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Abstract
The 1D barcode is a ubiquitous labeling technology, with symbologies such as UPC used to label
approximately 99% of all packaged goods in the US. It would be very convenient for consumers to
be able to read these barcodes using portable cameras (e.g. mobile phones), but the limited quality
and resolution of images taken by these cameras often make it difficult to read the barcodes
accurately. We propose a Bayesian framework for reading 1D barcodes that models the shape and
appearance of barcodes, allowing for geometric distortions and image noise, and exploiting the
redundant information contained in the parity digit. An important feature of our framework is that it
doesn’t require that every barcode edge be detected in the image. Experiments on a publicly available
dataset of barcode images explore the range of images that are readable, and comparisons with two
commercial readers demonstrate the superior performance of our algorithm.

1. Introduction
The 1D barcode was developed as a package label that could be swiftly and accurately read by
a laser scanner. It has become ubiquitous, with symbologies such as UPC used to label
approximately 99% of all packaged goods in the US [1]. There is a strong demand for systems
to read 1D barcodes from images acquired by portable cameras (such as on cell phones), but
the 1D patterns are often poorly resolved by these cameras because of motion blur and an
inability to focus sufficiently close. A variety of 2D barcodes have been designed that are much
better suited for camera acquisition [2,3], but for the next several years 1D barcodes will remain
the dominant type of label for most packaged goods.

There has been a variety of research done on algorithms for reading 1D barcodes, which we
survey briefly here. Most past work has dealt with scanline data (typically acquired by a laser
scanner), using waveform analysis, deblurring and other signal processing techniques to detect
edges [4,5,6]. The approach in [7] is similar to ours in its use of probabilistic HMM modeling,
but it assumes that every edge in the barcode is detected in the scanline data, which is an
assumption that we remove in our algorithm. (The HMM approach assigns edge transition
states to the entire sequence of observed edges in a scanline, whereas our approach is a
deformable template that uses hidden variables to model the locations of each barcode edge,
regardless of which edges are visible.) Another difference is that our approach jointly performs
decoding and error correction. There has also been work on reading 1D barcodes from images
rather than laser scanner data, some of which uses 2D analysis such as the Hough transform
to detect edges [8].

Some recent work reports impressive accuracy [9,10], but the image datasets on which the
algorithm were tested are not yet available ([10] states that the data will be available to the
public but this is not the case at the time of writing). However, we emphasize that the readability
of a barcode image varies greatly depending on the image quality; under some conditions (e.g.
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using a camera phone, which has limited resolution and ability to focus close-up) many images
are blurry even when the photographer takes the images carefully. For instance, in [9] the
barcodes are photographed at a resolution such that the module (width of the narrowest bar) is
about 4.5 pixels wide, which may be too high a resolution to achieve consistently with a camera
phone. Therefore, it is crucial that the images used to evaluate a barcode reading algorithm be
made publicly available.

Our contribution is a Bayesian deformable template model for reading barcodes that is robust
to noise due to non-uniform lighting, geometric and perspective distortion and to missing edges
and low resolution images. We have posted our dataset online for public use, and plan to add
to the dataset as the project continues.

We have not yet tackled the problem of localizing barcodes in cluttered images, but there is
work on this problem [11,9] that we will draw on in the future.

2. Bayesian Model
We have devised a Bayesian deformable template [12] model of the barcode that combines
prior knowledge of barcode geometry, including the allowed configuration of bars and allowing
for geometric distortions, with evidence for edges based on intensity gradients. Our model is
also strengthened by exploiting the checksum information embedded in the barcode, which
constrains the values of the encoded digits, thereby allowing us to detect and correct single-
digit errors. In this paper we specialize to a particular symbology that is commonly used in
North America, the UPC-A, but we emphasize that our approach will generalize
straightforwardly to any 1D barcode pattern.

2.1. Barcode Structure
The UPC-A barcode (see Fig. 1) encodes a string of twelve decimal digits (each digit is an
integer from 0 through 9), where the last digit is a checksum that is a function of the previous
eleven. The barcode pattern consists of a sequence of black bars and white gaps between the
bars (we will refer to both as bars). There are 29 white and 30 black bars, giving a total of N
= 60 edges. The edges have alternating polarity, and from left to right the polarity of edge i
(where i = 1, …, N) is (−1)i. Each bar has one of four possible widths: Δ, 2Δ, 3Δ or 4Δ, where
Δ is the modulus or fundamental width of the barcode.

Each digit value is encoded by a sequence of four bars (with total width 7Δ). In addition to the
twelve digit regions, there are three ‘guard’ regions in the barcode: the start region (two black
bars separated by a white bar) on the left, the middle region separating the sixth and seventh
digits (three white bars separated by two black bars), and the end region on the right (the same
pattern as the start region). See Fig. 2 for an illustration of these regions. The total width of the
barcode is 95Δ.

The 60 edges in the barcode are classified into two categories, fixed and variable. Fixed edges
are those associated with the guard bands (also shown in Fig. 2), whose location is independent
of the encoded digits. Variable edges are the edges in the digit regions whose locations define
the digit encoding.

2.2. Model Basics
In this paper we assume that the bar code has been segmented from the image, and that we
know the approximate orientation, which allows us to construct several scanlines across the
barcode. We first describe the model for a single scanline cutting from left to right across the
barcode; later we will extend the model to multiple scanlines. In addition, in later sections we
will describe two variants of the basic model, Model 1 and 2.
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The scanline defines an x coordinate system, and the intensity along the scanline is denoted I
(x). The edge strength e(x) is defined as the intensity derivative dI/dx. Local maxima and
minima of e(x) define the edge locations in the scanline, and the first and last observed edge
locations spanning the entire barcode (of width 95Δ) are used to estimate Δ for the scanline.
We denote all the information in the scanline by S.

The locations of all N = 60 edges are denoted by the sequence X = (x1, x2, …, xN). We denote
the fixed edges in X by Xf, and the variable edges by Xv, so that with a slight abuse of notation
we can write X = (Xf, Xv).

The unknown digits are denoted by the sequence D = (d1, d2, …, d12), where di ∈ {0, 1, …,
9}.

The basic model, P(X, D|S), can be described as a factor graph (see Fig. 3) of the following
form:

(1)

where L(X, S) is the (log) likelihood term that rewards edge locations lying on high-gradient
parts of the scanline, and G(X, D) is the geometric term that enforces the spatial relationships
among different edges given the digit sequence.

First we describe the likelihood term L(X, S) in more detail. It is defined as:

(2)

where the precise form of Li differs between Model 1 and Model 2 (see details in the next
subsections). In both cases it enforces the polarity constraint that edge xi must have polarity
(−1)i, i.e. Li(xi, S) = ∞ if dI/dx(xi) has the wrong sign.

Note that we can rewrite L(X, S) as two terms, one containing fixed edges and the other
containing variable edges:

(3)

Next we describe the geometric prior term G(X, D):

(4)

The first term, Gf (Xf), enforces the appropriate spacing between fixed edges: for instance, we
expect that x2 − x1 ≈ Δ. This expected separation distance is expressed with a quadratic energy

term  for the first two edges, and similarly for all other
consecutive fixed edges. Here H(x) is a function that equals one for positive values of x and ∞
otherwise, which enforces the fact that consecutive edges are ordered from left to right instead
of right to left; βf is a positive constant. In addition, since each digit region encompasses a
width of 7Δ, we enforce this property with the following energy term:

 for the first digit, and similarly for the other digits.
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The second term, Gv(Xf, Xv, D), enforces the appropriate spacing between variable edge
locations that encode digit values. Each digit value (0–9) corresponds to a sequence of four
widths. In order from 0 through 9, the associated width sequences are: (3, 2, 1, 1), (2, 2, 2, 1),
(2, 1, 2, 2), (1, 4, 1, 1), (1, 1, 3, 2), (1, 2, 3, 1), (1, 1, 1, 4), (1, 3, 1, 2), (1, 2, 1, 3), (3, 1, 1, 2).
These spacings are enforced by energy functions such as

, where w1(d1) is the first width corresponding
to digit d1 (and βv is a positive constant).

The next two subsections describe two variants of this model that we have implemented.

2.3. Model 1
Model 1 is the simpler of the two models. In this model, we first normalize e(x) = dI/dx by
rescaling it so that its absolute value has a maximum equal to one. We then extract edges as
the local minima and maxima of e(x), and denote the sequence as Y = (y1, y2, … yM). The
locations yi are estimated to sub-pixel accuracy by modeling the value of e(x) as locally
quadratic. This sequence defines the set of allowed edges (M ≥ N, meaning that we have
observed at least as many edges as needed in the barcode), i.e. allowed values of the xi. We
then define the evidence for each edge as Li(xi, S) = α|e(xi)|H(e(xi)(−1)i), which enforces the
need for xi to have the correct polarity.

In Model 1 we estimate the edge locations using the following procedure. First we use the
Viterbi algorithm [13] to calculate the fixed edge locations:

(5)

Then using this result, Viterbi is used again to calcuate the variable edge locations:

(6)

We now have estimated all edge locations X* before estimating the digit values. (Model 2
marginalizes over edge locations instead, which confers certain advantages and disadvantages
relative to Model 1.)

To estimate the marginal probability of any given digit we use the following expression:

(7)

where D on the RHS has the value of di specified on the LHS, and i specifies which digit in
the string is to be estimated. Here Ei(X, D, S) comprises all terms in L(X, S) and G(X, D) that
depend on the edge locations defining di.

If multiple scanlines are used, then we simply average over the marginal probabilities from
each scanline to arrive at an overall marginal probability.

2.4. Model 2
Model 2 has the same structure as Model 1. The most important difference, however, is that
we allow edge locations X to assume any values on a pixel lattice rather than restricting
ourselves to local peaks in e(x) = dI/dx. This was done because in noisy images the true location
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of an edge may not be associated with a local peak, i.e. we do not assume that we are able to
detect every barcode edge. We define a pixel quantization on each scanline such that the
estimated fundamental width corresponds to approximately 5 pixels, and estimate e(x) on this
lattice using linear interpolation.

Since we are no longer restricting ourselves to locations of peak values in dI/dx, we also use
the second derivative e2(x) = d2I/dx2 to reward locations that are close to local maxima or
minima. (This is normalized in the same way that e(x) is normalized.) Then we define the
likelihood for an edge as Li(xi, S) = −γlog(|e(x)|(1 −|e2(x)|)H(e(xi)(−1)i), which rewards edge
strength as well as proximity to a peak in edge magnitude (since e2(x) attains 0 at a local
maximum or minimum). (Here γ is a positive constant.) Again, the H(.) factor forces the
gradient at xi to have the correct polarity.

The second difference with Model 1 is that Model 2 uses factor graph belief propagation (BP)
[14] to estimate marginal probabilities of each digit, instead of greedily estimating the most
likely edge locations and then estimating digits based on these locations. The factors in Model
2 are defined by exponentiating the energy functions in Sec. 2.2, and so BP estimates the
marginal probabilities of each variable in the model, including P(di|S).

2.5. Using the checksum
The digits in the barcode digit sequence are not independent but are constrained to obey the
following parity equation:

(8)

Thus the first eleven digits are chosen independently and the twelth digit is a parity check digit
chosen to satisfy the above constraint. This mechanism allows for verification of the barcode
by the reader.

In order to find the most likely digit sequence that is consistent with the data and satisfies the
parity constraint, we create a new random variable sequence ci ∈ {0, …, 9} where i = 1, …,
12, corresponding to a running parity digit. Let

(9)

Observe that

(10)

Here we are using the marginal probabilities P(di|S) (Eq. 7) to define the associated
probabilities on the ci variables (where we omit the conditioning on one or more scanlines for
brevity). (For instance, since c1 and c2 jointly determine the value of d2, P (c2|c1) is determined
by P(d2|S).) Since the sequence c1, c2, …, c12 forms a Markov chain, we can use Viterbi (after
taking a log to transform to the energy domain) to find the most likely sequence of ci, and
therefore the most likely sequence of di. In addition, a multipath Viterbi algorithm is also used
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to calculate the second most likely sequence, which is used to evaluate the confidence of the
top estimate (see next section).

2.6. Model selection
In our experiments we have found that Model 1 is better for clean images and Model 2 is better
for noisier images. We have not yet investigated the possibility of a Bayesian model selection
procedure, but have instead devised a simple algorithm to decide which model is appropriate
for a given barcode image.

Our algorithm is the following. Model 1 is first run using a single scanline. A confidence
criterion (described below) is calculated, and if it is too low then another scanline is used (up
to a total of 15 scanlines). If one or more scan-lines have been used, then the overall
probabilities for each barcode digit are calculated by simply averaging over the scanlines.

If the confidence criterion is satisfied using Model 1 then the algorithm is done. Otherwise we
proceed to run Model 2, again starting with one scanline. More scanlines are evaluated as
needed (up to a total of 15 scanlines considered individually, i.e. without aggregating multiple
scanlines or averaging digit probabilities), and if the confidence criterion is satisfied for any
scanline then the algorithm is done. Otherwise the algorithm reports failure.

The confidence criterion assesses how much more likely the top estimated digit sequence is
than other sequences. Specifically, the confidence criterion is fulfilled only if two tests are
satisfied. In the first test, the top two digit sequence estimates from the checksum procedure
are compared, and if the ratio of the probability of the top sequence divided by the probability
of the second most likely sequence is too small then the test fails. (This test assesses the margin
of confidence in the top solution.) If this first test succeeds, then a second test is performed.
An alternative digit sequence is calculated in which each digit is chosen to be the one that
maximizes the marginal digit probability from the checksum procedure. If the alternative digit
sequence differs from the most likely sequence by at most one digit, then the second test
succeeds and the overall confidence criterion is satisfied.

3. Experimental Results
Models 1 and 2 were implemented in unoptimized Mat-lab code, taking on the order of a few
tens of seconds (Model 1) to many tens of seconds (Model 2) to execute per image. We note
that a single slice with Model 1 achieves a performance close to the best performance of the
joint model, but at higher speed.

We acquired 79 images of UPC-A product barcodes, some photographed using the Nokia N95
camera phone, others using the Nikon Coolpix 4300 camera, and others taken from the internet.
All images were saved as jpegs. For each image, the barcode was manually segmented (and
oriented roughly horizontally). We first divided our database subjectively into two classes that
we dubbed clean (see Fig. 4) and hard (see Fig. 5) with the expectation that the performance
on the clean set should be very good. (We chose this subjective criterion in the absence of any
objective criteria in the literature on reading barcodes.) The clean set consisted of 44 images
of varying resolutions, distortions and contrast, but otherwise seemed recognizable. The hard
set consisted of 35 images that were blurry or distorted, and hence were likely candidates for
failure. We have posted our ground truth-annotated database on our website [15], and we will
add to it as the project progresses.

From the clean set, we randomly chose 17 images that we used as a training set. Appropriate
values of Model 1 and Model 2 parameters (α, βf, βv and γ) were estimated by exhaustive search,
in which the error rate of the algorithm was evaluated for each combination of parameter values,
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and we chose the parameters with highest confidence margins that resulted in all 17 barcodes
being read correctly.

We then used our models to try to read the whole set of 79 images. We also compared our
algorithm with two commercial barcode readers, Barcode Decoding Software from
DataSymbol [16] and bcTester Barcode Recognition from QualitySoft [17], on the same set
of images. Our results are summmarized in Table 1, and detailed results are tagged in [15]. We
stress that when comparing our results to the commercial software, we adjusted the options to
make sure that the software was only trying to recognize a UPC-A barcode so as to increase
the accuracy (and to permit a fair comparison with our algorithm, which at this time assumes
the UPC-A structure). (Both commercial algorithms automatically segment the barcode from
the image, whereas our algorithm assumes the barcode has already been roughly segmented;
the identical segmented images were given to all three algorithms.) Our algorithm succeeded
on all images that were correctly read by the commercial readers, and it also succeeded on
other images. Like the commercial readers, our algorithm always reported failure when it was
unable to estimate the bar code correctly.

Some examples of clean images are shown in Fig. 4, and of hard images in Fig. 5. Note that,
while most of the edges in the clean images are easy to extract, some edges are fuzzy, and
localization noise means that it is sometimes difficult to estimate bar widths correctly. In the
hard images, many of the edges are very difficult to resolve (often because of low contrast and
motion blur), and in some cases (top of Fig. 5) the modulus is quite narrow, approximately 2
pixels wide. The examples in Fig. 5 give an idea of the limits of our current algorithm.

While Model 2 is better able to cope with faint or missing edges than Model 1, its ability to
choose edges that don’t lie on image gradient peaks adds uncertainty that sometimes
compromises its ability to infer the correct digit sequence. Thus, we have found that Model 1
performance is superior to that of Model 2 on cleaner images, but that Model 2 is necessary
for hard images (for which Model 1 may have difficulty finding good edges even if they are
all visible). By adding additional cues, and tuning the model parameters more carefully (and
on a larger training set), we hope that in the future Model 2 will improve to the point where it
will completely replace Model 1. We discuss some possible improvements in the next section.

4. Discussion
We have described a novel Bayesian algorithm for reading 1D barcodes in noisy images. The
algorithm is based on a deformable template that is robust to geometric deformations as well
as image noise, and uses the checksum digit both to improve its chances of estimating the
correct digit sequence and to rule out impossible sequences. An important feature of our
framework is that it doesn’t require that every barcode edge be detected in the image.
Experiments on a publicly available dataset of barcode images explore the range of images
that are readable, and comparisons with two commercial readers demonstrate the superior
performance of our algorithm.

In the future we plan to improve the performance of the algorithm by using a more principled
learning procedure from a larger training set, such as conditional random fields (CRFs) [18],
and to test its performance on a substantially larger test set. Such a procedure will also allow
us to incorporate multiple cues, such as the scarcity of edges inside the bars, in addition to the
presence of edges at the bar boundaries. We hope to integrate the entire model into a single
factor graph that seamlessly combines multiple scan lines and the checksum information. We
are currently investigating the possibility of explicitly modeling image blur (due to poor focus
and camera motion), which is a major source of image degradation. It may also be possible to
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augment the barcode model with a simple OCR digit module that reads the digits printed below
the barcode.

Finally, we will extend our model to read other common barcode patterns (e.g. UPC-E and
EAN-13), and use a simple model selection procedure to decide which barcode model is
appropriate for each image. Then we will implement a barcode localization algorithm to
automatically find the barcode boundaries in a cluttered image, and write a fast version of the
entire algorithm in C++. Ultimately we hope to port the algorithm to the camera phone platform
in a form that blind and visually impaired persons can use to identify packaged goods.
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Figure 1.
UPC-A barcode, encoding 12 digits.
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Figure 2.
Fixed edges of UPC-A barcode shown as dashed red lines. Labels on bottom denote the guard
regions and the 12 digit regions between the fixed edges.
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Figure 3.
Factor graph used in Model 1 and 2. Variables are drawn as circles and factors (interactions
among variables) as boxes. Factors enforcing geometric constraints are drawn in red and factors
incorporating scanline edge information are drawn in green.
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Figure 4.
Examples of clean images from our dataset. Top: read correctly by our algorithm and both
commercial readers; middle: read correctly by our algorithm and Barcode Decoding Software;
bottom: read correctly only by our algorithm.
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Figure 5.
Examples of hard images from our dataset. Top: read correctly only by our algorithm (with
modulus less than 2 pixels); middle and bottom: read correctly by no algorithm.
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Table 1

Number of barcodes correctly read.

Our Model Barcode Decoding bcTester

Learn 17/17 17/17 4/17

Clean 42/44 39/44 13/44

Hard 2/35 0/35 0/35
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