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Abstract

Background: One of the challenges of bioinformatics remains the recognition of short signal sequences in
genomic DNA such as donor or acceptor splice sites, splicing enhancers or silencers, translation initiation sites,
transcription start sites, transcription factor binding sites, nucleosome binding sites, miRNA binding sites, or
insulator binding sites. During the last decade, a wealth of algorithms for the recognition of such DNA sequences
has been developed and compared with the goal of improving their performance and to deepen our
understanding of the underlying cellular processes. Most of these algorithms are based on statistical models
belonging to the family of Markov random fields such as position weight matrix models, weight array matrix
models, Markov models of higher order, or moral Bayesian networks. While in many comparative studies different
learning principles or different statistical models have been compared, the influence of choosing different prior
distributions for the model parameters when using different learning principles has been overlooked, and possibly
lead to questionable conclusions.

Results: With the goal of allowing direct comparisons of different learning principles for models from the family of
Markov random fields based on the same a-priori information, we derive a generalization of the commonly-used
product-Dirichlet prior. We find that the derived prior behaves like a Gaussian prior close to the maximum and like
a Laplace prior in the far tails. In two case studies, we illustrate the utility of the derived prior for a direct
comparison of different learning principles with different models for the recognition of binding sites of the
transcription factor Sp1 and human donor splice sites.

Conclusions: We find that comparisons of different learning principles using the same a-priori information can
lead to conclusions different from those of previous studies in which the effect resulting from different priors has
been neglected. We implement the derived prior is implemented in the open-source library Jstacs to enable an
easy application to comparative studies of different learning principles in the field of sequence analysis.

Background
The computational recognition of short signal sequences
in genomic DNA is one of the prevalent tasks in bioin-
formatics. It includes e.g. the recognition of transcrip-
tion factor binding sites (TFBSs) [1,2], donor or
acceptor splice sites [3-5], nucleosome binding sites
[6,7], or binding sites of insulators like CTCF [8]. Many
different algorithms have been developed for the recog-
nition of such DNA binding sites, with specific strengths
and weaknesses, but none of them is perfect. Hence,
great efforts have been made over the last decade to

evaluate and compare the performance of different algo-
rithms [2,3,9-13]. The results of such comparative stu-
dies are often influential to the direction of future
research, because they lead to new and superior
approaches by combining the advantages of existing
algorithms and because they provide a deeper under-
standing of the mechanisms of protein-DNA interaction.
The approaches compared typically differ by (i) the sta-
tistical model employed at the heart of these algorithms,
(ii) the learning principle chosen for estimating the
model parameters, and (iii) the prior used for the para-
meters of the model, and it is non-trivial to keep the
influences of these different contributions apart. The
first two aspects focus on developing improved statisti-
cal models or learning principles, while the choice of
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the prior is often arbitrary or determined by conjugacy.
However, the choice of the prior may have a decisive
effect on the recognition performance [14,15]. The goal
of this paper is to derive a common prior for Markov
random fields (MRFs) and mixtures of MRFs, which are
at the heart of many existing algorithms for binding site
recognition, allowing an unbiased comparison of differ-
ent learning principles for models from this model
family.
Many computer algorithms available today use statisti-

cal models for representing the distribution of
sequences, and many of these statistical models are spe-
cial cases of MRFs [16,17]. These models range from
simple models like the position weight matrix (PWM)
model [1,18,19], the weight array matrix (WAM) model
[4,6,20], or Markov models of higher order [21,22] to
more complex models like moral Bayesian networks
[2,12,23] or general MRFs [5,24,25]. Hence, we restrict
our attention to statistical models from the family of
MRFs in this paper.
One of the first learning principles used in bioinfor-

matics is the maximum likelihood (ML) principle. How-
ever, for many applications, the sequence data available
for learning statistical models is very limited. This is
especially true for the recognition of TFBSs, where typi-
cal data sets contain sometimes as few as 20 and seldom
more than 300 sequences. For this reason, the ML prin-
ciple often leads to suboptimal classification perfor-
mance e.g. due to zero-occurrences of some nucleotides
or oligonucleotides in the training data sets. The maxi-
mum a-posteriori (MAP) principle, which applies a prior
to the parameters of the models, establishes a theoretical
foundation to alleviate this problem and at the same
time allows for the inclusion of prior knowledge aside
from the training data.
Recently, the application of discriminative principles

instead of generative ones has been shown to be
promising in the field of bioinformatics [9,21,22,24,26].
Generative learning principles aim at an accurate repre-
sentation of the distribution of the training data, whereas
discriminative learning principles aim at an accurate
classification of the training data. The discriminative ana-
logue to the ML principle is the maximum conditional
likelihood (MCL) principle, which has been widely used
in the machine learning community [27-31]. However,
the effects of limited data may be even more severe when
using the MCL principle compared to generative learning
principles [11]. To overcome this problem, the maximum
supervised posterior (MSP) principle [32,33] has been
proposed as discriminative analogue to the MAP
principle.
Many different priors have been used in the past, and

their choice seems arbitrary or motivated by technical
aspects. Product-Gaussian and product-Laplace priors

are widely used for generatively trained MRFs [16] and
discriminatively trained MRFs also called conditional
random fields [17,34]. For the generative MAP learning
of Markov models and Bayesian networks, the most pre-
valent prior is the product-Dirichlet prior, whereas for
the discriminative MSP learning, either a product-Gaus-
sian or product-Laplace prior is typically employed [26].
Hence, when comparing generatively and discrimina-
tively trained Markov models, Bayesian networks, and
MRFs, in many occasions apples are compared to
oranges by using different priors.
The comparison of generative and discriminative

learning principles is the topic of several recent studies.
Ng & Jordan [11] compare generatively and discrimina-
tively trained PWM models. To be specific, they com-
pare the Bayesian MAP principle with the non-Bayesian
MCL principle. Pernkopf & Bilmes [30] compare the
ML principle to the MCL principle for estimating the
parameters of Bayesian networks, while the structures of
the networks are estimated by generative as well as dis-
criminative measures. Greiner et al. [29] compare the
ML principle with a variant of the MCL principle that
prevents over-fitting, and they apply these approaches to
Bayesian networks. Grau et al. [26] compare the MAP
principle for Markov models using a product-Dirichlet
prior to the MSP principle using product-Gaussian and
product-Laplace priors.
All of these studies use different priors when compar-

ing different learning principles, rendering the conclu-
sions regarding the superiority of one learning principle
over the other questionable, because the differing influ-
ences of these priors are neglected. In fact, we are not
aware of any study that uses the same a-priori informa-
tion when comparing generative to discriminative learn-
ing principles.
Motivated by this lack of consistency, we aim at estab-

lishing a prior that

i) can be used for the generative (MAP) and the dis-
criminative (MSP) principles,
ii) is conjugate to the likelihood of MRFs, which
include moral Bayesian networks,
iii) contains the widely-used product-Dirichlet prior
as special case when the structure of the MRF is
equivalent to that of a moral Bayesian network
including all of its special cases such as PWM mod-
els, WAM models, Markov models of higher order,
or Bayesian trees.

In section Methods, we present the derivation of such
a prior, which is the main result of this paper. With
such a prior at hand, it becomes possible to accomplish
an unbiased comparison of generative and discriminative
learning principles applied to the same model using the

Keilwagen et al. BMC Bioinformatics 2010, 11:149
http://www.biomedcentral.com/1471-2105/11/149

Page 2 of 13



same prior. In addition, this prior allows a comparison
of different generatively trained models for binding site
recognition that are special cases of MRFs including
PWM models, WAM models, Markov models of higher
order, Bayesian trees, or moral Bayesian networks as
well as a comparison of different discriminatively trained
models that are special cases of MRFs using the BDeu
prior [35]. In section Results and Discussion, we illus-
trate the applicability of the derived prior using two
typical data sets of TFBSs and donor splice sites.

Methods
We denote by x= (x1, ..., xL) a sequence of length L over
an alphabet Σ = {1, 2, ..., S} with xℓ Î Σ, where S = 4 in
case of DNA and RNA sequences, and S = 20 in case of
protein sequences. We denote by c Î  = {1, 2, ..., C}
the class of a sequence. In this paper, we consider two-
class problems, i.e., C = 2, and we denote the first class
containing biological binding sites by foreground, and
the second class containing decoy DNA sequences by
background. For each sequence xn in the training data
set, we know its correct class label cn Î  . We denote
the data set of all sequences by  = (x1, ..., xN) and we
denote the vector of the corresponding class labels by
c= (c1, ..., cN).
In this paper, we consider two Bayesian learning prin-

ciples, namely the generative maximum a-posteriori
(MAP) principle and the discriminative maximum
supervised posterior (MSP) principle. The goal of both
learning principles is to estimate the optimal parameters
of some statistical model with respect to the posterior
or supervised posterior, respectively.
Using the MAP principle, the parameters ϑ are opti-

mized with respect to the posterior, which is propor-
tional to the product of a parameter prior h (ϑ|a) given
hyper-parameters a and the likelihood p( , c|ϑ) of the
data set  and the class labels cgiven parameters ϑ:

   


MAP
  arg max ( | ) ( , | ).h p c  (1a)

Under the assumption of independent and identically
distributed (i.i.d.) data, we obtain

   


MAP




 arg max ( | ) ( , | ).h p c xn n

n

N

1

(1b)

Using the assumption of i.i.d. sequences and the
assumption of independence of the parameters of
the classes, generative learning principles, as for instance
the MAP principle, can be simplified to class-specific
generative learning principles that allow inferring the
parameters of the foreground and background class
separately. For several simple models like Markov

models, generative learning principles amount to
computing smoothed relative frequencies of nucleotides
and oligonucleotides [18-20].
For the MSP principle, the parameters ϑ are optimized

with respect to the supervised posterior, which is
defined as the product of a parameter prior h(ϑ|a) given
hyper-parameters a and the conditional likelihood p
(c , l) of the class labels c given the data set  and
parameters ϑ:

   


MSP
  arg max ( | ) ( ,| ).h p c (2a)

We again assume i.i.d. data and express the class pos-
teriors p (cn|xn, l) in terms of likelihoods p (c,xn|l),
yielding
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(2b)

While the generative ML and MAP principles often
lead to analytic solutions for simple models such as
Markov models, we must use numerical optimization
procedures [36] for the discriminative MCL and MSP
principles.
In practical applications, the parameterization ϑof the

models and the priors h(ϑ|a) differ between the MAP
and the MSP principle, since both learning principles
evolved from different theoretical backgrounds. With
the goal of resolving these differences, we present a
common parameterization for the likelihood of all mod-
els from the class of MRFs, which can be used for the
MAP and the MSP principle, and we derive a prior for
this parameterization that is equivalent to the well-
known product-Dirichlet prior in the remainder of this
section.

Foundations of moral Bayesian networks
Graphical models, which combine probability theory and
graph theory, are statistical models in which random
variables are represented by nodes of a graph and in
which the dependency structure of the joint probability
distribution is represented by edges [37]. Graphical
models can be categorized into directed acyclic graphical
models called Bayesian networks and undirected graphi-
cal models called MRFs with a non-empty intersection
called moral Bayesian networks [38]. For deriving the
desired prior, we start with moral Bayesian networks in
this subsection, where we give an introduction to moral
Bayesian networks, and in the second subsection we
present the MRF parameterization for these models. In
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the third subsection, we present the widely-used pro-
duct-Dirichlet prior for moral Bayesian networks, and
transform this prior to the MRF parameterization.
Finally, we extend the resulting prior for moral Bayesian
networks to the case of general MRFs in the last
subsection.
Graphical models are represented by graphs consisting

of nodes and edges. The nodes in the graph represent
random variables Xℓ having realizations denoted by xℓ.
In case of directed graphical models, the edges are
directed from the parent nodes to their children. We
denote by Pa(ℓ) the vector of parents of node ℓ repre-
senting random variable Xℓ, and we denote by pa(ℓ, x)
the realizations of the parents Pa(ℓ) in sequence x.
Edges between nodes represent potential statistical
dependencies between the random variables, while miss-
ing edges between nodes represent conditional indepen-
dencies of the associated random variables given their
parents. Specifically, if there is no edge from i to j, then
Xi and Xj are conditionally independent given Pa(i) and
Pa(j), the parents of node i and j. For Bayesian networks
the underlying graph structure is a directed acyclic
graph (DAG). In this paper, we consider models with a
given graph structure, such that all parents of each node
are pre-determined. To simplify notation in the follow-
ing derivation, we assume the same graph structure for
the models of all classes. The extensions to models with
different graph structures and to position-dependent
alphabets is straightforward.
A Bayesian network is called a moral Bayesian net-

work iff its DAG is moral. A DAG is called moral iff,
for each node ℓ, each pair (p1, p2), p1 ≠ p2, of its parents
is connected by an edge [38]. The family of moral Baye-
sian networks contains popular models such as PWM
models, WAM models, Markov models of higher order,
and Bayesian trees. When considering the parents Pa(ℓ)
of a node ℓ in a moral Bayesian network, we can order
the nodes in Pa(ℓ) uniquely according to the topological
ordering within the set Pa(ℓ).
With these prerequisites, we present the likelihood of

a moral Bayesian network in a parameterization that is
often used for the MAP principle. In the following, we
denote these parameters by θ compared to ϑ in equation
(1a). The likelihood pθ(x, c|θ) of a moral Bayesian net-
work with parameters θ is defined by

p x c c c x x

L

   ( , | ) : ,, , , ( , ) 

  


 pa

1

(3)

where θc denotes the probability of class c, and
 c x x, , , ( , )  pa denotes the probability of observing xℓ at
Xℓ in class c given the observations pa(ℓ, x) at the ran-
dom variables represented by the nodes Pa(ℓ) [39]. The

following constraints together with the non-negativity of
the θ-parameters ensure that subsets of the components
of θ remain on simplices:
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with c Î  , ℓ Î [1, L], and aÎ Σ|Pa(ℓ)| being a possi-
ble observation at the random variables represented by
Pa(ℓ) and, hence, corresponding to pa(ℓ, x) for a specific
sequence x.
It follows from these constraints that not all para-

meters of θ are free: if the values of θ1, θ2, ..., θC-1 are
given, the value of θC is determined, and if the values of
θc, ℓ, 1, a, θc, ℓ, 2, a, ..., θc, ℓ, S-1, a are given, the value of
θc, ℓ, S, a is determined.

MRF Parametrization of moral Bayesian networks
While generative learning of parameters can be performed
analytically for many statistical models, no analytical solu-
tion is known for most of the popular models in case of
the MCL or the MSP principle. Hence, we must resort to
numerical optimization techniques like conjugate gradi-
ents or second-order methods [36]. Unfortunately, the
parameterization of directed graphical models in terms of
θ causes two problems in case of numerical optimization:
first, the limited domain, which is [0, 1] for probabilities,
must be assured, e.g., by barrier methods; second, neither

the conditional likelihood p c x p c x
p x   
 ( | , ) : ( , | )

( | ) nor its

logarithm are concave functions of θ, so numerical optimi-
zation procedures may get trapped in local maxima or sad-
dle points [27]. Hence, the likelihood of moral Bayesian
networks is often defined in an alternative parameteriza-
tion. We denote these parameters by lwhich replaces ϑ in
equation (2a). This parameterization is closely related to
the natural parameters of MRFs [17,40] yielding the likeli-
hood

p x c
c c x xL

Z 
 


( , | ) :

exp , , , ( , )

( )
,

     pa1 (4)

where Z (l) denotes a normalization constant defined
as the sum over all possible classes c Î  and all possi-
ble sequences x Î ΣL of the numerator:

Z c c x x

L
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( ) : exp ., , , ( , )   
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Similar to the θ-parameters, there is one parameter lc
Î R for each class c Î  , and one parameter
c x x, , , ( , )  pa Î R for each class c and each symbol b at
Xℓ given the observation a at random variables repre-
sented by the nodes Pa(ℓ). In contrast to θ, however,
these parameters cannot be interpreted directly as
probabilities.
As for the θ-parameters, not all parameters of l are

free. In case of l-parameters, we may fix one of the
parameters in each subset, i.e., one of the lc and one of
the lc, ℓ, b, a for each c Î  , ℓ Î [1, L], and aÎ Σ|Pa(ℓ)|

to a constant value without reducing the codomain of
pl (x, c|l), resulting in the same number of free para-
meters for θand l. We choose to fix the last parameter
in each subset arbitrarily to 0, i.e.,

 C c S a 0 0and , , , .

In order to show that equations (3) and (4) are
equivalent, we need a bijective mapping from θ to l.
The mapping from θ to lis defined by [41]
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with c Î [1, C - 1] and
c Î [1, C], ℓ Î [1, L], b Î [1, S - 1], aÎ Σ|Pa(ℓ)|, respec-

tively. The mapping t from lto θis less trivial. We
denote by [t(l)]c := θc the component of tdefining θc,
and we denote by [t(l)]c, ℓ, b, a:= θc, ℓ, b, a the compo-
nent of t defining θc, ℓ, b, a. Then, we obtain t by mar-
ginalization of (4):

[ ( )]
exp( ) ( )

exp( ) ( )
t c Zc

c Zcc
c  

 

  

(6a)

and
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exp( , , , ) , , , ( )

exp( , , , ) , ,
, , ,t

c b a Zc b a

c b a Zc
c b a

 


 

   


bb ab , ( )
,


(6b)

where Zc (l) and Zc, ℓ, b, a(l) are two partial normali-
sation constants defined in Appendix A of Additional
File 1.

Prior for moral Bayesian networks
For Bayesian learning principles (equations (1a) and (2a)),
we must to specify a prior on the parameters of the
model. One conjugate prior hθ (θ|a) for the likelihood of

directed graphical models and their specializations is the
product-Dirichlet prior [39]. The product-Dirichlet prior
assumes parameter independence and amounts to a pro-
duct of independent Dirichlet densities:

h c a c a

ac

      ( | ) ( | ) |, , , ,
| ( )|

   

Di Di

pa

   

 
(7a)

where θC := (θ1, θ2, ..., θC), aC := (a1, a2, ..., aC), θc, ℓ,
a:= (θc, ℓ,1, a, ..., θc, ℓ, S, a), ac, ℓ, a:= (ac, ℓ, 1, a, ..., ac, ℓ, S,

a), and

Di( | )
( )

( )
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ii
ii

i

i

i 1
(7b)

where j= (j1, j2, ...), and ji stands for θc or θc, ℓ, b, a.
We use hyper-parameters athat satisfy the consistency

condition [35,39], which introduces the following con-
straints on the hyper-parameters a. We assume that
there are joint hyper-parameters ac, xwith xÎ ΣL and c
Î  such that for all ℓ Î [1, L], for all b Î Σ, and for
all aÎ Σ|Pa(ℓ)|

 c c x

x L

: ,




(8a)

and

   c b a c x x b x a

x L

, , , , , ( , ),: , 
  


 pa


(8b)

where the Kronecker symbol δ is 1 if both indices are
equal and 0 otherwise. These constraints ensure that the
hyper-parameters a of the product-Dirichlet prior can
be interpreted as, possibly real-valued, counts stemming
from a set of a-priorily observed pseudo-data. The size
of the set of pseudo-data is commonly referred to as
equivalent sample size [35,39], and we denote the
equivalent sample size of class c by ac. Hence, a, pro-
duct-Dirichlet prior allows an intuitive and easily-inter-
pretable choice of hyper-parameters, in contrast to
product-Gaussian or product-Laplace priors.
Our first goal is to derive a prior for l which is

equivalent to the commonly-used product-Dirichlet
prior for θ in equation (7a). To this end, we use the
transformation t from l to θ to transform the product-
Dirichlet prior hθ (θ|a) to the desired prior,

h h t t     ( | ) ( ( ) | ) | det ( ) |,   (9)

where det (t’(l)) denotes the Jacobian of t. We derive
the Jacobian in Appendix B of Additional File 1 by
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exploiting independencies between parameters of the
model,

| det ( ) |
exp( ) ( )

( )

exp( , , , ) , , , ( )

ex

 




t c Zc
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c b a Zc b a

c

  


 


 

pp( , , , ) , , , ( )
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 c b a Zc b abba

L

   






1

(10)

and obtain a general transformed Dirichlet prior
(Appendix C of Additional File 1).
If all hyper-parameters are chosen to satisfy the con-

sistency condition, many normalization constants cancel,
and we obtain a simplified expression of the trans-
formed Dirichlet prior,

h
c cc c b a c b aab

Z
  

   

 ( | )
exp , , , , , ,

( ) .
.

    (11)

where a := Σc ac.
Since the commonly-used product-Dirichlet prior for θ

defined in equation (7a) is conjugate to the likelihood
defined in equation (3), the transformed prior of equation
(11) is also conjugate to the likelihood defined in equa-
tion (4). While in earlier comparisons of different learn-
ing principles for the same moral Bayesian network,
different priors have been employed, we are now capable
of using the same prior as defined in equation (11) for
the MAP and the MSP principle. Employing this prior,
we can compare the classification accuracy of two classi-
fiers based on the same model, but trained either by the
MAP or the MSP principle, using the same prior, avoid-
ing a potential bias induced by differing priors.

Choice of hyper-parameters
In contrast to the comparison of the MAP and the
MSP principle for the same model, the derived prior
cannot be used for an unbiased comparison of differ-
ent models without further premises, since different
models typically use different parameters of potentially
different dimension, inevitably leading to different
priors for these models. One reasonable requirement
for the comparison of models with different graph
structures is likelihood equivalence [39], stating that
models with different graph structures representing the
same likelihood, also obtain the same marginal likeli-
hood of the data given graph structure and hyper-para-
meters or, equivalently, that the values of the prior
density on the parameters of such models must be
equal for equivalent parameter values. Examples for
different graph structures representing the same likeli-
hood are left-to-right and right-to-left Markov models
or differently rooted Bayesian trees with the same
undirected graph structure.

Heckerman et al. [39] show that this property is satis-
fied only by the BDe metric, which corresponds to the
consistency condition presented above. This condition
also entails that the hyper-parameters used for the
priors of these models can be derived from a common
set of pseudo-data. However, the consistency criterion
does not determine how a specific set of pseudo-data
should be chosen in order to minimize the bias imposed
on the comparison, and different choices may favor dif-
ferent models in one way or the other. For example, a
comparison of different models can be easily biased if
the set of pseudo-data contains statistical dependencies
that can be exploited by some but not by all models, as
for instance dinucleotide dependencies that can be cap-
tured by a WAM model but not by a PWM model.
The BDeu metric [35,39] is a special case of the BDe

metric and a popular choice for structure learning and
model selection for Bayesian networks [39,42,43] or
Bayesian trees and mixtures thereof [2,41]. It imposes
additional constraints on the hyper-parameters, which
can be described as follows: building on the consistency
condition for the product-Dirichlet prior, the specific
hyper-parameters for the priors of different models
represent identical sets of pseudo-data. The hyper-para-
meters, which represent the a-priori information, are
defined based on a set of pseudo-data in which all possi-
ble sequences xÎ ΣL occur with equal probability [35].
Despite the general assumption of uniform pseudo-data,
the equivalent sample size may differ between the differ-
ent classes c Î  , representing a-priori class-probabil-
ities. Using the concept of joint hyper-parameters
introduced for the consistency condition in the previous
subsection, this a-priori information implies that for
each class c the joint hyper-parameters ac, x are identical
for each x. For this reason, we derive from equation (8a)

 
c x

c
SL, ,

which implies the following values of the hyper-para-
meters ac,ℓ,b, afor the model parameters lc,ℓ,b, a

 
c b a

c
S

, , , | ( )|
, 

 1 Pa

where |Pa(ℓ) | is the number of parents Pa(ℓ) of node
ℓ, c Î  , ℓ Î [1, L], b Î Σ, and a Î Σ|Pa(ℓ)|.
Consider the example that the equivalent sample size

for class c is ac = 32 and that the data of each class is
modeled either by a PWM or by a WAM model. The
PWM model has parameters lc, ℓ, b, ℓ Î [1, L], b Î Σ,
while the WAM model has parameters c b, ,1 , b Î Σ
and 

c b a, , , , ℓ Î [2, L], b, a Î Σ. In case of the DNA
alphabet, the BDeu metric determines the hyper-
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parameters for the PWM model to be ac, ℓ, b = 8, while
it determines the hyper-parameters for the WAM model
to be  c b, ,1 = 8 and   c b a, , , = 2. With this choice of
hyper-parameters, both product-Dirichlet priors repre-
sent the same set of pseudo-data. The hyper-parameters
ac, ℓ, b of the PWM model correspond to pseudo-counts
of mono-nucleotides b, while the hyper-parameters
  c b a, , , of the WAM model correspond to conditional
pseudo-counts of nucleotides b given nucleotide a
observed at the previous position ℓ - 1. This result does
equally hold for all specializations of MRFs considered
in this paper, and we choose the hyper-parameters
accordingly throughout the case studies.

Markov random fields
The prior of equation (11) allows an unbiased compari-
son of different learning principles including the genera-
tive MAP principle and the discriminative MSP
principle for different models from the family of moral
Bayesian networks including PWM models, WAM mod-
els, Markov models of higher order, or Bayesian trees.
However, several important models proposed for the
recognition of short signal sequences do not belong to
this family. Hence, we now focus on the main goal of
deriving a prior for the family of MRFs, which contains
the family of moral Bayesian networks as special case.
MRFs are undirected graphical models, i.e., the underly-

ing graph structure is an undirected graph. Again, edges
between nodes model potential statistical dependencies
between the random variables represented by these nodes,
while the absence of edges between nodes represents con-
ditional independencies of the associated random variables
given their neighboring nodes. The likelihood of an MRF
in terms of l-parameters is given by

p x c
c c i fc i xi

Ic

Z 
 


( , | )

exp , , ( )

( )
,

 



1 (12)

where Ic denotes the number of l-parameters condi-
tional on class c, and fc, i(x) Î {0, 1} denotes the indica-
tor function of lc, i [17,40]. These indicator functions
determine the undirected graph structure.
For illustration purposes, we rewrite the likelihood of

a PWM in analogy to the MRF likelihood, for which the
set of parents of all nodes are empty. Hence, we omit
the vector of parents when rewriting the likelihood of
equation (4) in terms of Kronecker symbols δ,

p x c
c c b x bb

L

Z 
  


( , | )

exp , , ,

( )
.

    1 (13)

Renaming the parameters in terms of lc , i and
defining the indicator functions fc,i as corresponding

Kronecker symbols, we obtain the likelihood in form of
equation (12).
Using the conformity of equations (4) and (12), we

can now suggest a prior for MRFs in analogy to equa-
tion (11),

h Z c c
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c i c i
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1

(14)

that contains the transformed Dirichlet prior of equa-
tion (11) as special case if the MRF of each class belongs
to the family of moral Bayesian networks. Examining the
likelihood of equation (12), we find that the prior of
equation (14) is conjugate to the likelihood of MRFs.
Additionally, it is equivalent to the conjugate prior of
the exponential family [44] for the studied family of
models.
We illustrate the prior of equation (14) for one and

two free parameters in Figure 1 for different values of
the hyper-parameters ai. In Figure 1a, we compare the
derived prior to the Gaussian prior and the Laplace
prior for one free parameter l1. For illustration pur-
poses, we choose the hyper-parameters of the Gaussian
and Laplace prior such that their maxima are identical
to that of the derived prior. We find that the derived
prior provides an interesting interpolation between a
Gaussian prior and a Laplace prior. In the vicinity of the
maximum, the logarithm of the derived prior shows a
quadratic dependence on l1, whereas it shows a linear
dependence on l1 in the far tails. That is, the derived
prior is similar to a Gaussian prior in the vicinity of the
maximum and similar to a Laplace prior in the far tails.
In Figure 1b, we show the derived prior for two free

parameters l1 and l2. Interestingly, the derived prior
exhibits a mirror symmetry about the plane l1 = l2,
which can be explained by the choice of equal hyper-
parameters a1 = a2. In contrast to the product-Gaussian
and the product-Laplace prior, we do not find a radial
symmetry, which can be explained by the fixed para-
meter l3 = 0.
Summarizing the main result of this section, we pro-

pose a prior for MRFs that

i) can be used for the generative MAP and the dis-
criminative MSP principle,
ii) is conjugate to the likelihood of MRFs and, hence,
also to the likelihoods of many popular models used
for the recognition of short sequence motifs,
iii) includes the commonly-used product-Dirichlet
prior of equation (7a) as special case if the MRF
belongs to the family of moral Bayesian networks
including PWM models, WAM models, Markov
models of higher order, or Bayesian trees, and
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iv) allows to incorporate prior knowledge intuitively
by defining a set of a-priorily observed pseudo-data.

Hence, it can be employed in comparative studies of
generative and discriminative learning principles applied
to the same family of models, and of different, genera-
tively or discriminatively trained models. Additionally,
the derived prior can be readily extended to mixtures of
models from the family of MRFs. In the next section,
we illustrate the utility of the derived prior.

Results and Discussion
In this section, we present two case studies that illustrate
how the derived prior can be used for an unbiased com-
parison of different learning principles for different mod-
els related to two standard problems in bioinformatics.
In case study 1, we illustrate the comparison of differ-

ent learning principles for the recognition of TFBSs
using the same models and the same priors. Specifically,
we investigate the influence of different sizes of data

sets on the performance of generatively and discrimina-
tively trained models in close analogy to the pioneering
study of Ng & Jordan [11]. Possibly due to the lack of a
common prior that could be used for both the genera-
tive and the discriminative learning, Ng & Jordan com-
pare the generative Bayesian approach of parameter
estimation (MAP) to the discriminative non-Bayesian
approach of parameter estimation (MCL). Based on the
derived prior, it is now possible to compare the two
Bayesian learning principles directly using exactly the
same prior in both cases. In case of TFBSs, the number
of available training sequences is small, typically ranging
from only 20 to at most 300 sequences. Hence, available
algorithms for the recognition of TFBSs are far from
being perfect, and unbiased comparisons of different
learning principles for data sets of this size are of
fundamental importance for any further advance on
this field.
In case study 2, we illustrate the comparison of differ-

ent learning principles with different models for the

Figure 1 Illustration of the derived prior. Illustration of the derived prior of Eqn. (14) for one and two free parameters. Figure a) shows the
derived prior (red line) for one free parameter l1 and ai Î {0.2, 1, 5} in comparison to a Gaussian (black line) and a Laplace prior (green line).
Figure b) shows the derived prior for two free parameters l1, l2 and ai Î {0.2, 1, 5}.
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recognition of human donor splice sites using the same
a-priori information. Donor splice sites exhibit non-adja-
cent dependencies [3,45,46]. Hence, it seems worthwhile
to employ MRFs for this task, as they are capable of
capturing dependencies between all pairs of positions in
a sequence [5]. However, different subclasses of donor
splice sites exist [3], so the use of mixtures of MRFs
may be favourable. Donor splice sites are highly con-
served so that for some pairs of positions some of the
16 possible pairs of nucleotides do not occur. These
non-occurrences cause numerical problems when using
the ML or MCL principle, but one may adopt a Baye-
sian approach to circumvent these problems. Interest-
ingly, mixtures of MRFs have not been employed in the
past for the classification of donor splice sites, possibly
because of the lack of a suitable prior. The derived prior
now provides an opportunity to investigate if mixtures
of MRFs might be useful for the recognition of splice
sites. We compare mixtures of MRFs to single MRFs,
mixtures of Markov models, and single Markov models
using the MAP and the MSP principle, and we investi-
gate which of these two learning principles may be
worthwhile for the recognition of splice sites.
The focus of the case studies presented is not on the

identification of the most appropriate model class or
learning principle for the recognition problem scruti-
nized, although undoubtedly this is a welcome side-
effect, but primarily we aim at illustrating the benefit of
the derived prior for unbiased comparative studies in
bioinformatics.

Case Study 1: Discriminative vs. generative parameter
estimation
In case study 1, we illustrate a comparison of genera-
tively trained and discriminatively trained Markov mod-
els of different orders using the derived prior. We
choose the data set of [26] containing 257 aligned bind-
ing sites, each of length 16 bp, of the mammalian tran-
scription factor Sp1 as foreground data set and 267
second exons of human genes, which have different
lengths and are cut into 100-mers for this study, with a
total size of approximately 68 kb as background data
set. We use a PWM model as foreground model and
Markov models of order 3 as background model. Results
for all other combinations of a Markov model of orders
0 or 1 as foreground model and Markov models of
orders 0 to 3 as background model are available in
Additional File 2. These models are trained by the MAP
principle and by the MSP principle using the same
priors and the same hyper-parameters for both cases.
We choose for both cases and all model combinations
an equivalent sample size of 4 for the foreground model
and an equivalent sample size of 1024 for the back-
ground model.

We use a stratified holdout sampling procedure for
the comparison of the classification performance of the
resulting classifiers. In each iteration of the stratified
holdout sampling procedure, we randomly partition
both the foreground data set and the background data
set into a preliminary training data set comprising 90%
of the sequences and a test data set comprising the
remaining 10% of the sequences. In order to vary the
size of the training data set, we use an additional sam-
pling step, where we randomly draw a given fraction of
the preliminary training data sets ranging from 5% to
100% yielding the final training data sets. We train all
classifiers corresponding to different learning principles
and different model combinations on the same subsets
of the preliminary training data sets, and we use the
resulting classifiers to classify the same sequences in the
test data sets.
We evaluate the classification performance on the test

data sets using as performance measures the false posi-
tive rate (FPR) for a fixed sensitivity of 95%, the sensitiv-
ity (Sn) for a fixed specificity of 99.9%, the positive
predictive value (PPV) for a fixed sensitivity of 95%, and
the area under the precision recall curve (AUC-PR)
[26,47]. We repeat the stratified holdout sampling pro-
cedure 1, 000 times, and report the means and standard
errors of the four performance measures FPR, Sn, PPV,
and AUC-PR for each classifier as the final result of the
comparison. We present the results of the comparison
for the combination of a PWM model in the foreground
and a Markov model of order 3 in the background in
Figure 2, which shows the four performance measures
Sn, FPR, PPV, and AUC-PR as functions of the relative
size of the training data sets. Corresponding results for
other combinations of models show the same qualitative
behaviour and are available in Additional File 2.
The classification performance increases rapidly with

increasing size of the training data set and achieves its
optimal value for the largest training data sets. For the
largest training data set, the discriminatively trained
classifier yields an FPR of 0.4%, an Sn of 76.6%, a PPV
of 57.3%, and an AUC-PR of 0.826, whereas the genera-
tively trained classifier yields only an FPR of 0.6%, an Sn
of 70.5%, a PPV of 47.0%, and an AUC-PR of 0.803.
Ng & Jordan [11] compare the classification perfor-

mance of PWMs trained by the MAP principle and the
MCL principle on a number of data sets from the UCI
machine learning repository. They find that for large
data sets the discriminative MCL principle has a lower
asymptotic error, corresponding to a higher classifica-
tion performance, but that the generative MAP principle
yields a higher classification performance for small data
sets. In contrast to those findings, we find a superior
classification performance of the discriminatively com-
pared to the generatively trained models irrespective of
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the size of the training data set. This result suggests that
the choice of the same prior is advisable for an unbiased
comparison of generative and discriminative learning
principles and, moreover, that it might be worthwhile to
re-evaluate the power of the MSP principle for other
applications in bioinformatics as well.

Case Study 2: Mixtures of Markov random fields
In this case study, we demonstrate a comparison of dif-
ferent learning principles using Markov models, mix-
tures of Markov models, MRFs, and mixtures of MRFs,
and the derived prior. We choose a standard data set of
human donor splice sites (foreground data set) and
human non-donor splice sites (background data set)
compiled by Yeo & Burge [5]. This data set is already
partitioned into a foreground training data set (8, 415
donor splice sites), a background training data set (179,
438 non-splice sites), a foreground test data set (4, 208
donor splice sites), and a background test data set (89,
717 non-splice sites). We choose an inhomogeneous
Markov model of order 1 (MM) and an MRF which
models all pairwise dependencies [5] as basic models.
The MRF has 336 indicator functions each of the form

f xc i x b x b, , ,( ) ,  
 1 1 2 2 (15)

where ℓ1, ℓ2 Î [1, L], ℓ1 ≠ ℓ2, and b1, b2 Î Σ. Based on
these basic models, we build mixture models with two
MMs (mixMM) and two such MRFs (mixMRF), and we
compare those four classifiers that are based on a com-
bination of the same kind of model for the foreground
and for the background class. For all of these classifiers,
we use the derived prior with an equivalent sample size

of 32 for each of the four foreground models and an
equivalent sample size of 96 for each of the four back-
ground models. We train each of these classifiers on the
two training data sets using the MAP and the MSP
principle, and we evaluate their classification perfor-
mance on the two test data sets. We use the same per-
formance measures as in case study 1, except that we
replace Sn by the the area under the receiver operating
characteristic curve (AUC-ROC) [48], because AUC-
ROC is more commonly used than Sn for the classifica-
tion of splice sites [5].
We present the results of this comparison in Figure 3,

which shows barplots of each of the four performance
measures for each of the four classifiers and both learn-
ing principles. The results for the MAP principle are
shown in Figure 3(a-d). We find that the two classifiers
based on mixture models outperform the two corre-
sponding classifiers based on single models with respect
to all four performance measures. We also find that the
two classifiers based on MRFs and mixMRFs yield a
higher classification performance than the two corre-
sponding classifier based on MMs and mixMMs. The
classifier based on a mixture of MRFs yields the lowest
FPR (7.1%), the highest AUC-ROC (0.9806), the highest
PPV (38.5%), and the highest AUC-PR (0.6830), stating
that, among the four models tested, a mixMRF is the
most appropriate model for classifying human donor
splice sites and non-donor sites using the MAP principle.
In close analogy to Figure 3(a-d), (e-h) shows the

results using the MSP principle. We find that discrimi-
natively trained mixture models, i.e., mixMM and
mixMRF, outperform the two corresponding classifiers
based on the single MM and single MRF, and that the

Figure 2 Comparing generatively to discriminatively trained models. We compare the classification performance of classifiers using the
MAP principle (solid line) and the MSP principle (dashed line) with the derived prior on differently-sized training data sets for binding sites of
the transcription factor Sp1. For both classifiers, we use a PWM model in the foreground and a Markov model of order 3 in the background. We
plot the four performance measures, false positive rate, sensitivity, positive predictive value, and area under the precision-recall curve (AUC-PR),
against the percentage of the preliminary training data set used for estimating the parameters. Whiskers indicate two-fold standard errors. We
find that the classification performance increases with increasing size of the training data set. For the false positive rate this corresponds to a
decreasing curve. For all four measures and all sizes of the data set, we find that the discriminatively trained Markov models yield a consistently
higher classification performance than the generatively trained Markov models.
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mixMM classifier is comparable or even better than the
MRF classifier. The mixMRF classifier yields the best
results for FPR (7.0%) and PPV (39.0%), while the
mixMM classifier yields a higher AUC-ROC (0.9809)
and AUC-PR (0.6876) than the mixMRF classifier.
Comparing Figures 3(a-d) and 3(e-h), we find that the

four MSP-trained models outperform the corresponding
MAP-trained models. For instance, the MM classifier
yields an PPV of 37.8% for the MSP principle and only
35.7% for the MAP principle, and the mixMRF classifier
yields a PPV of 39.0% for the MSP principle only 38.5%
for the MAP principle. Interestingly, classifiers based on
simple models (MM and mixMM) show the greatest
improvement when replacing the MAP principle by the
MSP principle. This observation is in accordance with
previous findings that discriminative learning seems to
be advantageous over generative learning if the model
assumption is wrong [29].

Conclusions
The systematic comparison of different statistical models
and different learning principles has been the focus of
several studies of the last decade [11,26,29,30]. However,
these comparisons lose value if different priors are used
for different models or different learning principles, and
it is questionable if the obtained results from such com-
parisons are meaningful at all.
In this paper, we derive a prior that allows an

unbiased comparison of generative and discriminative
learning principles for models from the family of MRFs
including PWM models, WAM models, Markov models
of higher order, Bayesian trees, moral Bayesian net-
works, and their mixtures as special cases. The derived
prior is conjugate to the likelihood of MRFs and a gen-
eralization of the commonly-used product-Dirichlet
prior for moral Bayesian networks. The derived
prior provides an interesting interpolation between a

Figure 3 Comparison of different generatively and discriminatively trained models. We compare the classification performance of Markov
models (MM), mixtures of Markov models (mixMM), Markov random fields (MRF), and mixtures of Markov random fields (mixMRF) for a set of
donor splice sites [5] using the MAP and the MSP principle, and using the derived prior for all models. We plot the four performance measures
false positive rate, area under the ROC curve (AUC-ROC), positive predictive value, and area under the precision-recall curve (AUC-PR) for each of
the four models. For the MAP principle (a-d), the comparison shows that mixMM and mixMRF yield a higher classification performance than MM
and MRF, respectively, and that mixMRF achieves the highest classification performance of all models with respect to all four performance
measures. For the MSP principle (e-h), the comparison shows that mixMM and mixMRF yield a higher classification performance than MM and
MRF, respectively, and that mixMRF achieves the highest classification performance of all models with respect to false positive rate and positive
predictive value, whereas the highest AUC-PR and AUC-ROC are achieved by mixMM.

Keilwagen et al. BMC Bioinformatics 2010, 11:149
http://www.biomedcentral.com/1471-2105/11/149

Page 11 of 13



product-Gaussian prior and a product-Laplace prior: it
is qualitatively similar to a product-Gaussian prior in
the vicinity of the maximum and qualitatively similar to
a product-Laplace prior in the far tails. In contrast to a
product-Gaussian and a product-Laplace prior, the
hyper-parameters of the derived prior can be easily
interpreted as counts stemming from pseudo-data,
allowing an intuitive choice of these hyper-parameters.
We present two case studies using the derived prior

for an unbiased comparison, and we find that discrimi-
native parameter learning can be beneficial for sequence
classification in the field of bioinformatics. On a set of
mammalian TFBSs, we find that it is possible to yield
an improved classification performance by using the dis-
criminative MSP principle instead of the generative
MAP principle even if the amount of available training
data is small. By varying the size of the training data
set, we find that discriminative parameter learning can
improve the recognition of TFBSs over generative para-
meter learning irrespective of the size of the training
data set. This result differs from previous findings of Ng
& Jordan [11], who did a similar study comparing the
generative Bayesian MAP principle to the discriminative
non-Bayesian MCL principle. On a data set of donor
splice sites [5], we illustrate the utility of the proposed
prior for comparing Markov models, mixtures of Mar-
kov models, MRFs, and mixtures of MRFs. For this data
set, we find that the best classification performance can
be achieved by a discriminatively trained mixture of
MRFs.
The derived prior might be useful in future compara-

tive studies as it provides a less-biased guidance to the
understanding of molecular mechanisms, and it leads to
further improvements of algorithms for the recognition
of short signal sequences including splice sites, TFBSs,
nucleosome binding sites, miRNA binding sites, tran-
scription initiation sites, or insulator binding sites.
Hence, we make an implementation of this prior avail-
able to the scientific community as part of the open
source Java library Jstacs http://www.jstacs.de.

Additional file 1: Appendices. This file contains more information
about the partial normalization constants, the computation of the
Jacobian, and a general prior for moral Bayesian networks.

Additional file 2: Results of the Sp1 case study. This file contains all
results of the Sp1 case study including for all combinations of Markov
models. For the foreground class we use orders 0 or 1, and for the
background class we use orders 0 to 3.

List of abbreviations
MAP: maximum a-posteriori; MCL: maximum conditional likelihood; ML:
maximum likelihood; MRF: Markov random field; MSP: maximum supervised
posterior; PWM: position weight matrix; TFBS: transcription factor binding
sites; WAM: weight array matrix.
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