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Abstract
The amount of information contained in a piece of data can be measured by the effect this data has
on its observer. Fundamentally, this effect is to transform the observer's prior beliefs into posterior
beliefs, according to Bayes theorem. Thus the amount of information can be measured in a natural
way by the distance (relative entropy) between the prior and posterior distributions of the observer
over the available space of hypotheses. This facet of information, termed “surprise”, is important
in dynamic situations where beliefs change, in particular during learning and adaptation. Surprise
can often be computed analytically, for instance in the case of distributions from the exponential
family, or it can be numerically approximated. During sequential Bayesian learning, surprise
decreases like the inverse of the number of training examples. Theoretical properties of surprise
are discussed, in particular how it differs and complements Shannon's definition of information. A
computer vision neural network architecture is then presented capable of computing surprise over
images and video stimuli. Hypothesizing that surprising data ought to attract natural or artificial
attention systems, the output of this architecture is used in a psychophysical experiment to analyze
human eye movements in the presence of natural video stimuli. Surprise is found to yield robust
performance at predicting human gaze (ROC-like ordinal dominance score ∼ 0.7 compared to ∼
0.8 for human inter-observer repeatability, ∼ 0.6 for simpler intensity contrast-based predictor, and
0.5 for chance). The resulting theory of surprise is applicable across different spatio-temporal
scales, modalities, and levels of abstraction.
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1. Introduction
The concept of information is central to science, technology, and many other human
endeavors. While several approaches for quantifying information have been proposed, the
most prominent one so far has been Claude Shannon's definition introduced over half a
century ago [49,1,39,7,11]. According to this definition, the amount of information
contained in a piece of data D is measured by −log2 P(D) bits–a rare piece of data with
small probability is considered more informative. Although eminently successful for the
development of modern telecommunication and computer technologies, Shannon's definition
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does not capture all aspects of information. Here we look at information from a different
angle. Starting from Bayes theorem, we notice that the fundamental effect that data has on a
given observer is to change his/her/its prior beliefs into posterior beliefs. Thus we propose to
measure the effect D has on the observer by the distance between his prior and posterior
belief distributions. We call this facet of information surprise.

Surprise plays an important role in dynamic situations when the beliefs of the observer
change significantly in time, as a result of consecutive applications of Bayes theorem. This
can happen in at least two broad categories of situations: either when the beliefs keep
changing all the time without converging to a stable value, or when the beliefs progressively
converge to a stable value. The first case corresponds to tracking or adaption in a non-
stationary environment. The second case corresponds to learning from a stationary data set,
when beliefs evolve but finally converge to a stable value. In our framework, adaptation and
learning are the results of the same fundamental operation: belief update using Bayes
theorem. What distinguishes them is not the basic underlying mathematical operation, but
rather the memory span and time scales involved.

In what follows, in Section 2 we first provide the mathematical definition of surprise. In
Section 3, we show how surprise can be computed exactly or approximated efficiently in
most common situations. In Section 4, we study how surprise changes during learning. In
Section 5, we investigate the connections between surprise and other theories of information
and novelty, including Shannon's theory of information. In Section 6, we describe a neural
network architecture for computing surprise over image and video data in computer vision.
Finally, in Section 7, we conduct psychophysical experiments and apply the surprise
architecture to the problem of modeling attention and predicting rapid eye movements in
humans watching natural stimuli.

The present paper builds on our previously published reports on the same theme
[2,24,25,26]. The two key new components here are: (1) a detailed and self-contained
treatment of the theory with derivation of closed-form expressions for computing surprise in
a number of important cases, analysis of the relationship between surprise and Bayesian
learning, and comparison of surprise to other theories of information and novelty; and (2) a
detailed presentation of the computational model of attention developed to investigate to
which extent Bayesian surprise may predict what attracts human gaze while watching
natural video clips. In addition, we also describe new experimental results comparing two
variants of our computational model (using either Gaussian data and a Gaussian prior, or
Poisson data and a Gamma prior; see below) on two open-access human gaze tracking
datasets, and we develop a new temporal analysis that reveals a strong time contingency
between the onset of a surprising event in a video clip and the execution of a human gaze
shift towards such event. The reader is invited to explore our previous publications for more
extensive discussions of the eye-tracking methodologies, general modeling of human
saliency maps, and methodologies for comparing human gaze recordings to saliency maps
generated by a number of different models available in the literature. All the data collected
for the experiments have been made publicly available.

2. Mathematical Definition of Surprise
The definition we propose is best understood within the Bayesian or subjectivist framework
of probability theory. In the subjectivist framework, degrees of belief or confidence are
associated with hypotheses or models. It can be shown that under a small set of reasonable
axioms, these degrees of belief can be represented by real numbers and that when rescaled to
the [0,1] interval they must obey the rules of probability and in particular Bayes theorem
[12,48,6,31,16,32]. The amount of surprise in the data for a given observer can be measured
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by looking at the changes that take place in going from the prior to the posterior
distributions.

Specifically, consider an observer with a prior distribution P(M) over a set  of possible
models or hypotheses. The collection of a piece of data D leads to a reevaluation of beliefs
and the transformation of the prior probability into a posterior distribution according to
Bayes theorem,

(1)

¿From this equation, the effect of D is clearly to change P(M) to P(M∣D). In other words, we
view the data D as an operator acting on the space of distributions over the space of models.
Thus, one basic way of measuring information carried by D is to measure the distance
between the prior and the posterior distributions. To distinguish it from Shannon's
communication information, we call this notion of information the surprise information, or
just surprise [2]:

(2)

where d is a distance or dissimilarity measure. There are different ways of measuring
distance or dissimilarity between probability distributions. In what follows, for standard
well-known theoretical reasons such as invariance with respect to reparameterizations, we
use the relative entropy or Kullback-Liebler [34] divergence K

(3)

where H denotes the entropy.

The alternative version K(P(M∣D), P(M)) of the relative entropy may also be used (and may
even be slightly preferable in settings where the “true” or “best” distribution is used as the
first argument). While the basic principles in the following derivations apply to both forms,
here we use the version in Equation 3 because in general it leads to slightly simpler
analytical expressions. This is simply because the prior distribution, which occurs twice in
Equation 3, in general has a simpler expression than the posterior distribution which
contains additional data-dependent terms. Alternatively, the relative entropy might also be
symmetrized by taking [K(P(M), P(M∣D)) + K(P(M∣D), P(M)]/2. Although the symmetric
version is rarely used, the analytical formula to be derived could be applied to the symmetric
version with the proper and obvious adjustments. The same applies to other variations, such
as the Jensen-Shannon divergence [56, 37]. In considering the symmetric version, note,
however, that there is no reason why the intuitive notion of surprise ought to be symmetric
with respect to the distributions involved. In fact, introspection dictates that the contrary
ought to be true. A broad prior distribution followed by a narrow posterior distribution
corresponds to a reduction in uncertainty, while a narrow prior distribution followed by a
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broad posterior distribution corresponds to an increase in uncertainty, and both lead to
different subjective experiences.

Equivalently, we can define the single-model surprise by the log-odd ratio

(4)

and the surprise by its average

(5)

taken with respect to the prior distribution over the model class. In statistical mechanics
terminology, surprise can also be viewed as the free energy of the negative log-posterior at a
temperature t = 1, with respect to the prior distribution over the space of models [3].

A unit of surprise–the “wow”–can be defined for a single model M as the amount of surprise
corresponding to a two-fold variation between the prior and the posterior, i.e., as −log2
P(M)/P(M∣D). Note that unless we use absolute values, this ratio can be positive or negative
depending on whether the observer's belief in model M increases or decreases. The total
number of wows experienced when simultaneously considering all models is obtained by
integrating over  and, as a relative entropy, is always positive.

3. Analytical Computation or Approximation of Surprise
As a relative entropy, surprise can always be estimated, at least numerically. But for the
concept to be really useful, one ought to be able to compute surprise analytically, at least in
the most standard statistical cases.

More precisely, consider a data set D = {d1, …, dN} containing N points. For simplicity,
although this does not correspond to any restriction in the general theory, we consider the
case of conjugate priors, where the prior and the posterior have the same functional form. In
addition to their theoretical interest, conjugate priors are also important for efficient
implementations of iterative Bayesian learning where the posterior at iteration t becomes the
prior for iteration t + 1. In order to compute surprise in Equation 3 with conjugate priors, we
need only to compute general terms of the form

(6)

where P1(x) and P2(x) are two distributions with the same functional form. The surprise is
then given by

(7)

where P1 is the prior and P2 is the posterior. Note also that in this case the symmetric
divergence can easily be computed using F(P1, P1) − F(P1, P2) + F(P2, P2) − F(P2, P1).
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Details for the calculation of F(P1, P2) in the following specific examples are given in the
Appendix.

3.1. Discrete Data: Multinomial Model
Consider the case where di is binary. The simplest class of models for D is then M(p), the
first order Markov model with a single parameter p representing the probability of emitting a
1. The conjugate prior on p is the Beta distribution (or Dirichlet distribution in the general
multinomial case)

(8)

with parameters a1 ≥ 0, b1 ≥ 0, and a1 + b1 > 0. The expectation is a1/(a1 + b1). With n
successes in the sequence D of N samples, the posterior is a Dirichlet distribution D2(a2, b2)
with [3]

(9)

The surprise can be computed exactly

(10)

where Ψ is the derivative of the logarithm of the Gamma function (see Appendix). When N
→ ∞, and n = pN with 0 < p < 1 we have

(11)

where K(p, a1) is a concise notation to represent the Kullback-Liebler divergence between
the empirical distribution (p, 1 − p) and the expectation of the prior (a1/(a1 + b1), b1/(a1 +
b1)). Thus asymptotically surprise grows linearly with the number of data points with a
proportionality coefficient that depends on the discrepancy between the expectation of the
prior and the observed distribution. The same relationship is true in the case of a
multinomial model. When the prior is symmetric (a1 = b1), a slightly more precise
approximation is provided by

(12)

where H(p) denotes the entropy H(p) = −p log p − (1 − p) log(1 − p). For instance, when a1
= 1 then K(D1, D2) ≈ N(1 − H(p)), and when a1 = 5 then K(D1, D2) ≈ N[0.746 − H(p)].
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3.2. Discrete Data: Poisson Model
As a second discrete example, consider the case where di is an integer. A simple class of
models for D is the class of Poisson models parameterized by λ. The conjugate prior on λ is
the Gamma prior

(13)

with x ≥ 0, shape a1 > 0, inverse scale b1 > 0. The expectation is a1/b1. With N observations,
the posterior is also a Gamma distribution Γ2(a2, b2) with

(14)

where m ̄ is the sample mean. The surprise can be computed exactly

(15)

When N → ∞, Stirling's formula yields the approximation

(16)

Thus asymptotically surprise information grows linearly with the number of data points with
a proportionality coefficient that depends on the difference between the mean a1/b1 of the
prior and mean m ̄ of the sample plus an offset.

3.3. Continuous Data: Unknown Mean/Known Variance
When the di are real, we can consider first the case of unknown mean with known variance.
We have a family M(μ) of models, with a Gaussian prior . If the data has known
variance σ2, then the posterior distribution is Gaussian  with parameters given by
[16]

(17)

where m ̄ is the observed mean. In this case
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(18)

the approximation being valid for large N. In the special case where the prior has the same
variance as the data σ1 = σ then the formula simplify a little and yield

(19)

the last approximation being valid when N is large. In any case, surprise grows linearly with
N with a coefficient that is the sum of the prior variance and the square difference between
the expected mean and the empirical mean scaled by the variance of the data.

3.4. Continuous Data: Unknown Variance/Known Mean
When the dis are real, we can also consider the case of unknown variance with known mean.
We then have a family M(σ2) of models, with a conjugate scaled inverse gamma prior ([16])

(20)

The posterior is then a scaled inverse gamma distribution [16] with

(21)

Here σ ̄2 = Σ(xi − m)2/N is the observed variance, based on the known mean m. The surprise

(22)

For large values of N,

(23)
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Thus surprise information scales linearly with N, with a coefficient of proportionality that
typically depends mostly on the ratio of the empirical variance to the scale parameter ,
which is roughly the expectation of the prior [the expectation of the prior is 
provided ν1 > 2]. The effects of very large or very small values of σ ̄ or ν1 can also be seen in
the formula above. In particular, surprise is largest when the empirical variance σ ̄2 goes to 0
or infinity, i.e., is very different from the prior expectation.

3.5. Continuous Data: Unknown Mean/Unknown Variance
Finally, we can consider the case of unknown mean with unknown variance. We have a
family M(μ, σ2) of models, with a conjugate prior G1Γ1 = P(μ∣σ2)P(σ2) = G1(μ1, σ2/κ1)Γ1(ν1,
s1), product of a normal with a scaled inverse Gamma distribution. Thus the prior has four
parameters (μ1, κ1, ν1, s1), with κ1 > 0, ν1 > 0, and s1 > 0. The conjugate posterior has the
same form, with similar parameters (μ2, κ2, ν2, s2) satisfying (see for instance [16])

with m ̄ = Σxi/N and σ ̄2 = Σ(xi − m ̄)2/(N − 1). The surprise is

(24)

For large values of N,

(25)

Surprise information is linear in N with a coefficient that is essentially the sum of the
coefficients derived in the unknown mean and unknown variance partial cases.

3.6. Generalization: Exponential Families With Conjugate Priors
The previous examples can be generalized by considering a family M(θ) of models
parameterized by the parameter vector θ with a likelihood function associated with the
exponential family of distributions ([9])

(26)
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where h(d), c(θ), wi(θ), and ti(d) are known functions of the respective variables. With N
independent data points (D = d1, …, dN)

(27)

where , and  are the sufficient statistics. The conjugate
prior has a similar exponential form

(28)

parameterized by the 's. Using Bayes theorem, the posterior has the same exponential
form

(29)

parameterized by the 's satisfying

(30)

Calculation of surprise yields

(31)

where EA1[wi(θ)] is the expectation of wi(θ) with respect to the prior. Note that if surprise is
defined by K(P(M∣D), P(M), the same calculation yields

(32)

Thus for members of the exponential family [9] of distributions, the posterior depends
entirely on the sufficient statistics and therefore the surprise also depends crucially on them.
The Ti(D) terms typically grow linearly with the data, and so does surprise.
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4. Learning and Surprise
There is an immediate connection between surprise and computational learning theory. If we
imagine that data points from a training set are presented sequentially, we can consider that
the posterior distribution after the N-th point becomes the prior for the next iteration
(sequential Bayesian learning). As a system learns from examples with a static distribution,
new data points ought to become less and less surprising. Thus in this case we can expect on
average surprise to decrease after each iteration. We shall compute the exact rate of decrease
using examples taken from the distributions studied in the previous section.

4.1. Learning Curves: Discrete Data
Consider first a sequence of 0-1 examples D = (dN). The learner starts with a Dirichlet prior
D0(a0, b0). With each example dN, the learner updates its Dirichlet prior DN(aN, bN) into a
Dirichlet posterior DN+1(aN+1, bN+1) with (aN+1, bN+1) = (aN+1, bN) if dN+1 = 1, and (aN+1,
bN+1) = (aN, bN + 1) otherwise. When dN+1 = 1, the corresponding surprise is easily
computed using Equations 56 and 59 (detailed in Appendix). For simplicity, and without
much loss of generality, let us assume that a0 and b0 are integers, so that aN and bN are also
integers for any N. Then if dN+1 = 1 the relative surprise is

(33)

and similarly in the case dN+1 = 0 by interchanging the role of aN and bN. By using the
standard integral bound for series based on monotonically decreasing functions, we have

(34)

By combining the last two equations we get

(35)

Asymptotically we have aN ≈ a0 + pN and bN ≈ b0 + (1 − p)N (this is exactly true in
expectation). Therefore, by taking the first order expansion of log(1 − u) and substituting
these approximate values, we see that asymptotically the bound gives

(36)

Thus surprise decreases in time with the number of examples as 1/N (Figure 1). A similar
calculation can be done for the Poisson model.
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4.2. Learning Curves: Continuous Data
In the case of continuous Gaussian data with, for instance, known variance σ2, the learner
starts with a Gaussian prior  on the mean. With each example dN, the learner

updates its Gaussian prior  into a Gaussian posterior  with

(37)

¿From Equation 18, the relative surprise is

(38)

Asymptotically

(39)

¿From Equation 17, we have , or , which
asymptotically behaves like σ2/N.

Combining this asymptotic form with Equation 39, we see that in this case surprise can be
expected to decrease like 1/2N, again proportionally to the inverse of the number of data
points.

Similar calculations can be done for the general exponential case (Equations 30 and 31) by
noticing that, as N → ∞, in a stationary environment Ti(D) ≈ Nt̄i(d), where t̄i(d) is the
average value of ti.

5. Relations of Bayesian Surprise to Other Theories of Information and
Surprise
5.1. Theories of Information

Several theories have been proposed over the years to try to capture the concept of
information and entropy [49,47,1,39,7,33,11] and not all of them can be reviewed here.
Shannon's theory has been by far the most successful one, and many of the other theories
that have been proposed [47,1] can be viewed as variations on Shannon's definition. Thus
for conciseness here we focus on the relationship of Bayesian surprise to Shannon's
definition and then separately on the relationship of Bayesian surprise to other specific
definitions of surprise found in the literature.

Shannon theory of communication defines the information contained in D at the level of an
individual model M by
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(40)

with the corresponding entropy

(41)

This entropy corresponds to an integral over data, whereas Bayesian surprise corresponds to
an integral over models hence at this level surprise and information are dual facets of the
data.

Shannon theory can also be applied at the level of the model class . In this case the
information carried by D is

(42)

where P(D) = P(D∣ ) = ∫ ( ∣ ) ( )⌈  is also called the evidence and plays a key
role in Bayesian analysis and model class comparison.

The corresponding entropy is given by

(43)

For a fixed data set D, the surprise is

(44)

and therefore it can also be viewed as the difference between the average Shannon
information per model, taken with respect to the prior, and the Shannon information based
on the evidence.

If we integrate the surprise with respect to the evidence

(45)

we get the Kullback-Liebler divergence K(P(D)P(M), P(D, M)), which is the permuted
version of the mutual information MI between  and : MI( , ) = K(P(D, M),
P(D)P(M)). If surprise is defined by K(P(M∣D), P(M)) then the integral of the surprise is
equal to the mutual information between data and models. Note in contrast that the integral
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over models of the per-model entropy (Equation 41) is not equal to the mutual information,
but related to it by a convex inequality, as shown by Equation 44.

In short, Bayesian surprise measures a facet of information that is different and
complementary to Shannon's definition.

5.2. Theories of Surprise
The concepts of “surprise” and “surprising event” have also been raised multiple times in
the statistical literature [54,44,5,17,35,13].

One simple approach corresponds to outlier detection theory, whereby surprising events are
defined as rare events, i.e. events having low probability. Such a definition of course is
closely related to Shannon's theory of information since, by definition, rare events (P(D)
small) have high Shannon information (I(D) = −log P(D) large). While it is easy to see that
in many cases, Shannon's I(D) and the Bayesian surprise S(D) are closely related, there exist
also specific situations where these two approaches provide clearly distinct answers, and
Bayesian surprise matches intuition better. We illustrate here two somewhat extreme classes
of examples corresponding to high Shannon information and low surprise, and vice versa.

Many Bits with Few Wows—The most simple example is obtained when  contains a
single model M. The prior is necessarily given by P(M) = 1, and the posterior distribution is
always equal to the prior. Thus if there is data D satisfying P(D) = ε ≪ 1, the Shannon
information log ε can be arbitrarily large, whereas the surprise is always zero. For a more
complex and instructive example, let  = {M1, …, MN} with a uniform prior P(Mi) = 1/N
for every i. Assume that for each model Mi, P(D∣Mi) = ε, and hence P(D) = ε; that is, a
datum is observed which is unlikely for any of the models. By Bayes theorem, we have
immediately P(Mi∣D) = P(Mi) = 1/N. Thus in this case Shannon's information −logε grows
to infinity as we decrease the value of ε. On the other hand, the prior and the posterior
distributions being identical, the surprise is zero. Thus while the number of wows is zero,
the number of bits grows to infinity like −log ε. In this case, although D is a strong outlier, D
is a false positive, in the sense that it carries no useful information for discriminating
between the alternative hypotheses Mi. Therefore D carries no surprise as its observation
leaves the observer's expectations unaffected.

Few Bits with Many Wows—Conversely, consider  = {M1, …, MN} with a non-
uniform prior given by P(M1) = a and P(Mi) = (1 − a)/(N − 1) for i = 2, …, N. Consider data
D with the likelihood P(D∣M1) = (1 − a)/(N − 1) and P(D∣Mi) = a for i = 2, …, N. A simple
calculation shows that P(D) = a(1 − a)N/(N − 1) while the posterior distribution is uniform
and given by P(Mi) = 1/N for any i. Thus for large N, the Shannon information converges to
the constant value I(D) = −log[a(a − 1)] bits, determined by the parameter a. For instance, if
a = 0.5 the Shannon information converges to 2 bits. The surprise, however, is given by
S(D) = a log Na + (1 − a) log[(1 − a)N/(N − 1)] which, for large values of N, converges to a
log N + H(a). Thus while the number of bits is finite, the number of wows grows to infinity
like a log N. A data with these properties would go undetected by standard outlier theory,
but would be picked up by surprise since it is associated with a significant change from prior
to posterior distribution.

Note that examples where D carries few bits but many wows do not require the number N of
models to go to infinity. Consider the case N = 2 with P(M1) = a and P(M2) = 1 − a. Assume
that P(D∣M1) = b and P(D∣M2) = c. We then have P(D) = ab + (1 − a)c, P(M1∣D) = ba/P(D),
and P(M2∣D) = (1 − a)c/P(D). The surprise is equal to log[ab + (1 − a)c] − a log b − (1 − a)
log c. By letting either b → 0 or c → 0, but not both, we can easily achieve a diverging
amount of surprise in combination with a finite amount of Shannon information.
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In any case, in the outlier detection approach, if all possible events or datasets have very low
probability, then they are all very “surprising”, which is not very useful in practice. Thus it
is clear that whether an event or data set is surprising or not cannot be decided on its
probability alone. As a minimum, the probabilities of the other events must also be taken
into consideration. Thus another approach, introduced in [54] and further developed in, for
instance, [44,17], tries to compare the probability of an event to the probabilities of all the
other possible events by using a “surprise index”. Weaver [54] considers an experiment with
n possible outcomes, with probabilities p1, …, pn and defines the Surprise Index by

(46)

The SI measures “whether the probability realized, namely, pi is small as compared with the
probability that one can expect on the average to realize, namely, E(p). If this ratio is small
and SI correspondingly large, then one has a right to be surprised.”[54]. Unlike simple
outlier detection, the surprise index does consider an event in the context of other events.
However, the surprise index does not consider explicitly prior and posterior distributions and
is obviously quite different from the concept of Bayesian surprise described in this paper.

Perhaps closest in spirit to our work, but still different and derived completely
independently, is the work of Evans [13,14] which takes a Bayesian perspective and
considers prior and posterior distributions and their ratios. More precisely, consider a family
of models parameterized by θ, and a function T(θ) with a set of possible values ti. Evans
proposes to introduce a total ordering on the ti and a surprise inference principle by
considering that t1 is strictly preferred to t2 if “the relative increase in belief for t1, from a
priori to a posteriori, is greater than the corresponding increase for t2.” In turn, this
preference ordering is used to determine inferences and applied to estimation, hypothesis
testing, and model checking procedures [13]. This statistical work, however, does not take
an explicit information theoretic perspective, and does not define surprise as the relative
entropy between the prior and posterior distributions.

6. A Neural Network Implementation of Surprise for Computer Vision
Here we describe a neural network architecture for processing and computing surprise over
image and video data in bottom-up fashion. The architecture is inspired by the neurobiology
of early visual processing in the primate brain [29,24,25,26]. In this section we first describe
the low-level, Hubel and Wiesel-like, visual feature detection front-end of the proposed
system followed by two alternative surprise computation back-ends operating on the feature
responses.

6.1. Low-level visual feature extraction
The proposed system employs a relatively mature and standard low-level feature extraction
front-end [30,28]. This front-end analyzes the incoming input images at several spatial
resolutions and along several low-level feature dimensions, including color contrast,
luminance contrast, oriented edges, and motion energy. In a manner inspired by how early
visual processing is organized in the primate brain, the front-end processing thus
decomposes the image into a number of sub-bands. Surprise is then computed at the level
where the responses from the low-level feature detectors are integrated, as opposed to
directly at the pixel level.
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A schematic diagram of the system is given in Fig. 2. Input video frames are analyzed in
dyadic image pyramids with 9 scales (from scale 0 corresponding to the original image, to
scale 8 corresponding to the image reduced by a factor of 256 horizontally and vertically).
The pyramids are constructed by iteratively filtering and decimating the input image. In the
implementation used here, pyramids are computed for the following low-level visual
features thought to guide human attention [55]: (1) luminance; (2) red-green color
opponency; (3) blue-yellow color opponency; (4) four oriented edge filters (using Gabor
kernels) spanning 180°; (5) luminance flicker (as computed from the difference between the
previous image and the current one); and (6) four directions of motion spanning 360°.
Additional details about the implementation of these image pyramids have been published
previously [30,27]. The final feature output is in the form of “feature maps” which are
obtained by taking across-scale differences between pairs of levels within each feature
pyramid. These differences coarsely approximate center-surround contrast enhancement
mechanisms found in the early stages of biological visual processing [23,51,21]. Center-
surround differences are computed for the following scale pairs: 2-5, 2-6, 3-6, 3-7, 4-7, 4-8.
All feature maps are then resampled to scale 4 (where the final combined surprise map is
later computed); for 640 × 480 input videos, these maps thus have 40 × 30 pixels. In total,
72 such feature maps are computed (6 for luminance, 12 for color opponencies, 24 for
oriented Gabor edges, 6 for flicker, and 24 for motion). Fig. 2C shows all the feature maps
computed for the example input image shown.

6.2. Surprise computation in feature space
Surprise is computed for every pixel in each of the 72 center-surround feature maps. The
underlying motivation is that simulated neurons in the feature maps may establish some very
simple beliefs about the world as seen through their spatially- and feature-selective center-
surround receptive fields. For instance, a neuron sensitive to red/green opponent contrast at a
given location and scale may accumulate over time beliefs about the amount of red/green
contrast present in the small portion of the world that is captured by the neuron's receptive
field. When new data is observed with each new incoming video frame, the beliefs
established thus far are used as prior, and Bayes' rule is applied to compute the posterior.
The posterior at one video frame then becomes the prior for the next video frame. Using
conjugate priors facilitates this process by ensuring that the posterior has the same functional
form as the prior. The current implementation derives prior distributions at time t entirely
from past inputs combined through Bayesian learning; however, the theory does not limit
what may influence the prior distributions. Other sources such as top-down knowledge,
behavioral states, or individual preferences could also influence the prior within the same
general framework.

Here we explore two model classes to implement surprise: Gaussian (with a Gaussian
conjugate prior) which is formally simple and parallels background adaptation techniques
used in computer vision [19], and Poisson (with a Gamma conjugate prior) which may more
accurately model incoming neural spike trains from the low-level feature extraction stages
[50].

To accommodate for changing data and events at multiple temporal scales, we employ a
chained cascade of surprise detectors at every pixel in every feature map, where the output
of one surprise detector serves as input to the next detector in the cascade. Our
implementation uses 5 such cascaded feature detectors at every pixel and for every feature.
The first (fastest) is updated with feature map data from the low-level feature computations,
and detector i + 1 samples from i, so that time constants increase exponentially with i. In
total, the system thus comprises 72[maps] × (40 × 30) [pixels] × 5[time scales] = 432, 000
surprise detectors.
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Finally, to account not only for temporally surprising events (e.g., sudden appearance of an
object) but also for spatially surprising items (e.g., a red object among many green objects),
we compute surprise both locally over time, and spatially in an instantaneous manner. For
local temporal surprise, a single neuron in one of the feature maps is considered, and the
prior is established over time from the observations received to date in the receptive field of
that one neuron. For spatial surprise, a single neuron is also considered, but its prior is now
derived from the compound instantaneous activity of surrounding neurons in the map, at the
next faster time scale. For every video frame at time t, location (x, y), feature f, and time
scale i, a neighborhood distribution of models is computed as the weighted combination of
distributions from the next-faster local models, over a large neighborhood with two-
dimensional Difference-of-Gaussians profile (σ+ = 20 and σ− = 3 feature map pixels). As
new data arrives, spatial surprise is the KL divergence between prior neighborhood
distribution and the posterior after update by local samples from the neighborhood's center.
For example, consider a neuron that observes a locally red image patch surrounded by a
large green background. That neuron's neighbors would contribute a spatial prior that is
strongly suggesting that the world is green. However, when that prior is combined with the
local data received by the neuron of interest, which indicates that the world is red, a large
difference between prior and posterior arises, and consequently a large spatial surprise (see
Fig. 3 for pseudo-code).

Our theory does not constrain how temporal and spatial surprises may combine. In previous
work [24], we addressed this issue by turning to empirical single-unit recordings of complex
cells in striate cortex of anesthetized monkey [40]. From fitting the neural data, total surprise
S is given by:

(47)

where ST is the temporal and SS the spatial surprise. This formulation resulted from a least-
squares fit of a function of the form S = [a1ST + a2SS + a3STSS]a4 to the neural data. We
further posit that surprise combines multiplicatively across time scales, such that an event is
surprising only if at all relevant time scales, allowing the model to learn periodic stimuli of
various frequencies. One caveat with this approach is that stimuli which may fully adapt the
surprise detectors at one time scale and yield zero surprise at that scale may effectively zero
out potentially surprising events at other time scales. To address this, we introduce below an
additional step just before the prior is updated, whereby the variance of the prior is slightly
relaxed (increased) prior to the arrival of every video frame. A parameter ζ regulates the
amount of relaxation. With 0 < ζ < 1, the variance of the prior will not settle, even if, e.g.,
the data is stationary, resulting in surprise values that are always non-zero. We finally
assume that surprise sums across features, such that a location may be surprising by its
color, motion, or other. It is interesting to note that other alternatives may be more desirable,
e.g., a max operation across features [36,57]. However, for the datasets evaluated here, this
alternative yields lower ordinal dominance scores (Fig. 5).

The sum is then passed through a saturating sigmoidal nonlinearity to enforce plausible
neuronal firing dynamics and yield the final master map used for comparison with human
gaze behavior.

6.2.1. Gaussian data with Gaussian prior—With Gaussian models, the data from
every low-level feature detector at every location in every video frame is assumed to have a
Gaussian distribution with mean given by the feature detector's response to the current
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frame, and fixed variance which approximates the observation noise at the feature detection
stage (which, in turns, reflects sensor noise and possibly neural noise inherent to the feature
computation process).

Thus, for each of the 72 feature types (e.g., luminance, red-green opponency, etc), video
frame, spatial center-surround feature scale, 2D image location in the rescaled feature map,
and temporal scale, we here use the unknown mean / known variance formulation of section
3.3, eq. 17. With the addition of the prior relaxation term 0 < ζ < 1 (which here simply
divides the prior's variance , we obtain:

(48)

We assume that N = 1 data samples are received for every new video frame, the data sample
value (and m ̄ since N = 1) are given by the feature detector's response to the current video
frame, and the variance σ2 of the data is fixed and reflects noise in the sensor and early
stages of processing (we use s ̄ = 5 given RGB pixel values in the [0 … 255]3 range). Our
simulations use ζ = 0.7. Surprise is computed exactly per eq. 18 (without the approximation
for large N).

6.2.2. Poisson data with Gamma prior—In a somewhat more neurally-plausible
implementation, we model data received from feature map f at location (x, y) and time t as
Poisson distributions M(λ) (which well describe cortical pyramidal cell firing statistics [50]),
parameterized by firing rate λ ≥ 0. λ is trivially estimated over the duration of each video
frame as simply the feature detector's response λ ̅ = f(x, y, t). In contrast with the Gaussian
case, here the variance of the sample is not arbitrarily fixed but directly determined by the
assumed Poisson nature of the data samples, and thus is equal to the mean λ ̅.

As detailed in Section 3.2, the prior P(M) satisfying the conjugate prior property on Poisson
data is the Gamma probability density, eq. 13. With the addition of the ζ prior relaxation
term (which here again divides the prior's variance, by multiplying both a1 and b1), we
slightly modify Eq. 14 and obtain:

(49)

We here again assume that N = 1 data samples are received at every video frame. Our
simulations here again use ζ = 0.7. Surprise is computed exactly using Eq. 15.

7. An Application of Surprise to Psychophysics and Eye Movements
Developing an ability to rapidly detect surprising events is crucial in allowing living systems
to quickly identify potential predators, preys, or mates and in ensuring survival. It is
reasonable to postulate that surprising events ought to attract attention mechanisms in living
systems, and that the same principle may be useful in the design of artificial systems, for
instance in computer vision and surveillance. Indeed, it has been noted that events
previously described as novel or salient tend to attract attention [43]. To test the surprise
theory, we here present an application to finding surprising objects and events in natural
video streams. Using eye-tracking experiments with human subjects, we quantitatively
evaluate the extent to which surprising visual events occurring in natural video stimuli may
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indeed capture attention and gaze of human observers. The application presented here
extends previous similar experimentations [24,25,26] by adding a new dataset, comparing
two different model classes, Gaussian data with a Gaussian prior, and Poisson data with a
Gamma prior, and introducing a new temporal analysis which demonstrates a strong time
contingency between the onset of a surprising event in the stimuli and the initiation of a
human eye movement towards that event.

7.1. Subjects, stimuli and gaze recording methods
Our experiments use the publicly available human eye movement dataset from the NSF-
CRCNS data sharing project (crcns.org). This dataset contains two components.

In the first component, we recorded eye movements from eight naïve observers. Each
watched a subset from 50 videoclips totaling over 25 minutes of playtime (“original”
dataset). Clips comprised outdoors daytime and nighttime scenes of crowded environments,
video games, and television broadcast including news, sports, and commercials. Right-eye
position was tracked with a 240 Hz video-based device (see [25] for additional
methodological details). To maintain interest, observers were instructed to follow the
stimuli's main actors and actions, as simple questions would be asked to them at the end of
the experiment to test their understanding of the contents of the clips. Here we only retain
those clips for which gaze recordings from at least 4 observers were available (to allow for
the establishment of an upper bound inter-observer correlation performance, below). Two
hundred calibrated eye movement traces (10,192 gaze shifts or “saccades”) were analyzed,
corresponding to four distinct observers for each of the 50 clips.

In the second component, the video clips were cut into 1-3s short “clippets” which were then
re-assembled in random order into an “MTV-style” set of clips [10]. Another set of 8
observers watched the clips and we here again only retain clips for which recordings are
available for at least 4 observers. The goal of the random shuffling of clippets was to abolish
some of the long-term cognitive influences on attention and gaze, so that observer's gaze
allocation would be more strongly short-term. Here, this dataset is of particular interest
because it will help us gauge the extent to which past events beyond a few seconds may
influence our modeled low-level vision priors, surprise, and human gaze. In total, 6,648
saccades were analyzed for the MTV-style dataset.

Informed consent was obtained from all subjects prior to the experiments. Each subject
watched a subset of the collection of video clips, so that eye movement traces from four
distinct subjects were obtained for each clip. Video clips were presented on a 22″ CRT
monitor (LaCie, Inc.; 640 × 480, 60.27 Hz double-scan, mean screen luminance 30 cd/m2,
room 4 cd/m2, viewing distance 80cm, field of view 28° × 21°). The clips comprised
between 164 to 2,814 frames or 5.5s to 93.9s, totaling 46,489 frames or 25:42.7 playback
time. Frames were presented on a Linux computer under SCHED_FIFO scheduling which
ensured microsecond-accurate timing [15].

Right-eye position was tracked at 240 Hz using a video-based device (IS-CAN RK-464),
which robustly estimates gaze from comparative real-time measurements of both the center
of the pupil and the reflection of an infrared light source onto the cornea. Saccades were
defined by a velocity threshold of 20°/s and amplitude threshold of 2°.

Sampling of master map values around human or random saccade targets used a circular
aperture of diameter 5.6°, approximating the size of the fovea and parafovea. Saccade
initiation latency was accounted for by subjecting the master maps to a temporal low-pass
filter with time constant τ = 500ms. The random sampling process was repeated 100 times.
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7.2. Gaze prediction results
We evaluate in Fig. 4 four different attention systems that predict human saccades: one
using surprise with Gaussian data and prior (Section 6.2.1), one using surprise with Poisson
data and Gamma prior (Section 6.2.2), a simple baseline control system which simply
computes local pixel variance in small image patches, and a human inter-observer system —
all further described below. In addition, in Fig. 5 we compare these systems with additional
previously published systems and with variations on our surprise-based systems.

The Gaussian/Gaussian and Poisson/Gamma surprise systems are as described above. The
Variance system simply computes local variance of pixel luminance within 16 × 16 image
patches. The resulting variance map has been suggested to already predict human gaze
above chance [45]; hence we use this very simple system as a baseline or lower bound. The
inter-observer system is built by plotting a Gaussian blob with σ = 3 master map pixels
(4.5°), continuously at each of the eye positions of the three observers other than that under
test, with some forgetting provided by the master map's temporal low-pass filter. High
values on this map would hence be present only at the locations currently gazed at by some
human observer. This system allows us to establish an upper bound for how well the other
systems might be expected to predict human gaze.

To characterize image regions selected by our observers, we process the video clips through
the different systems. Each system outputs a topographic dynamic master response map,
assigning in real-time a response value to every input location. A good master map should
highlight, more than expected by chance, locations gazed to by our human observers. Hence
to score and compare each system, we sample, at the onset of every human saccade made,
master map activity around the saccade's future endpoint, and around a uniformly random
endpoint. Random sampling is repeated 100 times to evaluate variability. To quantify the
extent to which humans may be attracted towards hotspots in the master maps, we use
ordinal dominance analysis [4]. To this end, we first normalize master map values sampled
at human and random saccade endpoints by the maximum activity in the master map at the
time of the saccade. For each system, histograms of master map values at human and
random saccade endpoints are then created (Fig. 4). In a manner similar to computing a
Receiver Operating Characteristic (ROC) curve, we then sweep a threshold from 0 to 1; for
each threshold value we count the percentage of eye positions and random positions which
land above threshold (“hits”). The ordinal dominance curve is then created similarly to an
ROC curve, with the difference that it plots human hits vs. random hits. This curve indicates
how well a simple binary threshold is able to discriminate signal (master map values at
human gaze locations) from noise (values at random locations). We finally score each
system by computing the area under the curve (AUC) from the ordinal dominance curve.
The process is repeated 100 times for the 100 random samples, which allows us to attach a
confidence estimate to each AUC value.

An AUC value of 0.5 would indicate a system which is at chance in predicting where human
observers looked. Our inter-observer system yields AUC scores of 0.805 ± 0.002 for the first
(“original”) dataset and 0.827 ± 0.002 for the second (“MTV-style”) dataset. The surprise
and variance systems are hence expected to score between 0.5 and 0.8, with higher scores
indicating better ability to predict human gaze. Scores are shown in Fig. 4. All three systems
perform significantly above chance level (AUC=0.5; t-test, p < 10−10 or better).
Furthermore, both variants of the surprise-based system perform significantly better than the
much simpler variance-based system (t-tests on the respective AUC scores, p < 10−10 or
better). The Poisson/Gamma surprise system exhibits a small but significant advantage over
the Gaussian/Gaussian surprise system in these experiments. These two surprise systems
score about half-way between chance and inter-observer.
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Fig. 5 shows an example video frame and corresponding master maps for the computational
systems studied here, as well as for a few systems evaluated previously [26], and variations
on the surprise systems described below. In particular, the Michelson contrast system, as in
Mannan et al. [38], is an interesting alternative to our local variance system. However, we
find that on these datasets it actually performs slightly below chance level (corresponding to
a score of 0.5), indicating that observers tended to preferentially look towards locations with
lower contrast than expected by chance. This is in agreement with the original results of
Mannan et al., who conclude that a number of local features tested in their experiments
(including Michelson contrast, edge density measures, and others) are poor predictors of
human fixations. The Entropy and DCT-based information systems are very simplified
measures of information in local image patches, and have been previously proposed as gaze
predictors [30,42,26]. We find that they score above chance, but below surprise. Finally, we
evaluated the hypothesis of Zhaoping and colleagues that salience signals may combine
across different feature channels according to a maximum rule rather than a sum rule
[36,57]. To this end, we implemented variants of the surprise systems where color, intensity,
orientation, flicker and motion sources of surprise combine with a max rule. With the
datasets evaluated here, this alternative yields lower AUC scores (Fig. 5). The reason for the
lower scores when taking the maximum across features is that this often yields lower gaze
target to clutter signal-to-noise ratios. These intriguing results obtained with our free-
viewing datasets should be evaluated further with future experiments aimed more directly at
addressing the max vs. sum question.

To further investigate the extent to which events detected as surprising by our systems might
attract human gaze, we recorded, at the landing location of every saccade, the history of
master map values for up to 1,000ms preceding the initiation of the saccade of interest (Fig.
6). In both datasets, a sudden surge of surprise is seen at saccade landing points shortly
before saccades are initiated. A similar but weaker surge is observed also for the Variance
system, indicating that the sudden appearance of textured objects might also have attracted
saccades. However, the surge for the variance system is significantly weaker than for any of
the surprise systems. In the MTV-style experiments, a surge of surprise is also observed for
random saccades around 500ms prior to human saccades; this reflects the global surge of
surprise which is observed at every abrupt jump-cut when the scene changes from one 1-3s
clippet to the next. The surge in the random saccade data suggests that humans tended to
execute saccades in a manner that was somewhat time-locked to jump-cuts in the stimuli.
This is also reflected by the larger surge observed for human saccades in the MTV-style
compared to the original dataset.

8. Discussion
Bayes theorem is the most fundamental theorem of learning and adaptation, quantifying how
the prior distribution over the space of models or hypotheses ought to be revised into a
posterior distribution as data is collected. Accordingly, the distance between the prior and
posterior distributions is also bound to be a fundamental quantity, that may have escaped
systematic attention. Here we have defined this quantity – surprise – and studied its
properties systematically.

Surprise is different from Shannon's entropy, which it complements. Surprise is also
different from several other definitions of information that have been proposed [1] as
alternatives to Shannon's entropy. Most alternative definitions of entropy, such as Rényi's
entropies, are actually algebraic variations on Shannon's definition rather than conceptually
different approaches.
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To measure the effect of data on the observer's prior and posterior distributions, one could
envision using the difference between the entropy of the prior and the entropy of the
posterior. However, such a difference would only quantify the difference in uncertainty
between the prior and posterior distributions. Unlike surprise which is always positive, such
a difference could be either positive or negative and therefore less appealing as a measure.
More fundamentally, the posterior could, for instance, be very different from the prior, but
retain a similar level of entropy. Thus data greatly affecting the observer could appear
insignificant by this measure.

In many important cases related to the exponential family of distributions, surprise can be
computed analytically and efficiently, both in terms of exact and approximate formula. The
analytical results presented here could be extended in several directions including non-
conjugate and other prior distributions as well as more complex multidimensional
distributions (e.g., inverse Wishart). In general, however, the computation of surprise can be
expected to require numerical techniques including Monte Carlo methods to approximate
integrals over model classes. In this respect, the computation of surprise should benefit from
ongoing progress in Markov chain and other Monte Carlo methods, as well as progress in
computing power.

The concept of surprise has its own limitations. In particular, it does not capture all the
semantic/relevance aspects of data. If, while surfing the web in search of a car to purchase
one stumbles on a picture of Marilyn Monroe, the picture may carry a low degree of
relevance, a high degree of surprise, and a low-to-high amount of Shannon information
depending on the pixel structure. Thus, relevance, surprise, and Shannon's entropy are three
different facets of information that can be present in different combinations. Although there
have been several attempts (e.g. [33,52]), defining relevance remains a central open
challenge. Surprise, however, appears remarkable for its simplicity and generality which
ought to result in its applicability to areas as diverse as learning, data mining and
compression, and the design or reverse engineering of natural or artificial sensory systems.

We have only touched upon the connection between surprise and statistical learning theory
[53,22] by showing that surprise decreases as 1/N during sequential learning in simple cases.
This analysis could be extended to more complex settings, such as artificial neural networks.
At higher abstraction levels, informal ideas of novelty and surprise have been proposed that
could capture attention and trigger learning [43,20], which may now be formalized in terms
of priors and posteriors. Highly surprising data could signal that learning is required and
highly unsurprising data could signal that learning is completed, or adaptation no longer
necessary.

A surprising training set is a prerequisite for learning. The amount of surprise in training
data, however, should not be so excessive as to overwhelm the learning system. Thus
information surprise in the training set ought to be calibrated to the capacity of the learning
system. Furthermore, when the degree of surprise of the data with respect to the model class
becomes low, the data is no longer informative for the given model class. This, however,
does not necessarily imply that a good models of the data hase been learnt since the model
class itself could be unsatisfactory and in need of a complete overhaul. The process by
which a learning system realizes that a model class is unsatisfactory in an alternative free
setting–the open-ended aspect of inference–has so far eluded precise formalizations and
ought to be the object of future investigations.

As a side note, and to avoid any confusions, it is also worth noting that relative entropy has
often been used as a training function for neural networks and other machine learning
systems (e.g. [3] and references therein), but in a completely different sense. In a
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multinomial classification problem, for instance, model parameters can be adjusted in order
to minimize the relative entropy Σti log ti − Σti log pi aggregated over all training examples.
For a single training example, ti is the 0-1 target representing membership in the i-th class
and pi is the probability of membership in the i-th class computed by the learning system.
This relative entropy between the vectors t and p has little to do with the relative entropy
between the prior and posterior distributions over the parameters of the model that is used to
compute p.

In data mining applications, surprise could be used to systematically detect novelty in areas
ranging from surveillance to information retrieval. In data compression applications,
surprise could be used to guide dynamical encoding of information, allocating more bits to
surprising data. For sensory systems, we have described an application of surprise to
computer vision and the analysis of human attentional gaze shifts. Human attention is an
exceedingly complex phenomenon, under the control of both bottom up and top down
influences. Our results are not intended in any way to prove that human brains compute
surprise to control eye movements. It is however encouraging to see that the simple bottom-
up version of surprise outperforms other state-of-the-art metrics in predicting gaze shifts and
that, in principle, top down influences could be incorporated into the surprise framework,
simply by modulating the prior distribution. A number of additional theoretical frameworks
and computational models have been proposed to explain attention guidance and eye
movements, using information-theoretic principles in very restricted scenarios, such as
discriminating shape silhouettes or searching for a known target in a noisy environment
[46,41]. While interesting, these approaches still need additional developments before they
can be applied to the CRCNS eye-tracking datasets, or other kinds of “real data,” for the
purpose of comparison with surprise or other theories. Indeed, such theories and approaches
are not yet able to make useful predictions for arbitrary image or video stimuli and observer
tasks. This is a fundamental difference between these very interesting but more specialized
theories and our new approach: Our surprise theory and associated computational model are
capable of making predictions (good or bad) for any set of image or video stimuli and any
set of associated eye movement traces (human or other) acquired under any observer task.

Finally, in sensory systems and beyond the visual attention application studied here, surprise
may be computed on auditory, olfactory, gustative, somatosensory, or other features, using
exactly the same definition. Surprise may be computed at different temporal and spatial
scales, and different levels of abstraction. Indeed, detecting surprise in neuronal spike trains
or other data streams is a very general operation that does not require understanding the
“meaning” carried by the data and therefore may be suitable for learning in deep
architectures and other self-organization processes.
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Appendix A: Discrete Case

Multinomial Case (Dirichlet prior)
In the two-dimensional case, consider two Dirichlet distributions D1 = D(a1, b1)(x) =
C1xa1−1(1 − x)b1−1 and D2 = D(a2, b2)(x) = C2xa2−1(1 − x)b2−1, with C1 = Γ(a1 + b1)/
Γ(a1)Γ(b1), and similarly for C2. To calculate the relative entropy in the two dimensional
case, we use the formula ([18])
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(50)

where B(u, v) is the beta function  and Ψ(x) is
the derivative of the logarithm of the gamma function Ψ(x) = d(log Γ(x))/dx. A cross term of
the form

(51)

is equal to

(52)

using the fact that C1B(a1, b1) = 1. In particular, the entropy of a two-dimensional Dirichlet
distribution such as D1 is obtained by taking: −F(D1, D1).

With some algebra, the Kullback-Liebler divergence between any two Dirichlet distributions
is finally given by:

(53)

With n successes in the sequence D, the posterior is a Dirichlet distribution D2(a2, b2) with
[3]

(54)

Using this relation between the prior and the posterior, we get the surprise

(55)

Using the general fact that , which implies

 when n is an integer, we get
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(56)

Now we have

(57)

where

(58)

and similarly for the symmetric term. The rest is exactly 0 when a1 and b1 (and hence a2 and
b2) are integers, and in general decreases with the size of a1 and b1. This yields the
approximation

(59)

This approximation is exact when a1 and b1 are integers. Now for x > 0 we have

 or

. Thus,

(60)

Now we have,

We can use bounds of the form

 to estimate this term.
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Alternatively, one can assume that a1 and b1 are integers and use binomial coefficient
approximations, such as those in [8]. In all cases, neglecting constant terms and terms of
order log N, if we let n = pN (0 < p < 1) and N go to infinity we have

(61)

where H(p) is the entropy of the (p, q) distribution with q = 1 − p. Thus when N → ∞, and n
= pN with 0 < p < 1 we have

(62)

where K(p, a1) is the relative entropy between the empirical distribution (p, q) and the

expectation of the prior . Thus, asymptotically surprise grows linearly with
the number of data points with a proportionality coefficient that depends on the discrepancy
between the expectation of the prior and the observed distribution. The same relationship
can be expected to be true in the case of a multinomial model.

Symmetric Prior (a1 = b1)
Consider now the case of a symmetric prior, then

(63)

Using formulas in [18], , thus

(64)

the approximation being in the regime n = pN and N → ∞. When a1 is an integer, we also

have . Thus when a1 is an integer
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(65)

As N → ∞ with 0 < p < 1

(66)

and therefore

(67)

For instance, when a1 = b1 = 1, this gives:

(68)

with the asymptotic form

(69)

With a uniform symmetric prior, the empirical distribution with maximal entropy brings the
least information. When a1 = b1 = 5 this gives R(D1, D2) ≈ N[0.746 − H(p)]. As we increase

a1 + b1, keeping a1 = b1, the constant  decreases to its asymptotic value log 2
which corresponds to the asymptotic form S(D1, D2) ≈ NK(p, 0.5). The stronger the strength
of the uniform prior (the larger a1 + b1), the smaller the surprise created by a die with
maximum entropy.

Poisson Case (Gamma Prior)
We consider two Gamma distributions Γ1 = Γ1(a1, b1)x = C1xa1−1e−b1x and Γ2 = Γ2(a2, b2)
(x) = C2xa2−1e−b2x with , and similarly for C2. To calculate the relative
entropy, we use the formula ([18])
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(70)

A cross term F(Γ1, Γ2)

(71)

is then equal to:

(72)

With some algebra, the KL divergence between two Gamma distributions is given by

(73)

With N observations in D, the posterior is Gamma and satisfies

(74)

With these values, this finally yields the surprise S(Γ1, Γ2)

(75)

When N is large, using Stirling's formula, the dominant terms in N log N cancel leaving the
approximation

(76)

Appendix B: Continuous Case

Unknown Mean/Known Variance
Consider now two Gaussians G1(μ1, σ1) and G2(μ2, σ2). Then, after some algebra, the cross
term is given by
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(77)

here using for simplicity natural logarithms.  is the entropy.
The Kullback-Liebler divergence can then be obtained

(78)

Consider now a data set with N points d1, …, dN with empirical mean m¯. If the data has
known variance σ2, then the posterior parameters are given by:

(79)

In the general case

(80)

when N is large. In the special case where the prior has the same variance has the data σ1 = σ
then the formula simplifies a little and yields

(81)

when N is large. In any case, surprise grows linearly with N with a coefficient that is the sum
of the prior variance and the square difference between the expected mean and the empirical
mean scaled by the variance of the data.

Unknown Variance/Known Mean
In the case of unknown variance and known mean, we have a family M(σ2) of models with a
conjugate prior for σ2 that is a scaled inverse gamma distribution ([16])
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(82)

with ν1 > 0 degrees of freedom and scale s1 > 0. F can be computed expanding the integrals

and using the fact that . This yields:

(83)

The posterior is then a scaled inverse gamma distribution [16] with

(84)

where σ ̄2 is the empirical variance σ ̄2 = Σi(xi − m2)/N, based on the known mean m. The
surprise is given by

(85)

For large values of N, taking only the leading terms

(86)

(87)

Thus surprise information scales linearly with N, with a coefficient of proportionality that
typically depends mostly on the ratio of the empirical variance to the scale parameters ,
which is roughly the expectation of the prior [the expectation of the prior is 
provided ν1 > 2]. The effects of very large of very small values of σ ̄, or ν1 can also be seen
in the formula above. In particular, surprise is largest when the empirical variance σ ̄2 goes to
0 or infinity, i.e. is very different from the prior expectation.
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Unknown Mean/Unknown Variance
In the case of unknown mean and unknown variance, we have a family M(μ, σ2) of models
with a conjugate prior of the form G1 Γ1 = P(μ∣σ2)P (σ2) = G1(μ1, σ2/κ1)Γ1(ν1, s1). Thus the
prior has four parameters (μ1, κ1, ν1, s1), with κ1 > 0, ν1 > 0, and s1 > 0. The conjugate
posterior has the same form, with similar parameters (μ2, κ2, ν2, s2) satisfying (see for
instance [16])

(88)

with m ̄ = Σxi/N and σ ̄2 = Σ(xi − m ̄)2/(N − 1). Computation of F = F(μ1, κ1, ν1, s1; μ2, κ2, ν2,
s2) is similar to the two cases treated above and yields:

(89)

¿From Equation 89, we can derive the surprise

(90)

Substituting the value of the posterior parameters

(91)

For simplicity, we can consider the case where μ1 = m ̄. Then

(92)

In all cases, for large values of N we always have the approximation
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(93)

Surprise is linear in N with a coefficient that is essentially the sum of the coefficients
derived in the unknown mean and unknown variance partial cases.

Appendix C: Exponential Families With Conjugate Priors
Let A1 and A2 denote the parameters of two distributions P1 and P2 in the exponential
family. Simple integration yields

(94)

where EA1 [wi(θ)] denotes expectation with respect to P1. Surprise S is then derived from
F(P1, P1) − F(P1, P2).

References
1. Aczel, J.; Daroczy, Z. On measures of information and their characterizations. Academic Press;

New York: 1975.
2. Baldi, P. A computational theory of surprise. In: Blaum, M.; Farrell, PG.; van Tilborg, HCA.,

editors. Information, Coding, and Mathematics. Kluwer Academic Publishers; Boston: 2002.
3. Baldi, P.; Brunak, S. Bioinformatics: the machine learning approach. Second edition. MIT Press;

Cambridge, MA: 2001.
4. Bamber D. The area above the ordinal dominance graph and the area below the receiver operating

characteristic graph. Journal of Mathematical Psychology 1975;12:387–415.
5. Bartlett MS. The statistical significance of odd bits of information. Biometrika 1952;39:228–237.
6. Berger, JO. Statistical decision theory and Bayesian analysis. Springer-Verlag; New York: 1985.
7. Blahut, RE. Principles and practice of information theory. Addison-Wesley; Reading, MA: 1987.
8. Bollobas, B. Random Graphs. Academic Press; London: 1985.
9. Brown, LD. Fundamentals of Statistical Exponential Families. Institute of Mathematical Statistics;

Hayward, CA: 1986.
10. Carmi R, Itti L. The role of memory in guiding attention during natural vision. Journal of Vision

2006;6(9):898–914. [PubMed: 17083283]
11. Cover, TM.; Thomas, JA. Elements of Information Theory. John Wiley; New York: 1991.
12. Cox R. Probability, frequency and reasonable expectation. American Journal of Physics

1964;14:1–13.
13. Evans M. Bayesian inference procedures derived via the concept of relative surprise.

Communications in Statistics 1997;26(5):1125–1143.
14. Evans M, Guttman I, Swartz T. Optimality and computations for relative surprise inferences.

Canadian Journal of Statistics 2006;34(1):113–129.
15. Finney SA. Real-time data collection in linux: A case study. Behav Res Meth, Instr and Comp

2001;33:167–173.
16. Gelman, A.; Carlin, JB.; Stern, HS.; Rubin, DB. Bayesian Data Analysis. Chapman and Hall;

London: 1995.

Baldi and Itti Page 31

Neural Netw. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



17. Good I. The surprise index for the multivariate normal distribution. Annals of Mathematical
Statistics 1956:1130–1135.

18. Gradshteyn, IS.; Ryzhik, IM. Table of integrals, series, and products. Academic Press; New York:
1980.

19. Grimson, WEL.; Stauffer, C.; Romano, R.; Lee, L. Using adaptive tracking to classify and monitor
activities in a site. Proc CVPR; Santa Barbara, CA: 1998.

20. Grossberg S. How hallucinations may arise from brain mechanisms of learning, attention, and
volition. Journal of the International Neuropsychological Society 2000;6:583–592. [PubMed:
10932478]

21. Grossberg S, Raizada R. Contrast-sensitive perceptual grouping and object-based attention in the
laminar circuits of primary visual cortex. Vision Research 2000;40(10-12):1413–1432. [PubMed:
10788649]

22. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning Data Mining,
Inference, and Prediction. Springer; New York, NY: 2001.

23. Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the
cat's visual cortex. J Physiol (London) 1962;160:106–54. [PubMed: 14449617]

24. Itti, L.; Baldi, P. A principled approach to detecting surprising events in video. Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR); San Siego, CA: 2005. p.
631-637.

25. Itti, L.; Baldi, P. Advances in Neural Information Processing Systems, Vol. 19 (NIPS*2005).
Cambridge, MA: MIT Press; 2006. Bayesian surprise attracts human attention; p. 1-8.

26. Itti L, Baldi PF. Bayesian surprise attracts human attention. Vision Research 2009;49(10):1295–
1306. [PubMed: 18834898]

27. Itti, L.; Dhavale, N.; Pighin, F. Realistic avatar eye and head animation using a neurobiological
model of visual attention. In: Bosacchi, B.; Fogel, DB.; Bezdek, JC., editors. Proc. SPIE 48th
Annual International Symposium on Optical Science and Technology; Bellingham, WA: SPIE
Press; 2003. p. 64-78.

28. Itti L, Koch C. A saliency-based search mechanism for overt and covert shifts of visual attention.
Vision Research 2000;40(10-12):1489–1506. [PubMed: 10788654]

29. Itti L, Koch C. Computational modeling of visual attention. Nat Rev Neurosci 2001;2(3):194–203.
[PubMed: 11256080]

30. Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE
Trans Patt Anal Mach Intell 1998;20(11):1254–1259.

31. Jaynes, E. Bayesian methods: General background. In: Justice, J., editor. Maximum Entropy and
Bayesian Methods in Statistics. Cambridge University Press; Cambridge: 1986. p. 1-25.

32. Jaynes, ET. Probability Theory. The Logic of Science. Cambridge University Press; 2003.
33. Jumarie, G. Relative Information. Springer Verlag; New York: 1990.
34. Kullback, S. Information theory and statistics. First Edition in 1959. Dover; New York: 1968.
35. Kvalseth T. Stimulus probability, surprise and reaction time. Proceedings of the Human Factor

Society 1987;1:147–150.
36. Li Z. A saliency map in primary visual cortex. Trends Cogn Sci 2002;6(1):9–16. ENG. [PubMed:

11849610]
37. Lin J. Divergence measures based on the Shannon entropy. IEEE Transactions on Information

Theory 1991;37(1):145–151.
38. Mannan SK, Ruddock KH, Wooding DS. The relationship between the locations of spatial features

and those of fixations made during visual examination of briefly presented images. Spat Vis
1996;10(3):165–188. [PubMed: 9061830]

39. McEliece, RJ. The Theory of Information and Coding. Addison-Wesley Publishing Company;
Reading, MA: 1977.

40. Müller JR, Metha AB, Krauskopf J, Lennie P. Rapid adaptation in visual cortex to the structure of
images. Science 1999;285(5432):1405–1408. [PubMed: 10464100]

41. Najemnik J, Geisler WS. Optimal eye movement strategies in visual search. Nature
2005;434(7031):387–391. [PubMed: 15772663]

Baldi and Itti Page 32

Neural Netw. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



42. Privitera CM, Stark LW. Algorithms for defining visual regions-of-interest: comparison with eye
fixations. IEEE Trans Patt Anal Mach Intell 2000;22(9):970–982.

43. Ranganath C, Rainer G. Neural mechanisms for detecting and remembering novel events. Nat Rev
Neurosci 2003;4(3):193–202. [PubMed: 12612632]

44. Redheffer RM. A note on the surprise index. Annals of Mathematical Statistics 1951;22:128–130.
45. Reinagel P, Zador AM. Natural scene statistics at the centre of gaze. Network 1999;10:341–350.

[PubMed: 10695763]
46. Renninger LW, Coughlan J, Verghese P, Malik J. An information maximization model of eye

movements. Adv Neural Inf Process Syst 2005;17:1121–1128. [PubMed: 16175670]
47. Renyi, A. On measures of information and entropy. Proceedings of the 4th Berkeley Symposium

on Mathematics, Statistics and Probability; 1961. p. 547-561.
48. Savage, LJ. The foundations of statistics. First Edition in 1954. Dover; New York: 1972.
49. Shannon CE. A mathematical theory of communication. Bell System Technical Journal

1948;27:379–423. 623–656.
50. Softky WR, Koch C. The highly irregular firing of cortical cells is inconsistent with temporal

integration of random epsps. J Neurosci 1993;13(1):334–50. [PubMed: 8423479]
51. Suder K, Worgotter F. The control of low-level information flow in the visual system. Rev

Neurosci 2000;11(2-3):127–146. [PubMed: 10718150]
52. Tishby, N.; Pereira, F.; Bialek, W. The information bottleneck method. In: Hajek, B.; Sreenivas,

RS., editors. Proceedings of the 37th Annual Allerton Conference on Communication, Control,
and Computing; University of Illinois; 1999. p. 368-377.

53. Vapnik, V. The Nature of Statistical Learning Theory. Springer Verlag; New York: 1995.
54. Weaver W. Probability, rarity, interest and surprise. Scientific Monthly 1948;67(6):390–392.

[PubMed: 18892146]
55. Wolfe JM, Horowitz TS. What attributes guide the deployment of visual attention and how do they

do it? Nat Rev Neurosci 2004;5(6):495–501. [PubMed: 15152199]
56. Wong AKC, You M. Entropy distance of random graphs with application to structural pattern

recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 1985;7:599–609.
57. Zhaoping L, May KA. Psychophysical tests of the hypothesis of a bottom-up saliency map in

primary visual cortex. PLoS Comput Biol 2007;3(4):e62. [PubMed: 17411335]

Baldi and Itti Page 33

Neural Netw. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Simulation results corresponding to flips of a 3-sided (red, blue, green) die with a
corresponding multinomial learning model. Curves are derived using 400 random samples,
drawn from the distribution red = 0.3, blue = 0.3, and green = 0.4. x-axis correspond to
learning iterations. y axis correspond to surprise. As predicted by the theory, during
Bayesian learning, surprise decreases on average like 1/N (black curve) as learning
progresses. (a) curve corresponding to epochs 1-400; (b) magnified view corresponding to
epochs 100-400.
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Figure 2.
(a) Sample frames of video clips to be processed by the model and for which human eye
movement recordings are available (see next section). (b) Computation of surprise at the
single-neuron level, each time new data is received from a new video frame. (c) Architecture
of the full computational system which analyzes video frames along the dimensions of color,
intensity, orientation, flicker, and motion, computing surprise at multiple spatial and
temporal scales within each of these feature channels. The surprise output from all feature
channels finally gives rise to the master surprise maps. Higher (brighter) values in this map
represent the system's prediction of where the strongest attractors of attention currently are
in the video inputs (in the example shown, the man running towards the camera is most
surprising).
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Figure 3.
Simplified algorithm to compute surprise over space and time at multiple scales. This
algorithm is applied to each of the 72 feature maps. The incoming data is the array of raw
feature detector values for the feature map's feature type and center-surround spatial scale.
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Figure 4.
Histograms of master map values at saccade endpoints for random (wide green bars) and
humans (narrow blue bars), for the “original” (a, b, c) and “MTV-style” (d, e, f) datasets.
Human histograms particularly differ from the random ones in that humans gaze towards
low master map values (leftmost bins in each histogram) less often than expected by chance,
while they gaze towards high mastermap values (rightmost bins) more often than expected
by chance. AUC scores indicate significantly different performance levels, and a strict
ranking of chance < variance < Gaussian/Gaaussian surprise < Poisson/Gamma surprise <
inter-observer.
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Figure 5.
Example maps generated by the computational systems tested. One video frame is shown
(clip beverly08, frame 127) with the corresponding master map for each model. Current eye
position of one human observer is indicated by the small cyan square (on the person running
in the video clip). Ordinal dominance scores are indicated for each system, for both the
original and MTV-style dataset. Higher scores indicate better systems, i.e. systems which
predict high master map values near the locations selected by human gazes and low map
values everywhere else.
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Figure 6.
History of master map values at locations selected by human saccades, for up to 1,000ms
prior to the initiation of each saccade, for the “original” (left) and “MTV-style” (right)
datasets. Curves are normalized in pairs (human saccades, solid lines, and random saccades,
dashed lines) by the surprise value for human saccades at -1,000ms. This allows easy
comparison between the curves for the different systems. Stars indicate time points where
the surprise-based systems performed significantly differently from the variance-based
system (t-tests, p < 0.05 after Bonferroni correction).
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