
A Geometrical Perspective for the Bargaining Problem
Kelvin Kian Loong Wong*

School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Bundoora, Australia

Abstract

A new treatment to determine the Pareto-optimal outcome for a non-zero-sum game is presented. An equilibrium point for
any game is defined here as a set of strategy choices for the players, such that no change in the choice of any single player
will increase the overall payoff of all the players. Determining equilibrium for multi-player games is a complex problem. An
intuitive conceptual tool for reducing the complexity, via the idea of spatially representing strategy options in the
bargaining problem is proposed. Based on this geometry, an equilibrium condition is established such that the product of
their gains over what each receives is maximal. The geometrical analysis of a cooperative bargaining game provides an
example for solving multi-player and non-zero-sum games efficiently.
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Introduction

1.1 Scope and Objective
Pareto-optimality is concerned with the logical analysis of

optimizing a set of strategies in a real life situation involving the

interaction of more than one individual, that can be mathemat-

ically modeled as a game [1],[2]. The payoff in a game can be

non-measurable psychological parameters such as utility, prestige,

desire, security level, or measurable quantities that serve as a

common medium of exchange. Some simple games, such as the

bargaining problem [3], are known as non-zero-sum games and

the players try to achieve a win-win situation. The game ‘‘paper-

rock-scissors’’ is a zero-sum game, since the payoff to the winner of

a single instance of the game is equal to the loss of the other player.

In any game, there exist choices of strategies that may be adopted

to maximize sum total payoff. For a generic n-player game, there is

always a solution for the optimal strategy for each person. This

strategy guarantees their average payoff or loss is maximized or

minimized under the assumption that the opposing player also

uses an optimal strategy. This solution corresponds to the

equilibrium point (EP) of the game, and may be non-deterministic,

in that the optimal choice of strategy to use in any given play of the

game is chosen randomly according to a probability distribution

over all possible strategy choices.

In this paper, the focus is on the analysis of non-zero-sum games.

Another classic non-zero-sum game is ‘‘the Prisoner’s Dilemma’’

[4],[5],[6] but it pertains to a non-cooperative one. More practical

games typically involve multiple players in areas of economics [7]

and mathematical biology [8],[9],[10]. The computation of EP

increases significantly in complexity for multi-player, multi-strategy

and non-zero-sum cooperative games [11].

The notion of an EP is the key ingredient in a game, and is what

we aim to obtain. There may be more than one EP; and for a two-

person zero-sum game, it is simply the set of all pairs of opposing

good strategies [12] whereas for a non-zero-sum game, it consists

of pairs of reinforcing good strategies. The approach to solving

non-zero-sum cooperative games, for the case of two players, can

be better understood if the utility gains of all possible actions are

computed and plotted as a set of alternatives on a two-dimensional

graph. The convex point at the vertex of the possible set of

solutions corresponds to the optimal utility gain for both persons.

For an n-players game, this treatment can be extrapolated to a set

of alternatives on a multi-dimensional graph.

1.2 Theory of Utility
The theory of utility can be observed in many games. In the

simplest bargaining scenario presented by Nash, two cooperative

individuals have a certain list of goods to barter trade [12]. This

simple example can be extended to other situations of bargaining,

such as employer and union negotiation, or to that of two villages

with different resources and an aim of optimizing economic benefit

in trade. As an example, we present a primitive scenario whereby

two villages, hereby labeled as Villages 1 and 2, are involved in

barter trading of specific goods. Village 1 relies on coal production

as the main source of its revenue. Village 2 is assumed to have

abundant cattle production but has insufficient coal resources. We

make a further assumption that cattle are of lesser abundance, and

hence these goods enjoy a higher value compared to coal. If the

two villages concentrate on their strengths of production

individually, and perform trading of the goods that have different

utilities to each party, a point of equilibrium in trade will be

reached at a certain point of time. Coal will naturally be more

valued within Village 2 due to limitation, but a huge quantity of

cattle will essentially not be produced if greater efforts are aimed at

producing coal. It is better to trade cattle for coal since this is a less

expensive alternative in terms of value that pertains to the good.

Village 1 that trades coal for cattle perceives and thinks likewise. A

certain equilibrium trading quantity of the two goods can be

reached in a mutual trade agreement depending on the utility value

of goods to each village. This equilibrium corresponds to the

payoff of the two villages.

From a psychological perspective, the utility value of an item to

an individual is dictated by state of mind at a particular time. It

varies according to the events that occurred to the person
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previously, and is evidently a random psychological parameter.

Analogously, the security level of performing a specific task can

also be linked to this utility value. In practice, we are all dictated by

this value in determining our actions or performing any type of

task assigned to us. For instance, a shopper may decide to buy a tin

of cookies instead of a box of chocolates because the cookies

appeal more to that person in terms of taste, price or aesthetic

property, and hence, has a higher utility value in comparison. This

utility value may change when the shopper tires of eating cookies

after a few days and desires a taste of chocolate the next time.

Desire or utility of a grocery to a shopper may also vary based on

available quantity at its time of acquisition.

It is difficult to construct a perfect model of a game that is a

reflection of reality. There will always be numerous outcomes to

consider even for the simplest games. For example, when volumes

of items are divided for exchange, its value to each player may

change. There are usually too many variables such as the

bargaining abilities of the players, the norms of the society, and

the variation in utility of the items over time for the formal theory

to be accommodated [14]. But understanding bargaining games

from a simplistic perspective can assist in the study and

formulation of frameworks for determining EP.

1.3 The Bargaining Problem
For the bargaining problem, we illustrate how, as a special case,

the two persons can perform barter trade such that their utility

gains are maximized. We assume two players - Player 1 and Player

2 who are in a position to barter goods but have no money to

facilitate the exchange [12]. Bargaining theory is a generalized

concept of the two-person bargaining problem. The game is a

cooperative one as both players have complete information about

the game; each player is fully aware of the payoff or profit for

themselves and their co-players, for every possible transaction.

Such games are also known as cooperative games in which all players

have identical interests.

In the two-player bargaining situation, a compact convex

metrical space Si of mixed strategies si pertains to Player i, for

i [ f1,2g. These mixed strategies represent the courses of action

the player can take independently of the other players. The

randomization process of establishing all possible strategy

alternatives illustrates the possible joint courses of action by the

players. This set of alternatives can be represented by a convex

polytope in the plane with the dimensions of utility gains for the

players. For each pair of mixed strategies (s1, s2) from (S1, S2), the

payoffs for the deployment of these strategies are denoted by

P1(s1, s2) and P2(s1, s2) respectively. Such payoff of each mixed

strategy pair corresponds to a point in the convex polytope of the

super set strategy alternatives [13].

An outcome is in equilibrium if there is no other possible

agreement that allows both players to have higher payoffs

simultaneously [14]. The barter trade such that maximum utility

gain Gi is achieved is known as Pareto-optimal. Note that gain is

the excess of payoff after bargaining over the initial payoff before

strategy choices are chosen. Nash has shown that obtaining the

maximum of the product of the two utility gains (G1 and G2) from

the set of alternatives, known as the Nash product G1G2, will attain

the Pareto-optimal solution for the bargaining situation. Pareto-

optimality is a non-zero sum Nash game equilibrium point that

determines the Pareto efficiency of the outcome. It is also

worthwhile mentioning that there may be more than one

equilibrium point, and this set of points can be defined as the

equilibrium point (EP).

The combinatorial plot for this bargaining situation is illustrated

in Figure 1, where the set of alternatives for all possible item

exchanges is enclosed by a boundary curve. We make the

assumption that at least one item is possessed by each player in the

end. The super set of alternatives results in a convex polygon

whereby the product of maximum utility gains is maximized at its

vertex. In practice, we aim to optimize the Nash product G1G2.

The solution is a Pareto-optimal outcome, in which the joint

profits by all parties are maximized. It may be worthwhile noting

that the Nash equilibrium is not unique as multiple or even an

infinite number of strategies that pertain to the Nash equilibria

exist. In this game theoretical setup, all items are discrete, and the

discreteness of the payoffs increases the complexity of attaining the

solution.

1.4 Pareto-optimal Equilibrium
Based on a multi-player bargaining situation, establishing the

payoff matrix containing the super set of strategy choice

alternatives is computationally expensive. It is to be noted that

proving the existence of the Pareto-optimal equilibrium point and

finding the solution set at the equilibrium are different tasks. In

general, computation of a Pareto-optimal equilibrium point in

mixed strategies of a finite game poses a numerical challenge for

the following reason. For multiple players, determining the

Pareto-optimal equilibrium in mixed strategies amounts to

solving a system of multivariate polynomial equations of high

order [13] and, as a rule, does not have an explicit solution.

Despite significant progress in recent years, algorithms for

computing equilibrium are still not competent at solving very

large games. Approximate solution methods are often the best

computed solution or EP set. This forms the problem definition in

our study.

The concept of representing utility of strategy executions

geometrically is used to answer the fundamental question in the

Pareto-optimal equilibrium solution. Obtaining information re-

garding the strategy options and payoffs to every player, and with

respect to other players, is crucial to the computation of the

Pareto-optimal EP. This information can be represented spatially

in a geometrical framework. It turns out that by using the spatial

game setup, the extraction of the subset of strategy alternatives

from the superset can be achieved and the convergence to the

Pareto-optimal solution using less computation can be obtained.

Such a concept forms the main basis of this paper, and we will

examine the game theoretical geometry in greater details with the

support of case studies.

Figure 1. Set of bargaining alternatives for two players
whereby the Nash equilibrium corresponds to optimal utility
gains.
doi:10.1371/journal.pone.0010331.g001
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1.5 Representation of Utility as Geometrical Distance
The game theoretical studies by von Neumann and Morgenstern

(1980) is based on the representation of all outcomes of n-player

games as payoff vectors such that points exist in an n-dimensional

utility space [15]. This has been a standard representation of utility

space for n-person game models to date. In the spatial game model

that they have created, outcomes of the games have been assumed

to lie in some low-dimensional Euclidean space such that utilities to

the players are defined in terms of distance from their most

preferred, or ideal points [16]. Such a representation is useful for

establishing outcomes that correspond to public good (all individuals

obtaining benefit from the same outcome). The model assumed that

utility is a decreasing function of the distance between the achieved

outcome and the ideal point [17].

For example, their m-dimensional spatial game is described as a

collection of n points Pi, i = 1,…,n, in m-dimensional Euclidean space

Rm. Point Pi is player i’s ideal point. The convex hull of the points

Pi[f1,...,ng is the Pareto-optimal set. The points of space Rm are the items

in the game that we have discussed. The players are to choose among

all the items in the game what they wish to own. It is assumed that a

player may be most satisfied with an item at Pi, however failing to

obtain that, the next possible closest item will be chosen.

The next section will focus on presenting a more refined

technique for determining the Pareto-optimality of a bargain-

ing problem for multi-players (n.2). The fundamental

concepts of representing utility as a distance in space will be

presented.

Methods

2.1 Geometrical Representation of Utility
Suppose the payoff value to the player of a strategy item being

executed can be represented by the ‘‘item-to-player’’ distance, such

that items of higher utility value have a higher spatial proximity. In

effect, the proximity value would be the inverse of the payoff value.

For two parties, if one represents all the items based on payoff value

on a two-dimensional space, an equilibrium line could be drawn to

assign that item to the respective player such that payoff value for

both is maximized. This technique removes the need to generate the

payoff gain for every single possible set of strategy execution, hence

avoiding intense computational load. In fact, this method of

assigning items of significance closer to the owner will effectively

eliminate the consideration of all the strategy alternatives, based on

the fact that the product of gain will be maximal at the location near

Figure 2. Geometrical distribution of items whose cross-links represent their distances to every person in an n-player game.
doi:10.1371/journal.pone.0010331.g002
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the equilibrium line. For example, it is not a recommendable

strategy to assign items of low payoff to any one player. Now, this

distance-based approach is explored to derive the EP of a

bargaining situation.

The convex polytope of a multi-player game can be simplified

to a three dimensional spatial representation with the player-to-

player distances defined to be constant as shown in Figure 2. In

this approach, all items are represented as geometrical points

that lie within a boundary or space enclosed by the players

(labeled as 1, 2,…, n) that are presented as vertices of this spatial

volume. For example, based on three players, the items will lie

within an enclosed triangle. With four players, the items are

enclosed by a tetrahedron with four vertices. Based on a five-

player game, the positioning of items is within a space enclosed

by a pyramid. In general, n number of players will result in an n-

polyhedron defined by the ideal position of all players

representing its vertices. The distance between player-to-player

decreases as more players participate because for an item x, its

normalized and relative distances to all the players (labeled as

d1,x, d2,x,…, dn,x) add up to a unitary value. Therefore, the space

enclosed by the polyhedron becomes smaller as the number of

players increases.

2.1.1 Geometrical Distance of Item. We introduce the

following notation:

ui,x represents the utility of item x to player i;

di,x represents the normalized distance of item x to player i

with respect to other players;

The distance of an item to the player is defined as a decreasing

function of the utility. The inverse proportionality function is used.

Here, the distance of item x to player i is defined to be the inverse

of ui,x. Next, based on every item, its normalized distance is given by

the ratio of distance for player i to the sum of distances for all

players. The following equation presents the geometrical param-

eter as

Vx [ f1,:::,kg, Vi [ f1,:::,ng, di,x~

1

ui,xPn
j~1

1

uj,x

� � : ð1Þ

2.1.2 Prioritized Assignment of Items. The items are

arranged spatially based on their normalized distances to every

player in ascending order. Here, a list of items ordered in terms of

priority for player i is denoted as Pi where

Vi [ f1,:::, ng, Pi~ x : di,xvdi,y , V x,yð Þ [ 1,:::, kf g, x=y
� �

: ð2Þ

The normalized distance contains information regarding the priority of

the item to one player with respect to the others based on the

geometrical treatment presented in Section 3.1.1. The priority of an

item is an indication of its value or importance to the player, and is

the inverse of this normalized distance. Therefore, assigned items in

terms of priority is defined here as a possession list of items in

descending order of importance to a player.

Combinatorial analysis for all alternatives is computationally

expensive. Assigning items of lower priorities to a player shifts

the equilibrium away from the Pareto-optimality. On the

contrary, assignment of items with higher priorities converge the

solution set towards an EP. Assignment of items to a player by

traversing them from the highest priority to the lowest one

enhances computational resources. Therefore, instead of using

a combinatorial technique to obtain the optimal product of

gain for all players, a more efficient assignment approach

based on priority of items can be applied. Items can be spatially

arranged in terms of value for every player in the game. An

item priority to a player is based on the normalized distance with

respect to all players.

In summary, the method of assigning items focuses on

considering a set of alternatives that lies close to the real solution

set. In a way, it eliminates the redundant computation of

Figure 3. Spatial positions of items presented in x-direction and magnitudes of their utilities and utility-distance products in y-
direction for two players.
doi:10.1371/journal.pone.0010331.g003
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alternatives that deviates from the EP. In Section 4, we

demonstrate that the EP solution set lies within the reduced set

of alternatives.

2.2 Basis of Convergence towards Equilibrium
It is computationally expensive to consider all bargaining

alternatives from a combinatorial set. This section describes a

technique for evaluating a bargaining game via item assignment to

each player. It analyzes the game based on multiple cases of item

assignment by taking into account one player that pertains to each

case. For n players, such assignment of items is performed n times.

The utility is related to priority. Since priority is the inverse of

normalized distance of a bargain item, a property that relates to the

payoff per priority is introduced here. To achieve this, we will

discuss this indicator from a mechanical perspective. For a

mechanical lever system, the moment w by weight ~ww about a

point Q is defined as the product w = |~ww|d, where d is the

(perpendicular) distance between Q and the line of action L of ~ww. If

~rr is the vector from Q to any point A on L, then the moment

vector of ~pp about Q is given by ~w =~rr6~ww.

Assume two players (i [ {1,2}) possessing items given by

x [ {1,…,11} such that utility ui is a function of importance of

an item to a player and represented by its normalized distance di as

shown in Figure 3. Here, ui is assumed to be a decreasing function

of di. A utility-distance product of an item value (which is related to its

importance in terms of payoff to the player) is based on distance d

from a player spatially and in vector form. We denote this entity

as w
?

i , which is a function of ui and di. For n players, using each

player as a pivot point, the importance of an item can be weighing

about n number of pivots such that their utility-distance product

vectors have the same magnitude.

From a mechanical perspective, equally spaced weights on a

lever are aligned along the same direction such that the weights

on the left hand side generate a collective moment that opposes

the moment caused by the weights on the right. By the same

concept, to maintain zero utility-distance product equilibrium, the

sum of utility-distance product vectors by all the items is equally

divided for the players (Figure 4). Selecting items of closer

distance to the player maximizes their payoffs. Maximizing the

sum of utility-distance products for every player simultaneously

provides the equilibrium solution for such theoretical game using

this geometrical setup.

Assume that the items are analogous to equal quantity of

weights on a lever system that is balanced such that

Xk

x~1

w1,x~
Xk

x~1

w2,x~:::~
Xk

x~1

wn,x: ð3Þ

Consider that the utility-distance product vector of an item x about

a player i from spatial vector ~rri,x is denoted by ~wwi,x. A player

has k items, each of value ~wwi,x. For an ideal condition whereby

Figure 4. Determination of equilibrium based on distribution of utility-distance product vectors about a pivot point for two players.
doi:10.1371/journal.pone.0010331.g004

Table 1. Utility of goods for Villages (i {1, 2}).

Village x Goods u1,x u2,x

1 1 Coal 2 4

2 Cattle 2 2

3 Mineral 2 1

4 Oil 2 2

5 Salt 4 1

2 6 Iron 10 1

7 Steel 4 1

8 Wine 6 2

9 Gas 2 2

doi:10.1371/journal.pone.0010331.t001

Table 2. Utility-distance product of goods for Villages (i [ {1, 2}).

x Goods d1,x w1,x d2,x w2,x

1 Coal 0.667 1.334 0.333 1.334

2 Cattle 0.500 1.000 0.500 1.000

3 Mineral 0.333 0.667 0.667 0.667

4 Oil 0.500 1.000 0.500 1.000

5 Salt 0.200 0.800 0.800 0.800

6 Iron 0.0909 0.909 0.909 0.909

7 Steel 0.200 0.800 0.800 0.800

8 Wine 0.250 1.500 0.750 1.500

9 Gas 0.500 1.000 0.500 1.000

doi:10.1371/journal.pone.0010331.t002
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all items lie in a space between two vertices representing

players, and at equal distances. Here, the vector sum of utility-

distance products is

~WW~
Xk

x~1

~rr1,x|~ww1,xz
Xk

x~1

~rr2,x|~ww2,xz:::z
Xk

x~1

~rrn,x|~wwn,x: ð4Þ

Due to our assumption that utility decreases linearly with respect to

distance, a pivot positioned at a distance of
1

n

Xk

x~1

~rri,x causes the

vectors given by~wwi,x =~rri,x|~wwi,x to sum up to zero where

~WW~
Xk

x~1

~ww1,xz
Xk

x~1

~ww2,xz:::z
Xk

x~1

~wwn,x~0: ð5Þ

In practice, the vector ~rri,x may vary for different items. A more

appropriate determination of pivot location can be based on

balancing utility-distance products vectors with respect to n player,

which is given by

Vi [ f1,:::,ng, mi~
1

n

Xk

x~1

wi,x: ð6Þ

In theory, utility-distance product of an item is analogous to moment of

force by weights based on a lever system. By suitably locating a pivot

location such that distribution of the utility-distance product vectors are

uniformly positioned about a pivot, equilibrium can be achieved.

This concept can effectively reduce computational load of item

assignments in a multi-player game theoretical situation. The

reduced set of alternatives that is determined is the solution set closer

to Pareto-optimality, which forms the basis of convergence towards

EP.

2.2.1 Utility-Distance Product of Item. From Section

3.1.1, the properties utilized in our framework are ui,x, which

represents the utility of item x to player i; And di,x represents the

normalized distance of item x to player i with respect to other players.

We also define the utility-distance product wi,x of the item x from

distance di,x for the player i.

The utility-distance product for an item denoted as x, is computed

by multiplying the normalized distance of that item with its

corresponding payoff value for player i such that

Vx [ f1,:::,kg, Vi [ f1,:::,ng, wi,x~
1Pn

j~1

1

uj,x

� � : ð7Þ

2.2.2 Pareto-Optimality Based on Geometry. For k items,

every item x is prioritized based on normalized distances di,x from player

i to form a list given by Pi (Equation (2)). Here, Pi,x represents an item

x in the order of priority for a player. Cumulative values of utility-

distance products are determined based on the list Wi, which consists of

k items in descending order of priority. Here, Wi,x corresponds to an

item at position x in this list. The possession list of every player is

initialized to null. We define si as the items after bargaining in one

strategy set for the player i respectively. The items are traversed in

the high to low priority direction, and assigned to player i’s possession

list until the cumulative utility-distance products equals mi. Recall that mi

is the quantification of utility-distance products up to a point of

equilibrium (Equation (6)). The item that corresponds to the pivot

location is hereby denoted as ai. We note that ai may not lie exactly

at the pivoting point. Mathematically,

Vi [ f1,:::,ng,

Wi~ wi,xD x : Pi,x, Vx [ f1,:::,kg
� �

, ð8Þ

si~ Pi,xDx :
Xx

l~1

Wi,lƒmi, Vx [ f1,:::,kg
( )

, ð9Þ

ai~ Pi,xDx : miƒ

Xx

l~1

Wi,lvmizWi,xz1, Vx [ f1,:::,kg
( )

: ð10Þ

Table 3. Cumulative utility-distance products of goods for Villages (i [ {1, 2}).

Goods assigned to Village 1 Goods assigned to Village 2

Iron Salt Steel Wine Mineral Cattle Oil Gas Coal

x = 6 x = 5 x = 7 x = 8 x = 3 x = 2 x = 4 x = 9 x = 1

a1 = w1,6 a2 = a1 + w1,5 a3 = a2 + w1,7 a4 = a3 + w1,8 a5 = a4 + w1,3 a6 = a5 + w1,2 a7 = a6 + w1,4 a8 = a7 + w1,9 a9 = a8 + w1,1

0.909 1.709 2.509 4.009 4.676 5.676 6.676 7.676 9.009

b9 = b8 + w2,6 b8 = b7 + w2,5 b7 = b6 + w2,7 b6 = b5 + w2,8 b5 = b4 + w2,3 b4 = b3 + w2,2 b3 = b2 + w2,4 b2 = b1 + w2,9 b1 = w2,1

9.008 8.099 7.299 6.499 4.999 4.332 3.332 2.332 1.332

doi:10.1371/journal.pone.0010331.t003

Table 4. Utility of goods for Villages (i [ {1, 2}).

Village x Goods u1,x u2,x

1 1 Coal 2 4

2 Cattle 2 2

3 Mineral 2 1

4 Oil 2 2

5 Salt 4 1

6 Iron 10 1

7 Steel 4 1

2 8 Wine 6 2

9 Gas 2 2

doi:10.1371/journal.pone.0010331.t004
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Depending on the nature of the game, different interpretations of an

EP can be made. If the items are assumed to be discrete, then

assignment of items up to ai for player i forms a strategy set si.

Repeating such an assignment for n players forms n strategy sets,

{s1, s2, …, sn}, whereby this n-tuple of strategies forms the

negotiation set of the game. Pareto-optimal equilibrium is attained

when no player can increase their payoff any more by changing

strategy and assuming that none of the other players is going to

change their strategies.

Results

3.1 Definition of n-player Bargaining Case Studies
The multi-player bargaining scenario is a cooperative game;

information is shared and every member trades in such a manner

that their strategies will mutually benefit all the players in the

game. The existence of a transferable commodity is assumed to be

present. From the bargaining perspective, the items of transaction

are analogous to the strategy choices, and the utility gain of a

typical transaction is analogous to the payoff of executing a

particular strategy. The proposed case studies will only work for

relative payoff values for the players. In this paper, we denote the

payoff as a function of item x, whereby Pi (x [ f1,2,:::,kg) for

player i and k number of items. To limit the EP to only one

solution (assuming that no two or more items are similar), the

optimality condition is defined in this paper as a function of the

product of gains.

We have assumed that the items are being assigned based on

non-initialized possession lists. The utility gains are positive

provided that the initial total payoff value of any one list does

not exceed that of the created solution possession list. Assume that

the initial payoff for Player i is Pi9. Then for n players, the product

of payoff gain is given by

N~G1| . . . |Gn~(P1{P1
0)| . . . |(Pn{Pn

0): ð11Þ

For all players i such that Pi is greater than Pi9, positive payoff by

all persons is achieved. Negative gain situations can be prevented

by first assigning the items starting from those with higher priorities

in the ordered list based on normalized distances until their aggregate

payoff values equal or exceed the initial payoff value. The

remaining items are then assigned again starting from the one with

the next highest priority.

3.2 Two-player Bargaining Game (n = 2)
A primitive setup of a two-village bargaining problem is

defined here, in which Villages 1 and 2 possess goods to perform

barter trade (Table 1), with the objective of maximizing the

gains.

The initial values of the utility sums for the villages are

P1
0(x [ 1,2,3,4,5f g)~12; P2

0(x [ 6,7,8,9f g)~6: ð12Þ

In Table 2, based on Equations (1) and (7), the normalized distances

and utility-distance product for Villages 1 and 2 (denoted as i = 1 and 2

respectively) are presented.

The equilibrium condition is

Vi [ 1,2f g, mi~
1

2

X9

x~1

wi,x~4:500,

whereby mi is used to determine ai:

ð13Þ

The cumulative utility-distance products of the goods are listed in

Table 3 in terms of priority for Village 1 that is ordered from left to

right. For Village 2, the cumulative operation starts in the opposite

direction. The geometrical treatment gives ai as Mineral (x = 3).

An EP set is determined here: all goods of higher priority to Village

1 up till before ai are assigned to this village and the rest of the

goods pertain to Village 2. Based on the possession lists of the two

players, we obtain

P1(x [ 6,5,7,8f g)~24; P2(x [ 1,9,4,2,3f g)~11;

G1(x [ 6,5,7,8f g)~12; G2(x [ 1,9,4,2,3f g)~5;

N~G1G2~60:

ð14Þ

The same scenario in a two-village game is considered but

discussions of special situations such as negative utility gains are

established using a different data set. An example using a data set

with a significantly different total utility values between the two

players can illustrate the problem.

Table 5. Cumulative utilities of goods for Villages (i [ {1,2}).

Goods assigned to Village 1 Goods assigned to Village 2

Iron Salt Steel Wine Mineral Cattle Oil Gas Coal

x = 6 x = 5 x = 7 x = 8 x = 3 x = 2 x = 4 x = 9 x = 1

a1 = u1,6 a2 = a1 + u1,5 a3 = a2 + u1,7 a4 = a3 + u1,8 a5 = a4 + u1,3 a6 = a5 + u1,2 a7 = a6 + u1,4 a8 = a7 + u1,9 a9 = a8 + u1,1

10 14 18 24 26 28 30 32 34

b9 = b8 + u2,6 b8 = b7 + u2,5 b7 = b6 + u2,7 b6 = b5 + u2,8 b5 = b4 + u2,3 b4 = b3 + u2,2 b3 = b2 + u2,4 b2 = b1 + u2,9 b1 = u2,1

16 15 14 13 11 10 8 6 4

doi:10.1371/journal.pone.0010331.t005

Table 6. Cumulative utility-distance products of unassigned
goods.

Goods

Cattle Oil Gas

x = 2 x = 4 x = 9

a1 = w1,2 a2 = a1 + w1,4 a3 = a2 + w1,9

1.000 2.000 3.000

b3 = b2 + w2,2 b2 = b1 + w2,4 b1 = w2,9

3.000 2.000 1.000

doi:10.1371/journal.pone.0010331.t006
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It is assumed that Villages 1 and 2 have goods in their initial

possession list with a difference in sum of utilities for initial goods of

possession. If one village has a final utility sum that is lower than the

initial total utility value, then the product of utility gain is negative. This

usually occurs when one village has a significantly larger possession list

in comparison with the other one. Let us consider the case of having a

larger difference in sum of utilities for initial goods. Assume that

Villages 1 and 2 have different goods as shown by Table 4.

The initial values of the utility sums for the villages are

P1
0(x [ 1,2,3,4,5,6,7f g)~26; P2

0(x [ 8,9f g)~4: ð15Þ

Bargaining, based on the assumption that villages have initial

possession lists, results in

P1(x [ 6,5,7,8f g)~24; P2(x [ 1,9,4,2,3f g)~11;

G1~{2; G2~7;

N~G1G2~{14:

ð16Þ

The proposed approach can present the utility gains with

optimality by assigning of goods a priori. Referring to the priority

ordering, and listing the cumulative utility values for Villages 1 and

2, some of the goods can be assigned a priori in Table 5 before

determination of ai using Table 6.

Here, a possession list that pertains to Village 1 comprises of Iron,

Salt, Steel, Wine, and Mineral, while that of Village 2 consists of

Coal only. The remaining goods are Cattle, Oil, and Gas. These

goods can be assigned by determining the utility-distance products for

Village 1 and 2 to give ai as Oil. The utilities and gains are

P1(x [ 6,5,7,8,3,2f g)~28; P2(x [ 1,9,4f g)~8;

G1~2; G2~4;

N~G1G2~8:

ð17Þ

In practice, we create an initial list of goods and then assign the

remaining ones. This can save computation of the utility-distance

products for the goods of bargain that can be initialized a priori.

3.3 Three-player Bargaining Game (n = 3)
The geometrical framework for a bargaining game by two

players can be generalized to n players. In general, this method

facilitates an ordered priority list for every player when determining

the equilibrium point. This concept can be extended to the

calculation of bargaining solution for multiple villages involved in

the exchange of their produce limited by our assumptions. As only

one village needs to be considered at a time for good assignment,

we are able to determine the assignment of bargaining goods

towards attaining EP and maximization of gains.

Suppose that three villages (i [ {1,2,3}) is involved in a

bargaining game (n = 3). The normalized distances and utility-

distance products of initially possessed goods are presented in

Table 7. The geometrical representation of the goods is

illustrated in Figure 5, which shows the utility values of the

goods for each village spatially on a two-dimensional plane.

Figure 6 shows the utility-distance product of each item to the

respective player. The goods are positioned at various loci of the

enclosed triangle. Here, the locus is based on the distances from

item to each player vertex.

Table 7. Utility-distance product of goods for Villages (i [ {1,2,3}).

Village x Goods u1,x d1,x w1,x u2,x d2,x w2,x u3,x d3,x w3,x

1 1 Coal 2 0.286 0.572 4 0.143 0.572 1 0.572 0.572

2 Cattle 2 0.333 0.666 2 0.333 0.666 2 0.333 0.666

3 Mineral 2 0.250 0.5 1 0.500 0.500 2 0.250 0.500

4 Oil 2 0.429 0.858 2 0.429 0.858 3 0.143 0.858

5 Salt 4 0.111 0.444 1 0.444 0.444 1 0.444 0.444

2 6 Iron 10 0.0476 0.476 1 0.476 0.476 1 0.476 0.476

7 Steel 4 0.143 0.572 1 0.572 0.572 2 0.286 0.572

8 Wine 6 0.167 1.002 2 0.500 1.000 3 0.333 0.999

9 Gas 2 0.400 0.8 2 0.400 0.800 4 0.200 0.800

3 10 Orange 1 0.545 0.545 2 0.273 0.546 3 0.182 0.546

11 Timber 3 0.182 0.546 2 0.273 0.546 1 0.545 0.545

12 Milk 1 0.333 0.333 1 0.333 0.333 1 0.333 0.333

doi:10.1371/journal.pone.0010331.t007

3

1 2

Cattle

Mineral

Coal

Oil

Salt

Milk
Steel

Gas

Orange

Timber

Iron Wine

Figure 5. Geometrical distribution of goods for Villages
(i [[ {1,2,3}).
doi:10.1371/journal.pone.0010331.g005
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The initial values of the utility sums for village i [ f1,2,3g are

P1
0(x[ 1,2,3,4,5f g)~12; P2

0(x[ 6,7,8,9f g)~6; P3
0(x[ 10,11,12f g)~5: ð18Þ

An equilibrium condition can be determined by

Vi [ 1,2,3f g, mi~
1

3

X12

x~1

wi,x~2:438,

whereby mi is used to determine ai:

ð19Þ

From Table 8, we deduced that a1 = Wine, a2 = Milk, and

a3 = Steel. Here, goods assigned to Villages 1, 2, and 3 are {Iron,

Salt, Steel, and Wine}, {Coal, Orange, Timber, Cattle, and Milk},

and {Oil, Orange, Gas, Mineral, and Steel} respectively. The

Orange entity is assigned simultaneously to Village 2 and Village

3’s possession lists. And Steel appears in Village 1 and Village 3’s

possessions. Since Steel has a higher priority to Village 1 than

Village 3, and the same condition occurs for the case of Village 2

versus Village 3, during the assignment of Orange, Village 1 and

Village 3 are assigned Steel and Orange respectively.

The result of assignment is displayed in Table 9. Here, we obtain

P1(x [ 6,5,7,8f g)~24; P2(x [ 1,11,2,12f g)~9; P3(x [ 4,10,9,2f g)~12;

G1~12; G2~3; G3~7;

N~G1G2G3~252:

ð20Þ

Figure 6. Geometrical distribution of goods presented with magnitudes of utility and utility-distance product for Villages (i [[ {1,2,3}).
doi:10.1371/journal.pone.0010331.g006

ð18Þ

ð20Þ
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The geometrical approach in predicting the Pareto-optimal solution

set for multiple players (n = 3) demonstrates that equilibrium can be

attained by balancing the utility-distance product values of all goods

among the three villages. Payoff in terms of utility is arbitrarily set to

present a barter trade scenario here as a case study. In practice, the

game is based on an arbitrary number of players in order to

demonstrate the fundamental principles of the technique without

incurring further complexities that may arise if more players are used.

Discussion

The solution to a bargaining problem is reflected as the Pareto-

optimal EP of the set of bargaining alternatives. The combination

of possible sets escalates when the number of strategy choices and

players increases. To reduce the number of alternatives considered

in a combinatorial set, the concept of using spatial distance to

represent the significance of the item to the player in a non-zero-

sum game can be implemented.

To allow assignment of items while considering only one player

at a time, the concept of using the geometrical distance to

represent utility of items is introduced. Then, this technique can

extract a smaller set of alternatives from the super set of strategy

alternatives and enables the Pareto-optimal EP to be obtained

from this reduced set. The attainment of the solution is determined

by the nature of the strategy choices. Instead of using multivariate

polynomial functions, the geometrical approach reduces the

computational expenses involved in determining EP. For instance,

the concept of shifting the bargaining outcome towards Pareto-

optimal equilibrium is by geometrically positioning items of higher

priority to one player with respect to the others using a shorter

relative distance.

Spatial representation of items based on their utility can be used

to derive the Pareto-optimal EP in non-zero-sum games. This

method relies on the concept of spatial distribution of items

respective to its level of significance to the players involved. The

efficiency of calculating the EP for n- players in a game has been

greatly improved, but there are a few limitations that have yet to

be resolved such as the definition of an optimality equation in the

bargaining game. This is a very important tool as the EP of a

large-scale game is the main objective of almost all the real games

in the world.
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