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ABSTRACT

The stable cloning of giant DNA is a necessary
process in the production of recombinant/synthetic
genomes. Handling DNA molecules in test tubes
becomes increasingly difficult as their size
increases, particularly above 100kb. The need to
prepare such large DNA molecules in a regular
manner has limited giant DNA cloning to certain
laboratories. Recently, we found stable plasmid
DNA of up to 100kb in Escherichia coli culture
medium during the infection and propagation
of lambda phage. The extracellular plasmid DNA
(excpDNA) released from lysed E. coli was
demonstrably stable enough to be taken up by com-
petent Bacillus subtilis also present in the medium.
ExcpDNA transfer, induced by simply mixing E. coli
lysate with recipient B. subtilis, required no bio-
chemical purification of the DNA. Here, this simple
protocol was used to integrate excpDNA into a
B. subtilis genome, designated the ‘BGM vector’. A
slightly modified protocol for DNA cloning in BGM is
presented for DNA fragments >100kb. This tech-
nique should facilitate giant DNA cloning in the
BGM vector and allow its application to other
hosts that can undergo natural transformation.

INTRODUCTION

The production of recombinant DNA is the first step in all
manipulations in synthetic genome biology (1). Practical
methods for producing recombinant bacterial genomes of
>500kb are limited to just two techniques: the use of dif-
ferent microbial hosts, Bacillus subtilis (2), or the yeast

Saccharomyces cerevisiae (3 4). B. subtilis, a Gram-
positive bacterium, has been exploited as a platform for
giant DNA cloning (5). B. subtilis derivative strains that
carry integrated pBR322 sequences are collectively called
‘BGM (Bacillus genome) vectors’ (6,7). As indicated in
Figure 1, the step-by-step connection of overlapping
pieces of DNA allows the reconstruction of genomes
in the BGM vector. Each DNA fragment, called a ‘dom-
ino clone’, must be prepared in an Escherichia coli plasmid
(6-10). pBR322 derivatives with antibiotic marker for
B. subtilis are used as the plasmid vectors for the
dominos (9), and their sequences provide sites for homol-
ogous recombination during the integration of the
fragment into the BGM vector. As shown in Figure 1, a
bacterial artificial chromosome (BAC) vector, an
F-plasmid-based vector that is also propagated in
E. coli, is used to prepare large dominos of >100kb
(7,8,10).

However, the manipulation of DNA >100kb becomes
increasingly difficult in solution because of the intrinsic
nature of fragile high-molecular-weight polymers. They
readily shear into smaller pieces during normal DNA
handling processes or with nonselective digestion by
contaminating nucleases during storage (8).

Recently, we found that plasmid DNA released from
E. coli into the culture medium during lambda prophage
induction was amazingly stable (11). The extracellular
plasmid DNA, designated ‘excpDNA’ throughout this
paper, was initially thought to be vulnerable to cellular
nucleases and to be damaged by physical shearing, partic-
ularly large fragments. However, to our surprise, the
excpDNA remained in the closed circular form for at
least 2h after lambda phage induction. Binary plasmids
as large as 100 kb, which were also capable of replication
in B. subtilis, were efficiently transferred into competent
B. subtilis that was also present in the medium, as shown
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Figure 1. Design and production of recombinant genomes using the BGM vector. B. subtilis strains containing the E. coli plasmid vector pBR322 (9)
or BAC (8) are designated BGM(pBR) or BGM(BAC) vectors, respectively. Those sequences preinstalled in the genomes provide cloning sites into
which can be inserted DNA in pBR322- or BAC-derived vectors, respectively, prepared in E. coli. Integration of domino clone was monitored by the
alternative use of the two antibiotic markers indicated by closed or open circles (9). The molecular mechanism for domino integration is shown in

Figure 3.

in Figure 2. The addition of DNasel completely abolished
the transfer of the excpDNA in the culture medium. We
designated this simple protocol for the transfer of DNA
from E. coli to B. subtilis the culture mix method or
CMM. Its most fundamental advantage is that the
plasmid DNA requires no biochemical purification.
CMM was instantly applicable to the emerging BGM
cloning technology. In this study, we examined whether
CMM could be substituted in the current domino integra-
tion protocol, to remove the requirement for DNA
purification before use.

MATERIAL AND METHODS
Bacterial strains and plasmids

The E. coli strains and plasmids used are listed in Table 1.
The B. subtilis strains used in this study are also listed in
Table 1. Both bacteria were grown in Luria—Bertani (LB;
Difco, Sparks, MD, USA) broth at 37°C unless otherwise
specified. Solid medium was prepared by the addition of
agar (1.5% w/v) to LB. Kanamycin (Km, 25 pg/ml) and
ampicillin (Ap, 50 ug/ml) were used for E. coli selection.
Neomycin (Nm, 3 pg/ml), spectinomycin (Sp, 50 pg/ml)
and tetracycline (Tc, 10 pg/ml) were used for B. subtilis
selection. Strains containing multiple antibiotic-resistance
genes were tested using a replica plating method. The
preparation and transformation of competent E. coli
(12) and B. subtilis (9) cells were as previously described.
The preparation of competent BGM cells specific
for CMM is described in the text and Figure 4.
Lambda/HindIIT size markers and type II restriction
enzymes were purchased from TaKaRa (Kyoto, Japan)
and Toyobo (Tokyo, Japan), respectively. Molecular
biology grade DNasel was obtained from Sigma
(St Louis, MO, USA).
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ha; e@
%P g‘R © —

| Competent
B. subtilis

Figure 2. Culture mixed method (CMM) of transferring plasmids from
E. coli to competent B. subtilis via extracellular plasmid DNA. (Top)
E. coli lysogenized with lambda containing the ¢I857 mutation grow
normally at 30°C. (Middle) The lysogen exposed at 37°C, causing
lambda phage induction, results in a clear lysate after 2h (11).
Plasmid DNA released from the lysed E. coli into the culture
medium persists as stable extracellular DNA (excpDNA) for at least
2h. (Bottom) The excpDNA is the substrate for competent B. subtilis
also present in the medium (light blue back). The integration of
excpDNA into the BGM vector is described in Figure 3.

DNA isolation and manipulation

Plasmid DNA was isolated from E. coli with the alkali—
sodium dodecyl sulfate method (12). The plasmid DNA
was isolated from B. subtilis similarly but with an
increased lysozyme concentration (10 mg/ml) in solution
1. B. subtilis genomic DNA was extracted with the liquid
isolation method (13) and used for Southern analysis.
Intact unsheared B. subtilis genomic DNA was prepared
in agarose gel plugs for contour-clamped homogencous



Table 1. Bacterial strains and plasmids
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Bacterial strains and plasmids Relevant genotypes®

Antibiotic selection®

Reference or source

E. coli
LE392 F supE44 supF58 lacY1 or del(lacIZY )6 trpR55 galK2 (16)
galT22 metBl hsdR514(rK- mK +)
MICI128 lysogenic LE392 by agtll (11)
MEC5754¢ pSHINE2121 Ap This study
MEC5768°¢ pGETS1021 Km This study
MEC5769¢ pGETS1023 Km This study
MEC5770° pGETS1036 Km This study
B. subtilis
RMI125 leuBS8 arg-15 ASPB hsdR hsdM (17)
BEST310 RM125 plus proB:pBR[BAC, cl-spc] Pr-neo Sp ®)
BEST6606 RM125 plus proB::pBR[BAC, cl-spc] Pr-neo, leuB::cat Sp, Cm This study
BEST9279 RM125 plus proB::pBR[BAC, cl-spc] Pr-neo, leuB::tet Sp, Tc This study
Plasmids
pSHINE2121 Derived from pBR322. bla, cat, bsr, PS10-GFP,,, (18)
pGETS1021 Derived from pGETSI118. km, tetL, mtDNA(101 kb), oriS, repA )
pGETS1023 Derived from pGETSI18. km, tetL, mtDNA(100kb), oriS, repA (8)
pGETS1036 Derived from pGETS118. km, tetL, mtDNA(80kD), oriS, repA (8)

#Antibiotic-resistance genes indicated are as follows: bla, B-lactamase gene; cat, chloramphenicol acetyltransferase gene; bsr, blasticidin-S-resistance
gene; km, kanamycin-resistance gene; fetL, tetracycline-resistance determinant gene (for B. subtilis). oriS functions in the replication of E. coli. repA
functions in the replication of B. subtilis; binary plasmids (except pSHINE2121) replicate in both E. coli and B. subtilis.
®Ap, ampicillin resistance; Km, kanamycin resistance; Sp, spectinomycin resistance; Cm, chloramphenicol resistance; Tc, tetracycline resistance.

“Derived from MIC128.

electric field (CHEF) gel electrophoresis, as described else-
where (13). I-Ppol endonuclease was purchased from
Promega (Madison, WI, USA).

Electrophoresis and Southern hybridization

CHEF gel electrophoresis was conducted in agarose gels
(1.0% w/v) in TBE solution [SO mM Tris—borate (pH 8.0),
1.0mM ethylenediaminetetraacetic acid (EDTA)], with
running conditions as described in the legend to
Figure 4B. Agarose gels (1.0% w/v) in TAE solution
[SO0mM Tris—acetate (pH 8.00, 1.0mM EDTA] were
used for conventional gel electrophoresis at room
temperature.

After eclectrophoresis, the gels were stained with
ethidium bromide solution and visualized under ultravio-
let (UV) light. A nonradioactive labeling nucleotide,
digoxigenin-11-dUTP, was used for Southern hybridiza-
tion. The probes were prepared with the random primer
included in the DIG-High Prime kit (Roche, Mannheim,
Germany). Labeled bands were detected with the DIG
Nucleic Acid Detection Kit (Roche), and visualized with
S-bromo-4-chloro-30-indolylphosphate and  nitroblue
tetrazolium salt (Sigma—Aldrich, St Louis, MO, USA).

Small domino integration with the standard
CMM protocol

pSHINE2121 (Figure 3) can replicate in E. coli only and
must be integrated into the pBR322 sequence of the BGM
vector for chloramphenicol (Cm) selection. The donor
E. coli MEC5754 was obtained by the transformation of
MICI128 cells (lambda lysogen) (11) with the pSHINE2121
plasmid, with selection at 30°C on LB plates supplemented
with Ap. A culture in LB medium containing Ap was
incubated at 30°C for 17h and was diluted 1:200 (v/v) in
20ml of prewarmed LB supplemented with the same

antibiotic in a 100-ml flask. The medium was shaken at
120 r.p.m. for 5h at 30°C, after which the temperature was
increased to 37°C to induce temperate Agtl1(cI857). As
described in Figure 4A, 1ml of lysed E. coli medium,
incubated for 1h at the increased temperature, was
mixed with the same volume of competent B. subtilis
(BGM vector BEST9279), which had been simultaneously
prepared from a starting culture in TFI medium [1.4%
K,HPO,, 0.6% KH,PO4, 0.2% (NH4),SO4, 0.1%
Na-citrate, 0.5% glucose, 0.02% MgS0O,4.7H,0, 0.05 mg/
ml Trp, 0.05mg/ml Arg, 0.05mg/ml Leu, 0.05 mg/ml Thr]
at 37°C. The mixed culture (2ml) was continuously
shaken for 1 or 2h at 37°C. An aliquot (200 ul) of this
culture was spread onto LB plates supplemented with Cm
and Tc. All experiments were conducted in triplicate.
Freshly prepared DNasel was added, if necessary, to the
mixture at a final concentration of 3.4 pg/ml. The growth
curve measured at 120r.p.m. and 37°C is shown in
Figure 4A.

RESULTS
Integration of domino DNA in pBR322 plasmid

pBR322-based plasmids are unable to replicate in
B. subtilis and undergo direct integration into the BGM
vector by the molecular mechanism shown in Figure 3A.
B. subtilis that lacked the genomic pBR322 sequence, such
as RM125 in Table 1, produced no transformants. The
pSHINE2121 plasmid transferred by the CMM protocol
from lysed E. coli to competent B. subtilis, BEST9279,
should produce transformants resistant to Cm only
when the plasmid integrates by homologous recombina-
tion between the shared pBR322 sequences. As shown in
Figure 4A, all the Cm-resistant (CmR) colonies exhibited
clearly visible green fluorescence under UV light of
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Figure 3. Integration of excpDNA into the genome. (A) Transferred excpDNA must be integrated in the genome to be selected with Cm (Bottom).
The recipient BGM(pBR) vector BEST9279, derived from BEST310, contains the pBR322 sequence (4.3 kb) in the proB gene and tet (TcR) marker in
the /leuB gene (Table 1). The integration of pSHINE2121, including the GFP,,, gene, occurred by homologous recombination, as depicted (Middle).
(B) BEST6066, a BGM(BAC), includes the BAC sequence and a neomycin-resistance gene (Pr-neo) inserted in the proB gene and between the Notl
sites of yvfC and yveP, respectively (8). The BAC-based binary plasmid pGETS1036 is composed of three parts: BAC (two curved arrows, one with
the kan marker for E. coli, shown as the shaded box); an 80-kb Arabidopsis thaliana mitochondrial DNA insert and a replicon for B. subtilis (the tet-
marked horizontal bar) (8). The two closed triangles indicate the sites for I-Ppol. The two-step integration is shown, in which the first step of plasmid
transfer was performed with CMM, as shown in Figure 4A. The markers that are altered are indicated below the cell. cI-spc indicates a cassette in
which two genes are combined: ¢I857 and the spc gene conferring resistance to Sp (8). The spontaneous homologous recombination that occurs in the

second step is described in the text.

365nm. The number of CmR transformants did not vary
significantly with different mixing ratios. This is consistent
with our previous observations and suggests that the
DNA for the competent B. subtilis cells was saturated
(11). The complete suppression of the transfer when
DNasel (3.4 pg/ml) was added supports the presence of
pSHINE2121 as excpDNA in the CMM. This result indi-
cates that the integration of the domino DNA into the
BGM vector can be conducted with the same standard
method that is used for plasmid delivery into B. subtilis.

Modified protocol used to integrate BAC-based dominos

The integration of dominos larger than pSHINE2121
could be based on BAC clones. For this, a combination
of BAC dominos and a BGM vector containing BAC
sequences instead of pBR322 sequences is required, as
shown in Figure 3B. As BACs do not contain an antibiotic
selection marker for B. subtilis, we constructed a BGM
vector suitable for BAC integration (8). Several E. coli—
B. subtilis binary BACs of around 100 kb were constructed
using the BGM vector (8). We have previously reported
that one of these BACs, pGETS1036 (95 kb), was success-
fully transferred by CMM and established as a plasmid in
B. subtilis (11). Therefore, the two-step integration
protocol described in Figure 3B was tested using binary
BACs and the BGM(BAC) vector BEST6606. In the first
step, the binary BAC pGETS1036 (95 kb) was transferred
from E. coli (MEC5770) to BEST6606 with the standard
CMM, and established as a plasmid. Among the seven

colonies selected with the plasmid-associated Tc-resistance
marker (zet), five representatives were analyzed for their
plasmid structure. Two I-Ppol recognition sequences were
inserted, one at each end of the BAC vector region, as
shown in Figure 3B. Digestion with the enzyme generated
two fragments, an 80-kb insert and the vector region for
B. subtilis (including the fet gene) (data not shown).
BEST6606 contains regions homologous to the BAC
part of plasmid pGETS1036. As pGETS1036 replicates
and is maintained as a single copy per cell (8), homologous
recombination causes the integration of the long insert
when it replaces the pre-existing ¢l repressor gene, as
indicated in Figure 3B. Pr-neo plays a crucial role in the
selection of the integration event. The Pr promoter regu-
lates the expression of the neo gene. The expressed CI857
protein binds to the Pr promoter and represses the expres-
sion of the neo gene of BEST6066. The loss of the ¢l gene
with its replacement by the BAC insert derepresses the Pr
promoter activity, resulting in the full expression of the
neo gene, conferring Nm resistance on the strain.
Integration and replacement occurred spontaneously at a
low but specific frequency during growth (Tsuge,K. and
Itaya,M., unpublished data). pGETS1036/BEST6606
grown in LB medium without antibiotics produced
colonies (several hundreds/ml) on LB plates supplemented
with Nm at 5 ug/ml. Five randomly chosen representative
colonies were examined for other markers. They were all
sensitive to 10 ug/ml Tc and 50 pg/ml Sp, consistent with
the loss of both the replicon for B. subtilis and the genomic
cI857 gene, as shown in Figure 3B. The presence of the
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Figure 4. Integration of DNA in the BGM(BAC) vector. (A) Filled triangles (orange) with solid line show the complete growth curve of MECS5754
(pSHINE2121) in LB medium at 30°C. Filled squares (pink) with solid line show growth after the temperature was increased to 37°C. Solid
diamonds (blue) with solid line show the growth curve for B. subtilis BEST9279, BGM(pBR), which developed competency at 5-6h. The different
culture mix periods, CMM1 and CMM2, are shown by black and gray horizontal arrows, respectively. The frequencies (colonies/ml) of colonies
resistant to Cm and Tc, measured for CMM1 and CMM2 with three different mix ratios, are shown. All BGM colonies formed on LB plates
supplemented with Cm and Tc were fluorescent under UV irradiation because they had acquired the GFP,, gene. The BGM colonies were completely
suppressed because excpDNA is sensitive to the addition of DNasel. (B) The genomes of strains obtained through spontaneous integration acquired
two I-Ppol sites, as shown in Figure 3B. Five representative strains, each of which generated 80-kb, 100-kb or 101-kb fragments are indicated by
open arrowheads. Solid arrowheads indicate the BGM. Size markers are shown in lane M. Running conditions for CHEF: 3 Vem™, 18-s pulse time,
16-h running time, at 14°C. (C) Southern hybridization of EcoRI and HindIII digests of the genomes of the two representative strains examined in

Figure 4B. Lane P, P’ and P”’ include original BAC plasmid digested with

complete 80-kb insert was confirmed by I-Ppol diges-
tion of the genomes as shown in Figure 4B. Southern
blot analysis of EcoRI and HindIII digests of two
strains verified that the 80-kb DNA insert came from
pGETS1036, based on its structure (Figure 4C). These
findings demonstrate that no structural alteration of
the insert occurred during the two-step integration
process.

the indicated enzyme. Whole plasmid was used as the probe for each.

The same protocol was applied to two other binary
BAC plasmids (8), pGETS1023 (100-kb insert) and
pGETS1021 (101-kb insert). The first step of CMM
yielded eight and seven Tc-resistant (TcR) colonies,
respectively. Five representatives were shown by I-Ppol
digestion to contain the same plasmid, replicating as a
single copy in BEST6066 (data not shown). They
produced similar numbers of Nm-resistant (NmR)
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derivatives in the second step. Five NmR representatives
of each showed the integration of the 100-kb or 101-kb
DNA insert, as verified by I-Ppol digestion (Figure 4B).
Southern analysis of EcoRI and HindIII digests of both
transformants verified that the two-step integration was
completed without structural alteration of the inserts
(Figure 4C).

DISCUSSION

The design and preparation of domino clones constitute a
prerequisite for giant DNA cloning in the BGM vector
(5,9). The size of the domino is a particularly critical
factor: the larger the individual domino size, the fewer
dominos are required. Another important factor not men-
tioned previously is the possible automation of the
domino integration step. The size of the DNA fragments
that can be incorporated into competent B. subtilis cells in
a single transformation has been estimated to be >200 kb
(10). Unlike yeast, in which about 1 Mb of DNA can be
effectively transformed (3,4,14), agarose inhibits the trans-
formation of B. subtilis. Thus, giant DNA prepared in
agarose plugs and extracted by agarase digestion is diffi-
cult to use in BGM cloning. Instead, a genetic cross
between two BGMs that contain two overlapping
dominos has been shown to produce a 355-kb DNA in
one step (10). The BGM vector can be used to reconstruct
DNA fragments as large as 3600kb in total (2) and
probably even larger after many genetic crosses.
Therefore, the convenient and efficient delivery of a
giant domino DNA to the BGM vector is crucial.

Dominos are currently prepared in E. coli, which is a
universal host that acts not only as a DNA reservoir but
also as a workhorse in various DNA manipulations.
E. coli normally contains engineered DNA in a plasmid
form. The immediate use of excpDNA in E. coli lysis
medium as a DNA reservoir for the transformation of
B. subtilis offers a new way to circumvent the biochemical
preparation of DNA from E. coli in the size range above
100 kb.

Recent cutting-edge technology applied to the de novo
chemical synthesis of DNA has promoted the phenomenal
synthesis of designed DNA sequences from scratch (4).
Although chemically synthesized DNA has not yet been
tested in BGM cloning, contiguous dominos could be
prepared in appropriate E. coli plasmid vectors by
bottom-up assembly (15). As fewer and simpler steps are
desirable in the BGM cloning system, CMM, which can
handle many samples at once, may be suitable for a poten-
tial multiplexed, automated process. Several points remain
to be investigated, including the effectiveness of the
simultaneous incorporation for more than two donor
E. coli lysates. The establishment of one-step integration
requires the preparation of BAC dominos carrying a
B. subtilis marker but lacking a replicon for B. subtilis.
This must be examined. The BAC vector presently
persists as a low-copy-number inclusion in E. coli.
Medium- or high-copy-number vectors, such as fosmids
or cosmids, may be more efficient. However, they reduce
the size of the DNA that can be stably cloned.

Furthermore, methods to lyse E. coli may not be limited
to the presently used induction of a lysogenic lambda by
temperature shift.

Our results indicate that a circular BAC plasmid of
>100kb no longer requires careful purification when it
is to be transferred into other cells of a different species
or genus. In fact, a similar protocol using excpDNA is
under investigation, with application to various competent
recipient cells.
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