stat Nonlin Soft Matter Phys 68,
041906, 2003. Copyright 2003 by the American Physical Society).
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