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Abstract

Resistance to HIV-1 integrase (IN) inhibitor raltegravir (RAL), is encoded by mutations in the IN region of the pol gene. The
emergence of the N155H mutation was replaced by a pattern including the Y143R/C/H mutations in three patients with
anti-HIV treatment failure. Cloning analysis of the IN gene showed an independent selection of the mutations at loci 155
and 143. Characterization of the phenotypic evolution showed that the switch from N155H to Y143C/R was linked to an
increase in resistance to RAL. Wild-type (WT) IN and IN with mutations Y143C or Y143R were assayed in vitro in 39end-
processing, strand transfer and concerted integration assays. Activities of mutants were moderately impaired for 39end-
processing and severely affected for strand transfer. Concerted integration assay demonstrated a decrease in mutant
activities using an uncleaved substrate. With 39end-processing assay, IC50 were 0.4 mM, 0.9 mM (FC = 2.25) and 1.2 mM
(FC = 3) for WT, IN Y143C and IN Y143R, respectively. An FC of 2 was observed only for IN Y143R in the strand transfer assay.
In concerted integration, integrases were less sensitive to RAL than in ST or 39P but mutants were more resistant to RAL
than WT.
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Introduction

Retroviral integration, which is an essential step for viral

replication, is performed by viral integrase (IN). HIV-1 IN is a

32 kDa protein with three different domains [1]. The catalytic

core contains the catalytic triad DDE which is the signature of

enzymes belonging to the polynucleotidyl transferase family [2].

The N-terminal domain contains a pair of conserved His and Cys

residues that coordinate a single zinc atom. When deleted, the C

terminal part leads to the loss of DNA binding capacity. The

enzyme catalyses two steps: cleavage of the two 39-end

nucleotides of each LTR (39-end processing), thereby producing

CpA 39hydroxyl ends; and transesterification leading to the

integration of both viral ends in the cellular DNA (strand transfer

reaction). As this step is crucial for viral replication, numerous

studies have been conducted to design HIV-1 integrase inhibitors

(INI) that block the integration of viral double-stranded DNA

into the host cell’s chromosomal DNA [3]. Two classes of

inhibitors, interfering either with the 39 processing of the viral

DNA long terminal repeats [4,5] or with the strand transfer of

viral DNA into the host genome [6], have been described.

Raltegravir (RAL) is an integrase strand transfer inhibitor which

has shown antiretroviral activity in antiretroviral-naı̈ve [7] and –

experienced patients [8,9], and is to date the only INI approved

for therapeutic use.

Resistance to RAL has been described in vitro and in vivo. The

most frequent primary RAL resistance mutations emerging in vivo

at virological failure (VF) in the IN gene are Q148H/R/K,

N155H, and to a lesser extent Y143C/H/R [10]. Numerous other

mutations considered as secondary RAL resistance mutations have

also been described [11]. In vitro, several mutations have been

introduced into the IN gene and activities of mutants have been

determined (T66I, L74M, E92Q, F121Y, Q148K, S153Y,

N155H) [12]. In general, all resistant enzymes were at least

partially impaired for strand transfer function. In some cases,

39end processing was also impaired. In general, the mutants

showed an inverse correlation between resistance and catalytic

activity [12]. The Q148H mutation, which leads to a decreased

activity of IN, confers a higher level of resistance to RAL than

G140S or N155H. Q148H is rescued by the G140S mutation

[13]. Nevertheless, both activities of 39end processing and strand

transfer are highly impaired in the double mutant.
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In a previous work, we reported how patients who had failed to

respond to therapies under RAL-containing regimens presented

the N155H mutation, which was then replaced over time by the

Y143C/H/R mutations [14]. We describe here the genetic

pathways and the dynamics of emergence of the Y143C/R

mutations in HIV-1 integrase, and the impact of these mutations

on the enzymatic functions of the integrase in the presence or

absence of RAL.

Results

Baseline characteristics and follow-up
Three patients with virological failure on RAL and with

selection of mutations at IN position 143 were included in the

study. The baseline characteristics of three patients and the co-

prescribed drugs within the optimized regimen are described in

Table 1. The patients had experienced multiple virological failures

on ART and had few treatment options left, as shown by their low

GSS. The three HIV-1 strains clustered with HIV-1 subtype B.

The evolution of plasma HIV-1 RNA on RAL in the three

patients is shown in Figure 1. All three patients had a limited

decrease in plasma HIV-1 RNA, without a decrease below the

detection threshold of 50 copies/mL. The CD4 (+) cell evolution

showed no (patients 1 and 2) or a weak (patient 3) immunological

response to RAL.

Selection of INI resistance mutations
The selection of INI resistance mutations on RAL-containing

therapy is shown in Table 2. The IN sequences were first

determined at baseline (D0) before prescription of RAL. Several

polymorphic mutations previously related to INI resistance were

present at D0: V72I was present in patients 1 and 3, V151I in

patient 2, and I203M in patient 1. A particular evolution of

genotypic pattern could be characterized when we studied the

selection of INI resistance mutations on RAL-containing regimens.

In all three patients, the initial selection of the N155H mutation

was followed by its disappearance and replacement by a pattern

comprising the Y143H/R/C mutations with other mutations

(T97A in 3 patients, L74M in 2 patients and G163R and S230R in

one patient each); RAL was stopped between months 6 and 12 in

patient 1, with disappearance of the selected mutations.

Phenotypic sensitivity to RAL and EVG
The RAL and EVG FC are shown in Table 2. Phenotypic

resistance is expressed in terms of the FC in IC50 to each drug for

the virus in question compared to a wild-type reference virus. The

two samples with the N155H had low RAL FC (1.07 and 1.72)

and low EVG FC (2. and 6.05). In samples with the Y143C/H/R

mutations, the median baseline RAL FC was 24.83 (range 5.87–

51.95) and the median baseline EVG FC was 3 (range 1.56–9.57).

Clonal analysis of HIV-1 integrase
In order to study the dynamics of replacement and the linkage

between mutations in patients presenting a switch from the

N155H to the Y143C/H/R pattern, we cloned and sequenced the

viral populations from the three patients at baseline RAL and

during follow-up. In all three patients, the replacement over time

of the N155H pattern by the Y143R/C pattern was confirmed by

clonal sequences (Table S1). In patient 1, N155H was present in

39% of clones at M1 and in 9% of clones at M3, whereas Y143C

was absent at M1 and present in 91% of clones at M3. In patient

2, the percentages of clones with the N155H/R mutations and

with the Y143C mutation were respectively 84% and 9% at M3,

and 0% and 66% at M6. In patient 3, the N155H mutation was

detected only at M3 and in 72% of clones, whereas Y143R was

present only at M6 and in 47% of clones. The mutations at

residues 143 and 155 were never present on the same clonal

sequence in any of the three patients. Phylogenetic analyses

comprising all clonal sequences for each patient suggested an

independent selection of the mutations at loci 143 and 155 (data

not shown). Clonal analysis also showed that the T97A and

G163R mutations could be present in association with Y143R

but could also be selected in the absence of Y143R (in patients 2

and 3).

Comparison of catalytic activities of wild-type and
mutant IN

Mutations Y143C and Y143R were introduced into the IN gene

and recombinant enzymes were expressed and purified according

to standard procedures used in the laboratory [15]. The activities

of 39-end processing, strand transfer (ST) and concerted

integration were compared to the wild-type one. 39end-processing

activities were moderately impaired compared to the wild-type

enzyme, since 80% of the activity of the wild type is still present

(Figure 2A). On the other hand, the strand transfer activities of the

mutant enzymes were severely impaired, since only 30% (IN

Y143C) and 50% (IN Y143R) of the activity of the wild type was

measured at a concentration of 250 nM of enzyme (Figure 2B).

The activity of the mutants was also compared using concerted

integration assay and a blunt-ended substrate as described in

[16,17]. Integration in these conditions necessitates processing

then strand transfer activity of the two ends of a donor substrate

mimicking the 59 and 39ends of viral LTRs. Products of

integration (full-site and half-site, FSI and HSI respectively) were

in agreement with products expected from previous work [16,18].

In particular for enzymes concentrations below 400 nM, the

activity of the mutants was decreased in comparison to that of the

Table 1. Baseline characteristics of three patients failing on raltegravir-containing regimens.

Patient VL CD4 Co-prescribed drugs RT mutations PR mutations GSS

1 6.7 16 ETR/DRV/r 41L 44D 67N 69D/N 74I 75T 101E
179F 181C 184V 190S 210W 215Y

10F 15V 20R 32I 33F 36I 50V 54A
62V 63P 71V 84V 85V 89V 90M

0

2 6.4 36 ETR/DRV/r/ENF 41L 44D 67N 74V 103N 184V 210W
215Y

10F/V 15V 20R 33F 46I 62V 63P 71T
73S 76V 84V 89V 90M

1

3 5.6 22 TDF/FTC/ETR/DRV/r 41L 44D 67N 70R 181C 184V 190A
210W 215Y

10V 15V 20R 32I 33F 46I 54V 58E 63P
82A 84V 90M

0

Abbreviations: VL: Viral load (Plasma HIV-1 RNA), log10copies/ml; CD4: CD4 (+) cell count (cells/ml); GSS: Genotypic sensitivity score;
TDF: tenofovir diphospho fumarate; ETR: etravirine; DRV/r: darunavir boosted with ritonavir; ENF: enfuvirtide; FTC: emtricitabine.
doi:10.1371/journal.pone.0010311.t001
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wild-type enzyme, with a slightly lower activity for mutation

Y143R (Figure 3).

Comparison of sensitivities of wild-type and mutant IN to
RAL

The mutants were first tested for their sensitivity to RAL in a

39end processing assay. All three enzymes, IN WT, IN Y143C and

IN Y143R, were sensitive to RAL (Figure 4A) with an IC50 for 39-

end processing of 0.4 mM, 0.9 mM (FC = 2.25) and 1.2 mM

respectively (FC = 3). In the same 39end processing assay, strand

transfer activity resulting from the 39end processing was also

observed. The strand transfer of the three enzymes was inhibited

(Figure 4B). ST was more sensitive to RAL than processing, thus

showing the specificity of RAL for ST. Complete inhibition of ST

was reached with 0.4 mM of drug while complete inhibition of

39end processing necessitated a 10-fold higher concentration of

drug when starting from an uncleaved substrate (see Figure 4B,

longer exposure of Figure 4A).

IC50 for strand transfer activity were also determined in an in

vitro dose response assay with precleaved substrate (Figure 5). All

three enzymes were sensitive to RAL inhibition. IC50 was around

0.3 mM for IN WT and IN Y143C (Figure 5). On the contrary, the

Y143R mutation conferred a decreased sensitivity to RAL

(FC = 2). A Student test that was used to derive P values showed

there are not statistical differences between the IN WT and

Y143C, and Y143R.

The sensitivity to RAL was also measured in a concerted

integration assay using uncleaved substrate. In this assay, the

sensitivity of wild-type enzyme to RAL was decreased compared to

39end processing and strand transfer assay (Figure 6). Indeed, 30%

of activity was still measured for 10 mM of RAL while this

concentration totally inhibited activity in strand transfer and

processing assays. The strand transfer function of the mutant

recombinant integrases (particularly Y143C) in the concerted

integration reaction was not as defective as when the same

enzymes were used in the strand transfer reaction with pre-

processed DNA. This could be a possible explanation for the

disparity observed between both assays. Both mutants were

significantly more resistant to RAL than the wild-type enzyme,

with 60% of activity (twice as much as the wild type) maintained at

a 10 mM concentration of RAL.

Discussion

RAL was licensed at the end of 2007 as the first HIV-1 INI and

is currently prescribed to antiretroviral-experienced and -naı̈ve

patients. We set up a prospective study including antiretroviral-

experienced patients receiving RAL and an optimized background

therapy and found a particular pattern of mutations involving IN

mutations Y143C/H/R in patients with virological failure with

RAL [14]. In this work, we further investigate the genetic

pathways and the dynamics of emergence of the Y143C/R

Figure 1. Virological evolution in three patients with virological failure on Raltegravir-containing therapy. Time of follow-up is
expressed in months (M0 to M12). Baseline integrase polymorphisms appear at month 0. Additional selected mutations preceded by (+), or switches
to different genotypic patterns, are indicated in the follow-up. Abbreviations: VL: Viral load (Plasma HIV-1 RNA); RAL: raltegravir; TDF: tenofovir
diphospho fumarate; ETR: etravirine; DRV/r: darunavir boosted with ritonavir; ENF: enfuvirtide; FTC: emtricitabine.
doi:10.1371/journal.pone.0010311.g001
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mutations in the HIV-1 integrase gene in three patients failing on

RAL-containing regimens, as well as the influence of Y143C/R

mutations on IN functions and on the sensitivity of IN to RAL.

When the viruses of these three patients replicated on therapy,

selection of the mutations L74M, T97A, Y143C/H/R, N155H,

G163R and V201I/L was observed in the population sequences

originating from plasma HIV-1 RNA. The profile of the mutations

was not the same in all three patients. Moreover, the mutations

were not found together in the viral population but appeared

sequentially, as shown in Table 2. Interestingly, in all three

patients, the N155H mutation appeared at M1 or M3, and then

disappeared with a switch to the emergence of the Y143C/H/R

mutation detected 3 months later. The Y143C/H/R mutation

was associated with T97A in 3 patients, with L74M in 2 patients

and with G163R and S230R in one patient each. This co-selection

of secondary mutations, particularly T97A, along with the

mutations at position 143 are in agreement with other studies [19].

Numerous reverse transcriptase and protease mutations were

described in the viral sequence of these patients. In other studies,

associations between RT mutations and IN mutations have been

reported for patients under HAART. In the three patients studied

here, the M154L and V165I mutations, which had been associated

with previous antiretroviral experience [11], were not present at

baseline. The T206S polymorphism, which was found to be

associated with a worse virological response in our original

prospective cohort [14], was also absent at baseline. Thus, further

research will be needed to specify the determinants of selection of

Y143R/C.

Replacement over time of the N155H pattern by the Y143R/C

pattern was confirmed by a clonal analysis of the evolution of

HIV-1 IN in the three patients, while the Y143H mutation was

not confirmed at the clonal level, suggesting that it could be an

artifact of the population sequence translation. Clonal analysis

suggested that the mutations at positions 143 and 155 were

exclusive and were selected independently. Surprisingly, in a

recent study on site-directed mutants, the double mutant Y143R +
N155H exhibited a selective advantage over other mutants in the

presence of RAL [20]. However, different constraints could play a

role against the co-selection of these two mutations in vivo. Of note,

the other major mutation Q148R was transiently detected in one

patient in one clone at baseline RAL and at month 6, but did not

seem to confer any selective advantage over the other mutants in

this patient.

The switch to Y143R/C was clearly associated with a loss of

sensitivity to RAL, with fold-changes of 5.87, 28.52 and 51.95 in

patients 1, 2 and 3, respectively. EVG sensitivity was less

decreased, suggesting that the mutations at position 143 might

be less involved in cross-reactivity to EVG.

To observe the effect of mutations Y143C and Y143R on IN

activity and RAL sensitivity, the mutated integrases were

produced, purified and in vitro 39end processing, strand transfer

and concerted integration were assayed according to standard

procedures previously used in our laboratory [16,21]. Sensitivity of

the mutants to RAL was measured in processing, strand transfer

and concerted integration. Processing activities of the three

enzymes were sensitive to RAL. Processing assays were performed

in Mn2+ and not in Mg2+. This will not influence the comparison

between wild type and mutant IN. Yet, the drug IC50 values might

be lower in presence of Mg2+, which is the relevant cofactor. The

ST activity is more efficiently inhibited when the reaction is

performed with the full length substrate (strand transfer observed

in 39end processing assay Figure 4B) versus precleaved substrate

(strand transfer assay, Figure 5), as previously observed by

Marinello et al [12], suggesting again that it binds to a preformed

Table 2. Genotypic evolution of integrase and phenotypic sensitivity to raltegravir and elvitegravir in 3 patients failing on
raltegravir-containing regimens.

Patient
Nu

Time on
RAL ART

Viral load
(log10copies/ml)

CD4 (cells/
mm3) Integrase mutations RAL FC EVG FC

1 D0 RAL/ETR/DRV/r 6.7 16 V72I I203M 0.89 0.89

M1 RAL/ETR/DRV/r 5.8 20 V72I N155N/H I203M 1.07 2.1

M3 RAL/ETR/DRV/r 6.3 4 V72I L74L/M T97A/T Y143C I203M 5.87 1.56

M6 RAL/ETR/DRV/r 5.6 10 V72I L74L/M T97A/T Y143C/Y I203M n.d. n.d.

M9 ETR/DRV/r* 5.7 10 V72I I203M 0.98 0.83

M12 ETR/DRV/r* 5.5 7 V72I I203M 0.76 1.43

2 D0 RAL/ETR/DRV/r/ENF 6.4 36 V151I/V 0.76 0.94

M1 RAL/ETR/DRV/r/ENF 5.2 77 n.d. n.d. n.d.

M3 RAL/ETR/DRV/r/ENF 5.4 67 N155N/H 1.72 6.05

M6 RAL/ETR/DRV/r/ENF 4.8 36 T97A/T G163G/R Y143Y/C/H/R 28.52 6.23

M9 RAL/ETR/DRV/r/ENF 5.6 31 T97A/T G163G/R Y143Y/C/H/R 21.13 2.68

M12 RAL/ETR/DRV/r/ENF 5.5 12 L74L/M T97A/T G163G/R Y143Y/C/H/R V201I/V n.d. n.d.

3 D0 RAL/TDF/FTC/ETR/DRV/r 5.6 22 V72I 0.91 0.60

M1 RAL/TDF/FTC/ETR/DRV/r 4.7 48 V72I n.d. n.d.

M3 RAL/TDF/FTC/ETR/DRV/r 4.5 88 V72I N155N/H n.d. n.d.

M6 RAL/TDF/FTC/ETR/DRV/r 5.6 103 V72I T97A/T Y143C/H/R/Y 51.95 3

M12 RAL/TDF/FTC/ETR/DRV/r 6.2 69 V72I T97A/T Y143C/H/R/Y n.d. 9.57

Abbreviations: Time on RAL: duration of raltegravir–based therapy (months); *: raltegravir has been removed from therapy after month 6 for patient 1; RAL FC:
raltegravir sensitivity fold-change; EVG FC: elvitegravir sensitivity fold-change; TDF: tenofovir diphospho fumarate; ETR: etravirine; DRV/r: darunavir boosted with
ritonavir; ENF: enfuvirtide; FTC: emtricitabine; n.d.: not determined.
doi:10.1371/journal.pone.0010311.t002
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complex IN-DNA rather than to the enzyme alone. This again

shows the specificity of RAL for ST.

The processing activities of mutants Y143C and Y143R were

moderately decreased compared to the wild-type enzyme and the

mutations more strongly affected the strand transfer activities of

both mutants enzymes when using pre-cleaved substrate. The

decrease of concerted integration activity that was observed for the

mutants is probably due to the defect in strand transfer activity in

this assay. Yet, this strand transfer function is not as defective as

when the same enzyme was used in the strand transfer reaction

with preprocessed DNA. This difference could explain why

integrase in concerted integration is relatively insensitive to

RAL. Such a difference of inhibition of IN between concerted

integration and strand transfer assays was already observed for

other inhibitors in our hands (not shown). Furthermore, all the

assays were performed under standard procedures set up for

optimizing enzyme in vitro activities. 39 processing and strand

transfer assay differ from concerted integration in numerous ways

including cations requirement. In addition, we previously

demonstrated that the IN behaviour on short ODN mimicking

the viral ends, as in the case of 39 processing and strand stransfer in

vitro reactions, and on longer fragments containing unspecific

DNA as in the case of the SupF concerted integration substrate

differs. This is due to the need for specific placement of the

enzyme on the viral ends on long substrates [17]. Taken together

all those molecular differences found between assays could explain

the few variations observed for 39 processing, strand transfer and

concerted integration activity in term of inhibitor sensitivity.

How could the selected mutations impair RAL binding while

allowing alternative DNA recognition? We observed (data not

shown) a lower binding to DNA substrate in the case of mutant

Y143R. Residue Y143 in wild-type enzyme has been shown to be

part of a highly disordered loop of the catalytic core of IN and to

be involved in the binding of the terminal portion of viral DNA

ends [22]. Experiments performed with integrase carrying the

Y143C mutation [23] showed that it retains single-end strand

transfer activity and can crosslink with blunt-end DNA, suggesting

that the contact is maintained with the viral DNA during the

conformational change between the 39processing and strand

transfer step. This observation is consistent with our finding that

the Y143C mutant binds strand transfer substrate. On the other

hand, we observed a low binding to DNA substrate in the case of

Figure 2. Comparison of IN WT and IN Y143C/R activities in vitro. 2A: 39-Processing activity of IN WT and IN Y143C/R mutants.
Different concentrations of wild-type (IN WT) or mutated HIV-1 integrases were incubated for 1 h at 37uC with the 39end processing substrate as
indicated in method. Samples were analyzed by electrophoresis on 16% acrylamide gels/ 7 M urea in TBE. Top: A typical electrophoresis is shown.
Bottom: Quantification of 39-end processing activity of IN WT and mutants is shown. Data are the average of at least three different experiments. 2B:
Strand transfer activity of IN WT and IN Y143C/R mutants. Increasing amounts of WT and mutated IN were incubated with the strand transfer
substrate for 1 h at 37uC. A typical experiment is shown (top). The quantification of activities of IN WT and mutants is shown at bottom. Data are the
average of at least three different experiments.
doi:10.1371/journal.pone.0010311.g002
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the Y143R mutant which could be responsible for the catalytic

defect in this enzyme. Studies of molecular dynamic simulations

performed with a dimer of IN [24] demonstrated that in the first

IN subunit, the catalytic core does not make direct interactions

with viral DNA. However, in the second subunit, the Y143 side

chain points completely towards the active site and is favorably

orientated for facilitating enzymatic function. Interaction with

DNA is probably impaired owing to an unfavorable orientation

when Y143 is mutated in R, an orientation which is more

favorable when Y143 is mutated in C. This is in agreement with

the work of Mouscadet et al [25] who propose that native residues

in wild-type enzyme involved in resistance (N155 and Q148) have

a clear preference for adenine recognition, while mutations of

N155 in H or of Q148 in H, R or K give mutants that favor

pyrimidines. It might be that RAL inhibits HIV replication by

mimicking adenine. The selected mutations might impair RAL

binding while allowing alternative DNA recognition.

Recent data from site-directed mutants showed a high impact of

Y143R on replicative capacity and on phenotypic resistance to

RAL (Fransen et al, unpublished data). Recently, the impact of the

substitutions at residue 143 on the sensitivity to RAL was also

investigated [26]. Y143R/C mutations conferred a high resistance

to RAL in vitro and in vivo. The replicative capacity of Y143 mutant

virus was dramatically lower than that of the wild-type virus [26].

Despite impairment of IN activities observed in vitro, Y143C and

Y143R mutants viruses are able to replicate efficiently in vivo. So it

is possible that protease or reverse transcriptase rescued replication

capacity of viruses containing integrase resistance mutations. HIV-

1 genes are involved in modulating viral fitness in patients failing

on raltegravir-containing regimen [27]. From this point of view, in

our in vitro study, we analyzed only the IN activities and we could

not consider interactions with others HIV-1 genes products.

Moreover, the level of resistance was not only linked to the amino

acid found in position 143, but was highly modulated by the

combination with secondary mutations and also by the back-

ground integrase sequence present in patient at baseline [28].

Selection of the Y143R/C mutation was accompanied in all

three patients by the T97A mutation. This mutation seems to

enhance the resistance to RAL in the presence of Y143C, as

suggested by in vitro experiments on site-directed mutants (Fransen

et al, unpublished data). This could explain the high difference of

FC to RAL found between in vitro mutant IN with Y143C/R

alone, or ex vivo with recombinant viruses from patients. Moreover,

our cloning analysis showed that some clones could carry T97A in

the absence of Y143C/R and other major mutations, suggesting

that T97A could be sufficient to code resistance to RAL. Further

experiments should focus on the role of T97A by introducing this

mutation alone into the integrase gene. Moreover, the association

of mutations T97 and Y143 might increase the resistance level to

RAL and/or rescue the catalytic defect due to the Y143C/R

mutation.

In conclusion, we characterized the selection dynamics of the IN

mutations Y143R/C in patients failing on RAL-containing

regimens. In all the patients, Y143R/C with secondary mutations

replaced the N155H mutation. Y143C/R and N155H seemed to

be exclusive in vivo. Further research is warranted to investigate

whether the impact of Y143C/R on IN functions and on

resistance to RAL at the enzymatic level could be modulated by

secondary INI resistance mutations.

Materials and Methods

Study population and design
The patients originated from a cohort of 51 antiretroviral-

experienced patients treated by RAL-containing ART in the

setting of an expanded access program in France [14]. The

patients were selected from the ANRS Co3 Aquitaine Cohort, a

prospective hospital-based cohort of HIV-1 infected patients in

south-western France. Written informed consent was obtained for

all patients. The Aquitaine Cohort has an Institutional Review

Board (IRB) approval from the Bordeaux University IRB.

The RAL dosage was 400 mg twice daily. The co-prescribed

antiretroviral drugs were chosen on the basis of a baseline

genotypic resistance analysis. The patients were followed up at

months 0, 1, 3, 6, 9 and 12 on RAL-containing ART, at which

points plasma HIV-1 RNA (CobasTaqman HIV assay, Roche

Diagnostics, Basel, Switzerland) and CD4 (+) cell counts were

measured. Only patients who had VF (defined as plasma HIV-1

RNA.400 copies/ml after three months on RAL and/or

.50 copies/ml after six months on RAL) with selection of

mutations at residue 143 were included in this study.

Amplification and sequencing of the HIV-1 integrase
gene

The complete integrase gene was PCR-amplified from plasma

samples collected at baseline and at the time of virological failure.

Plasma (1 ml) was centrifuged at 19,000 g for 1 h at 4uC, and viral

RNA was extracted from the pellet using the High Pure Viral

RNA Kit (Roche Diagnostics). Ten microliters of RNA were used

Figure 3. Concerted integration activity of IN WT and IN
Y143C/R mutants. Increasing amounts of IN WT or mutants IN Y143C
or Y143R were incubated in presence of donor and acceptor DNA.
Reaction was then processed as described in material and methods. An
example of products obtained in a typical experiment is illustrated in
fig 3A. The position and the structure of the different products half-site
(HSI), full-site (FSI) and donor/donor integration (d/d) are shown.
Figure 3B corresponds to the quantification of several independent
experiments. Heterointegration corresponds to densitometry of the FSI
and FSI+HIS bands (see products indicated in Figure 3A).
doi:10.1371/journal.pone.0010311.g003
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for RT-PCR (Titan one-Tube RT-PCR kit, Roche Diagnostics)

using primers IN12 and IN13. A nested PCR was then performed

by using Ampli Taq Gold DNA Polymerase (Applied Biosystems)

with primers IN and BH4.

After purification of the amplified DNA (S400 columns,

Pharmacia), the integrase gene was sequenced by using two

forward (IN1 and IN4542S) and two reverse (IN4764AS and BH4)

primers. The complete sequencing procedures and primer

sequences are described at www.hivfrenchresistance.org. The

sequence analysis was processed on a Beckmann CEQ2000 XL

Sequencer and the sequences were aligned on the HXB2 reference

sequence by using the SmartGene software. We followed-up the

50 mutations of resistance present at 32 positions: associated with

in vitro or in vivo resistance to HIV-1 integrase inhibitors: H51Y,

T66I/A/K, V72I, L74I/A/M, E92Q, T97A, T112I, F121Y,

T125K, A128T, E138 K/A/D, G140R/C/H, Y143C/H/R,

Q146K/P, S147G, Q148K/R/H, V151I, S153Y/A, M154I,

N155S/H, K156N, E157Q, K160D/N, G163 R/K, V165I,

V201I, I203M, T206S, S230N/R, V249I, R263K, C280Y. These

mutations were previously described by Lataillade et al [29] as

associated with in vitro or in vivo resistance to HIV-1 integrase

inhibitors.

Genotypic resistance analysis
Reverse transcriptase and protease were submitted for geno-

typic resistance analysis according to the ANRS consensus

procedures available at www.hivfrenchresistance.org. The geno-

typic sensitivity score (GSS) was calculated as the sum of genotypic

sensitivities (according to the ANRS genotype-interpretation

Figure 4. Sensitivity to RAL of IN WT and IN Y143C/R mutants in a 39-processing assay. IN (150 nM) was incubated in the presence of
increasing amounts of RAL. Then activity was assayed in the presence of a 39end processing substrate. A typical analysis is shown in Figure 4A (2-hour
exposure) and 4B (overnight exposure). Inhibition curves are shown in Figure 4C and are the result of at least three independent experiments.
doi:10.1371/journal.pone.0010311.g004

Figure 5. Sensitivity to RAL of IN WT and IN Y143C/R mutants
in a strand transfer assay. IN (150 nM) was incubated in the
presence of increasing amounts of RAL. Then activity was assayed in the
presence of a strand transfer substrate. A typical gel is shown if Figure 5.
Inhibition curves are shown in Figure 5B and are the result of at least
three independent experiments.
doi:10.1371/journal.pone.0010311.g005
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algorithm, version 17 (http//:www.hivfrenchresistance.org): 0, 0.5

or 1 if resistant, partially susceptible or susceptible, respectively) to

the drugs co-prescribed with raltegravir. Enfurvitide prescribed in

an enfurvitide-naive patient was considered as an active drug.

HIV-1 integrase cloning and sequencing
In order to study specific patterns of mutations more

extensively, IN gene PCR products amplified from plasma HIV-

1 RNA were produced in duplicate for each sample studied and

were pooled. The PCR products were then cloned using the

pGEMH-T Easy Vector System kit (Promega Corporation)

according to the manufacturer’s recommendations. The purified

clonal fragments were then sequenced (20–50 clones per sample)

and linkage between integrase mutations was determined.

Phenotypic sensitivity to RAL and Elvitegravir (EVG)
Viral RNA extraction. Viral RNA was isolated, either

starting from 256 ml plasma using the automated QIAamp Virus

BioRobot MDx extraction platform (Qiagen), or from 600 ml

plasma using the EasyMAG procedure (BioMérieux) according to

the manufacturer’s instructions.

Amplification of the HIV-1 Integrase gene. Starting from

viral RNA, cDNA was generated using the Accuscript High

Fidelity Reverse Transcriptase (Stratagene) with random

hexamers. cDNA synthesis consisted of three steps:

10 min at 25uC, 60 min at 42uC, followed by 15 min at 70uC.

Subsequently, the IN gene was amplified by nested PCR using

forward primers 59INoutR1 (positions 4059–4081 in HXB2) and

59INinF1 (positions 4143–4164 in HXB2) and reverse primers

39INoutR2 (positions 5241–5262 in HXB2) and 39INinR1

(positions 5195–5217 in HXB2). Both the outer and inner PCR

were performed using the Phusion High-Fidelity PCR Master Mix

(Finnzymes). Thermal cycling of both PCRs consisted of a

denaturation step at 98uC for 30 sec, 30 cycles of 10 sec at

98uC, 30 sec at 58uC and 30 sec at 72uC, and a final elongation

for 10 min at 72uC.

Purification and genotyping of the IN amplicons.

Amplicons were purified using the QiaQuick PCR purification

(Qiagen). IN sequencing reactions were performed using the

BigDye Terminator cycle sequencing kit and run on an ABI3730

automated sequencer (Applied Biosystems). Sequence editing and

contig assembly were performed using Sequencher v4.1.4 (Gene

Codes Corporation) or SeqScape v2.5 (Applied Biosystems) and

HXB2 as a reference.

Production of replication-competent recombinant

viruses. We used an HXB2-based HIV backbone in which

the integrase region was deleted (pHXB2-DIN) [30,31]. IN

amplicons were then recombined intracellularly in MT4 cells

with the pHXB2-DIN backbone by Amaxa nucleofection (Amaxa

Biosystems) according to the manufacturer’s recommendations.

The cytopathic effect (CPE) was monitored during the course of

infection. When full CPE was reached, recombinant viruses were

harvested by centrifugation.

Drug susceptibility testing of recombinant viruses.

Replication-competent recombinant viruses were titrated and

subjected to antiviral testing in MT4-LTR-eGFP cells using RAL

and EVG at concentrations from 0.1 nM to 3.6 mM and 0.04 nM to

0.7 mM respectively. After 3 days incubation at 37uC and 5% CO2,

infection was quantified by means of UV microscopy measuring the

HIV Tat-induced eGFP expression. Using the IIIB HIV-1 wild-type

virus as a reference, fold change (FC) values were calculated.

Site-directed mutagenesis and bacterial expression
The integrase region of pol gene of pNL4-3 was subcloned in

pet21b. Mutagenesis at position 143 was performed using the

QuikChange Site-directed Mutagenesis kit (Stratagene) according

to the manufacturer’s instructions. Plasmids were amplified in

DH5a strains.

IN purification
Standard purification of IN was performed essentially as

previously described in our laboratory [15,17,21]. Briefly,

Figure 6. Sensitivity to RAL of IN WT and IN Y143C/R mutants in a concerted integration assay. IN (50 nM) was incubated in presence of
donor and acceptor DNA and increasing amounts of RAL. Reaction was then processed as described in material and methods. A typical gel is shown if
Figure 6A. Inhibition curves are shown if Figure 6B and are the result of at least three independent experiments. Heterointegration corresponds to
densitometry of the FSI and FSI+HIS bands (see products indicated in Figure 6A). A Student Test was used to derive P value. * p value ,0.05
considered statistically significant.
doi:10.1371/journal.pone.0010311.g006
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integrase expression was done in Rosetta bacterial strains.

Induction was done for 3 h. The soluble fraction containing the

HIV-1 IN was loaded on a Hitrap butyl-sepharose 4B column

(1 ml, Pharmacia-LKB), washed with LSC buffer (50 mM HEPES

pH 7.6, 0.2 M NaCl, 0.1 M EDTA, 1 mM DTT, 7 mM CHAPS,

10% glycerol) and equilibrated with 5 volumes HSC buffer

(50 mM HEPES pH 7.6, 0.2 M NaCl, 1 M ammonium sulfate,

0.1 mM EDTA, 1 mM DTT, 7 mM CHAPS). Proteins were

eluted by a decreasing ammonium sulfate gradient (1 to 0 M).

Fractions containing IN were pooled and 7 mM CHAPS was

added. Pooled fractions were 1/3 diluted with 50 mM HEPES

pH 7.6, 0.1 M EDTA, 1 mM DTT, 10% glycerol, 7 mM CHAPS

and loaded on a Hitrap Heparine Sepharose CL-4B column (1 ml,

Pharmacia-LKB), washed with 5 volumes HS buffer (50 mM

HEPES pH 7.6, 1 M NaCl, 0.1 mM EDTA, 1 mM DTT, 10%

glycerol, 7 mM CHAPS) and eluted with a linear NaCl gradient (0

to 1 M NaCl). Elution of the three enzymes was observed at the

same concentration of NaCl along the purification process.

Fractions containing IN activity (39-end processing and strand

transfer assays) were pooled and concentrated or not by

ultrafiltration (Centricon Millipore). Purified IN was kept at

280uC. Proteins were analyzed by electrophoresis on a 12% SDS-

PAGE. The 3 enzymes have similar purification rate of 99%

homogeneity.

In vitro activities
Processing and strand transfer. Standard assays were

performed as described previously in 20 mM HEPES pH 7.5,

10 mM DTT, 7.5 mM MnCl2, 0.05% NP40 in a total volume of

20 ml [15,17,21]. The reaction mixture was incubated at 37uC for

1 h in the presence of IN and radiolabeled oligonucleotides

(1 pmol, 50 nM) and the incubation was stopped by adding 10 ml

of loading buffer (95% formamide, 20 mM EDTA, 0.05%

bromophenol blue) and heating at 90uC for 5 min (standard

conditions). The reaction products were analyzed by

electrophoresis on 15% polyacrylamide gels with 7 M urea in

Tris-borate-EDTA (TBE) pH 7.6 and autoradiographied. The

ODN sequences used to perform the processing and strand

transfer assays were the following: ODN70: 59GTG-

TGGAAAATCTCTAGCAGT39, ODN71: 59GTGTGGAAAA-

TCTCTAGCA39, ODN 72: 59ACTGCTAGAGATTTTCCA-

CAC39. To perform the 39 processing assay, the 59 radiolabeled

ODN 70 hybridized to ODN 72 was used as a substrate while the

59 radiolabeled ODN 71 hybridized to ODN 72 was used as

substrate for the strand transfer reaction.

Concerted integration DNA substrates. Standard

concerted integration reactions were performed as described

previously [16,17]. Briefly, purified HIV-1 IN (concentrations as

indicated in the figures) was pre-incubated with both the 59-end-

labeled donor DNA (10 ng) containing the 39-unprocessed U3 and

U5 LTR sequences and the target DNA plasmid pBSK+ (100 ng)

at 0uC for 20 min in a total volume of 5 ml. Then the reaction

mixture (20 mM HEPES, pH 7.5; 10 mM DTT; 7.5 mM MgCl2;

10% DMSO; 8% PEG) was added and the reaction proceeded for

90 min. Incubation was stopped by adding a phenol/isoamyl

alcohol/ chloroform mix (24/1/25 v/v/v). The aqueous phase

was loaded on a vertical 1% agarose gel in the presence of 1%

bromophenol blue and 1 mM EDTA. After separation of the

products, the gel was treated with 5% TCA for 20 min, dried and

autoradiographied. All IN activities were quantified by scanning of

the bands after gel electrophoresis and autoradiography using the

Image J software. Both target and donor plasmids were kind gifts

from Dr. Karen Moreau (Université Claude Bernard-Lyon I,

France). The target corresponds to the plasmid pBSK+

(Stratagene, La Jolla, California) carrying the zeocin resistance-

encoding gene. The unprocessed donor was generated by cloning

a donor containing ScaI ends into a pGEM-T vector (Promega) as

previously described [16]. The pGEM-T-SupFScaI resulting

vector was cleaved by ScaI and the substrate fragment was purified.

Supporting Information

Table S1 Clonal analysis of virological evolution of HIV-1

integrase in three patients failing on raltegravir-containing

regimens. Time on therapy: time on raltegravir-containing

regimens (Months). Bulk/clones: Bulk when indicated, or number

of clones (%).

Found at: doi:10.1371/journal.pone.0010311.s001 (0.18 MB

DOC)
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