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An effective model for natural selection in promoters
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We have produced an evolutionary model for promoters, analogous to the commonly used synonymous/
nonsynonymous mutation models for protein-coding sequences. Although our model, called Sunflower, relies on some
simple assumptions, it captures enough of the biology of transcription factor action to show clear correlation with other
biological features. Sunflower predicts a binding profile of transcription factors to DNA sequences, in which different
factors compete for the same potential binding sites. The parametrized model simultaneously estimates a continuous
measurement of binding occupancy across the genomic sequence for each factor. We can then introduce a localized
mutation, rerun the binding model, and record the difference in binding profiles. A single mutation can alter interactions
both upstream and downstream of its position due to potential overlapping binding sites, and our statistic captures this
domino effect. Over evolutionary time, we observe a clear excess of low-scoring mutations fixed in promoters, consistent
with most changes being neutral. However, this is not consistent across all promoters, and some promoters show more
rapid divergence. This divergence often occurs in the presence of relatively constant protein-coding divergence. In-
terestingly, different classes of promoters show different sensitivity to mutations, with phosphorylation-related genes
having promoters inherently more sensitive to mutations than immune genes. Although there have previously been
a number of models attempting to handle transcription factor binding, Sunflower provides a richer biological model,
incorporating weak binding sites and the possibility of competition. The results show the first clear correlations between
such a model and evolutionary processes.

[Supplemental material is available online at http://www.genome.org. The Sunflower package and source code are
available at http://www.ebi.ac.uk/;hoffman/software/sunflower/.]

Evolution is a fundamental force that has shaped all living or-

ganisms. By comparing the genomes of different species, and

considering their similarities and differences through the lens of

evolutionary theory, we can discover interesting aspects of biology

and better understand their past development (C. elegans Se-

quencing Consortium 1998; Adams et al. 2000; Lander et al. 2001;

Mouse Genome Sequencing Consortium 2002). To quantify se-

lective pressure in protein-coding genes, many researchers have

estimated the number of nonsynonymous substitutions (called dN

or Ka) and synonymous substitutions (called dS or Ks), and then

taken their ratio, described as dN/dS, Ka/Ks, or v (Nei and Kumar

2000). This has provided an invaluable model for characterizing

the evolution of genes in relatively closely related species. Con-

trasting rates of evolution in classes of nucleotides with differing

functional effects is also used in a variety of population genetics

procedures, such as the McDonald–Kreitman test (McDonald and

Kreitman 1991). Although this model crudely equates phenotypic

change with amino acid sequence change, ignoring more complex

effects, it has repeatedly shown its worth in classifying proteins

and specific sites in proteins undergoing both positive (adaptive)

selection and negative (purifying) selection (Nielsen 2001; Hurst

2002; Eyre-Walker 2006).

Due to its extensive use, methodology to assess relative

nonsynonymous to synonymous rates has progressively improved

over time. Salser et al. (1976) were the first to count synonymous

and nonsynonymous differences between mammalian protein-

coding nucleotide sequences, and others (Miyata and Yasunaga

1980; Perler et al. 1980; Li et al. 1985; Nei and Gojobori 1986)

developed more robust methods to estimate the number of syn-

onymous and nonsynonymous substitutions where multiple sub-

stitutions occurred in a single site. More recently, researchers in-

creasingly use maximum likelihood methods to estimate these

quantities, accounting for local variations in mutation rate ac-

cording to various models of evolution (Goldman and Yang 1994).

This framework has often been adapted by other researchers to

investigate evolution of protein-coding sequence (Kosiol et al.

2007; Boyko et al. 2008). New extensions to the basic models, such

as the sitewise likelihood ratio (Massingham and Goldman 2005),

continue to expand the utility of this basic protein model.

In contrast, an analogous phenotypic change model has not

existed for noncoding regions of the genome, including those re-

gions that regulate transcription. Most researchers use straight-

forward measures to approximate change in these regions that

lack a model of the variable susceptibility of different positions

in transcription factor binding sites (TFBSs) to mutations (Wong

and Nielsen 2004; Haygood et al. 2007). Although investigators

have identified and commented on this variable susceptibility

(Dermitzakis et al. 2003; Moses et al. 2003; Mustonen et al. 2008),

a good model for the impact of variation on transcription factor

binding that can be integrated into traditional dN/dS methods would

be more useful. The lack of a more realistic phenotypic model is

particularly frustrating as the protein-coding complement does not

change significantly between mammalian species outside of olfac-

tion and the immune system (and even less so between primates),

leading many researchers to suggest that changes in regulation in-

clude many of the most important changes for positive selection in

mammalian and primate evolution (King and Wilson 1975).

Here, we introduce a phenotypic model for the impact of

change in promoter sequence. We were inspired by the success of
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transcription factor binding models that integrate over the com-

plete range of binding affinities (Rajewsky et al. 2002; Granek and

Clarke 2005; Foat et al. 2006; Sinha 2006; Roider et al. 2007; Manke

et al. 2008) using a library of position weight matrices (PWMs).

Additionally, Wasson and Hartemink (2009) published a similar

model during the preparation of this manuscript. These models

have shown their utility by providing robust models of Drosophila

enhancers (Segal et al. 2008). This work differs from previous ef-

forts to use multispecies conservation information to improve the

identification of functional TFBSs (Moses et al. 2004; Ray et al.

2008), because we hold out evolutionary information from the

TFBS identification process in order to avoid circularity in the

subsequent estimation of evolutionary distances. The necessary

modeling instead seeks to grade potential mutations for their im-

pact on cis-regulation prior to analyzing information on the actual

substitutions found in evolution, in a similar way to methods that

determine potentially disruptive protein-coding substitutions, such

as PolyPhen (Sunyaev et al. 2001).

Quantifying phenotypic change with such a model suggests

a corresponding measurement dT (by analogy to dN and dS) to

quantify the putative change in transcriptional function. Al-

though itself a crude approximation of the biochemical process we

wish to model, this measurement shows the expected suppression

of larger changes over evolutionary time. To correct for the local

neutral rate of evolution, we combine dT with the protein-coding

dS using the ratio c = dT/dS, which can distinguish different func-

tional categories of genes with varying degrees of selection on

their promoter regions. The ratio shows strong purifying se-

lection on developmental process genes, as expected, but also

shows a potential positive or extensive relaxation of constraint in

other functional classes, such as phospholipid biosynthetic pro-

cess genes.

Results
We used a hidden Markov model (HMM) framework (Durbin et al.

1998) to provide a reasonable model of the competitive binding of

an ensemble of transcription factors (TFs), assuming steric hin-

drance between factors competing for the same segment of DNA.

The architecture of the model is shown in Figure 1, and because of

its floral resemblance, we call the model Sunflower. Each TF forms

a petal of nucleotide-emitting states, with each state parametrized

from a column in a PWM, which may come from a public TF da-

tabase such as JASPAR (Vlieghe et al. 2006) or TRANSFAC (Matys

et al. 2006), or from high-throughput protein-binding microarray

experiments (Mukherjee et al. 2004; Bulyk 2006). For the analysis

presented here we used vertebrate JASPAR CORE PWMs, specifi-

cally those listed in Supplemental Table 1. A single unbound state

represents parts of the DNA not bound by a factor, and it is pa-

rameterized using the base composition of the whole genome.

The entry probability to the unbound state was arbitrarily set to

0.99, representing a postulated prior that the fraction of nucleo-

tides bound to TFs is on the order of magnitude of 1%. The entry

probability to each TF petal, roughly analogous to the cellular con-

centration of each factor, is set flat for all factors. This equally di-

vides the remaining 0.01 probability for entry to a petal. Ideally,

the model would summarize effects across all cell types, which

precludes setting these values according to the concentrations of

individual TFs under particular cellular conditions. Because we lack

the knowledge necessary to integrate the expression levels of genes

in every cell type over evolutionary history, we used this arbitrary

flat prior.

The HMM forward–backward algorithm allows the efficient

calculation of the marginal probability of each factor explaining

each base, analogous to the base being bound by the factor. This

means that for each base in the sequence, the algorithm calculates

a vector of the marginal probabilities for each PWM column sum-

marizing the combined behavior of the ensemble of TFs at that

position. Although this model is admittedly simple, with no pro-

vision for different concentrations of factors or different potential

cooperative modes between factors, it does maintain many useful

known aspects of TF biology. In particular, it considers a continu-

ous range of TF affinities for different genomic sites and steric ef-

fects between factors.

In this simulation it is possible for a single mutation to effect

a longer chain of binding sites due to changes in steric overlap.

An illustration of this domino effect is shown in Figure 2, where

a single mutation changes the predicted binding not only at

NR1H2-RXR, PPARG-RXRA, and T binding sites directly over-

lapping the mutation, but also at the predicted nearby NR3C1,

REL, Roaz, SP1, and Spz1 binding sites, leading to a complete re-

organization of the predicted binding occupancy on this promoter.

In order to investigate the importance of the domino effect,

we compared probabilities estimated with this joint model with

probabilities estimated with 89 similar models where we included

only one PWM at a time. We defined proximal promoter sequences

as 1400 bp around 17,600 transcription start sites (TSSs) in the

human genome. We took the probability distribution inferred us-

ing each single-motif model at each proximal promoter sequence

position, and the probability distribution generated from the cog-

nate portion of the joint model (see Methods). The median relative

entropy per nucleotide calculated between these two distributions

for each model is 0.6 bits, which means the joint model provides

a large amount of additional information over a 1400-bp promoter.

To examine the impact of a potential mutation in the joint

model, we introduce it into the sequence and recalculate the

marginal probability vector for the mutated sequence at every

position, not just the mutated position. We then add together the

Figure 1. Toy example schematic of a Sunflower model for TFs. (Circle)
Silent state, (squares) emitting states, (arcs) transitions between states
with nonzero probability. The transition probability is either designated
by a label, or is 1 in the case of unlabeled areas. (Squares with ellipses)
Arbitrary number of sequential states. This toy example includes TFs A, B,
C, and D, each one with a petal of emitting states, labeled such that D.0
corresponds to the first column of the D PWM, and D.n the last column.
The arc from empty space indicates the initial state of the model.
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relative entropies (Durbin et al. 1998) for each pair of marginal

probability vectors (both the reference and the mutated sequence).

We refer to the sum as the binding shift of the mutation and denote

it by the symbol t (see Methods).

To explore the properties of the new t measurement, we ex-

haustively simulated every possible point mutation in the human

promoters (4200 changes per promoter, 73,920,000 overall). We

then compared the human sequences with aligned sequences in

the dog genome, chosen because it was distantly related enough

for many neutral changes to occur, yet close enough that the

effects of selection on cis-regulation would still be observable.

We separated the changes observed in dog (4,069,878, 8% of the

mutations at a human position aligned to a dog nucleotide). Figure

3 shows the mean t for both changes observed and unobserved in

dog averaged at each TSS-relative position.

Overall, t rises steadily as mutations approach the TSS, as

expected from the increase in density of TF binding sites. More

importantly, there is a strong separation over the TSS of the ob-

served from the unobserved mutations, leading to consistently

higher t values in the unobserved portion. Both the overall shape

of this plot and its consistency with the prediction that higher

t mutations are less favored by the predominantly selectively

neutral changes accepted over evolutionary time suggest that this

measurement models something that correlates with evolutionary

acceptance of mutations near TSSs.

For confirmation, we repeated this analysis on mouse–rat

aligned proximal promoters and found similar results (Supple-

mental Fig. 1). We found different results when looking human–

dog aligned regions (Supplemental Fig. 2) with enhancer activ-

ity validated in transgenic mice (Pennacchio et al. 2006), or into

human–dog aligned ancestral repeats (Supplemental Fig. 3; Paten

et al. 2008). The relatively flat binding shift lines in these results

lead us to conclude that with the input PWMs used, this model will

primarily detect signatures of selection in proximal promoter re-

gions rather than enhancer regions or negative control ancestral

repeat regions.

The t measurement provides an approximation to the binding

occupancy change of a mutation, which is the simplest predict-

able phenotypic change in a promoter, much like the number of

changed residues in a protein is the simplest measurement of

phenotypic change in a protein. We also sum up the total potential

change of a promoter, considering every possible mutation, and

call this T. Interestingly, different classes of genes, as determined by

Gene Ontology (GO) (Gene Ontology Consortium 2006) annota-

tions, show varying levels of this inherent propensity to change

(see Supplemental Tables 1–6). Genes involved in developmental

processes are expected to have complex, finely tuned promoters,

and therefore are expected to have high T. Somewhat more un-

expected in high-T genes are those involved in phosphorylation

and the cell cycle. Interestingly, these GO terms are also excluded

from copy number variant (CNV) regions (Redon et al. 2006).

In order to examine how actual changes affect the binding

profile, we can sum up only those values of t that correspond to

observed substitutions. To control for different inherent propen-

sities to change, we divide by the potential total binding shift T,

and then transform this proportion using the Jukes–Cantor model

(Jukes and Cantor 1964) to correct for multiple substitutions along

an evolutionary lineage (see Methods). This results in a transcrip-

tional distance measurement dT.

We developed an evolutionary measurement, which we call

c, by analogy to the protein-coding v parameter for the non-

synonymous-to-synonymous substitution rate ratio. For c, we

wish to control both for the inherent binding shift mutability and

for the local mutation rate, so we take dT and divide it by the local

Figure 2. Changes in predicted binding profile for a guanine-to-thymine
mutation at position +29 of ENST00000373379, a transcript of UPRT,
uracil phospho-ribosyltransferase. (Green lines) Probability of eight in-
dividual TFs binding to the reference sequence, or the probability that
a region is unbound (upper right panel). The names above the TF binding
panels refer to JASPAR PWM names, and the corresponding Human Ge-
nome Organization Nomenclature Committee (HGNC) symbols are
contained in Supplemental Table 1. (Orange lines) Probability that a TF
binds the mutated sequence. These displayed changes, when added to
smaller changes for other TFs, represent a binding shift t of 124.8 (see
Results and Methods).

Figure 3. Aggregation plot of the binding shifts of 17,600 human
genes, averaged within two groups: one where the simulated mutation
was observed in dog (green circles, solid line), and one where it was
unobserved (orange crosses, dashed line). (A) Local regressions for 6700
bp around the TSS, estimated with the loess (Cleveland and Devlin 1988)
function in R (R Development Core Team 2007), with second-degree
polynomials and a = 0.1. Shaded regions in this plot are magnified as
separate panels below to show mean binding shifts at individual positions
proximal to (B) and more distal from (C ) the TSS.
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neutral mutation rate dS, analogously to dN/dS. The measurement

c = dT/dS therefore summarizes our approximation of the binding

occupancy change in a promoter due to mutations, normalizing

for both local mutation rate and inherent mutability of a promoter.

Values of human–dog c are not strongly correlated to the local

mutation rate, measured either using synonymous coding sites

(Supplemental Fig. 6; rS = �0.51; P < 2.2 3 10�16) or at introns

(Hoffman and Birney 2007) (Supplemental Fig. 7; rS = �0.24; P <

2.2 3 10�16). Neither is it correlated to the raw mutability (T) of

each promoter (Supplemental Fig. 8; rS = �0.20; P < 2.2 3 10�16).

This suggests that c captures an aspect of biology independent of

these quantities, such as selection on promoters, just as v captures

for coding sequence. While others have identified purifying se-

lection adjacent to the TSS (Taylor et al. 2006), we can identify

a potential mechanism for this selection.

Considering classes of genes with high or low amounts of

selective pressure on promoters provides interesting insights into

biology. Focusing first on cellular components, it has long been

known that plasma membrane and extracellular compartments

show strong enrichment for high values of the protein-coding v.

The transcriptional c, however, shows an almost perfect contrast

to this, with these compartments showing striking enrichment for

low c values (Fig. 4). Turning to more specific functional cate-

gories, Figure 5 shows a scatter plot of median c against median

v for biological process and molecular function GO terms with at

least 10 genes annotated. It is clear that c and v are not strongly

correlated for functional classes of genes (rS = 0.081; P = 9.87 3

10�12), nor are they correlated on a gene by gene basis (Supple-

mental Fig. 4; rS = 0.10; P < 2.2 3 10�16). More importantly,

functional classes enriched for high v are rarely enriched for high

c, and vice versa. This implies that positive selection amongst

genes associated with a GO term predominantly works in a single

modality. In contrast, many of the categories that show negative

selection in both the transcriptional and protein-coding mea-

surements, having low v and low c, agree with perceptions of

transcriptional complexity, with terms such as sensory organ de-

velopment (low c: P = 7 3 10�6, q < 1 3 10�4; low v: P = 2 3 10�5,

q < 1 3 10�4) and transcription factor activity (low c: P = 5 3 10�38,

q < 1 3 10�4; low v: P = 4 3 10�5, q = 6 3 10�4) enriched in both

modalities. As expected, there are genes showing evidence of

strong transcriptional negative selection with no striking shift in

protein selection, such as those associated with signal transduction

(low c: P = 8 3 10�17, q < 1 3 10�4; low v: P = 0.5, q = 1), cell

adhesion (low c: P = 8 3 10�10, q < 1 3 10�4; low v: P = 1, q = 1), and

cell migration (low c: P = 3 3 10�5, q = 2 3 10�4; low v: P = 0.1, q =

1). Finally, gene classes enriched for more positive transcriptional

selection (high c) without striking changes in protein evolution

include phospholipid biosynthetic process genes (high c: P = 2 3

10 5, q = 3 3 10�4; high v: P = 0.6, q = 1) such as CEPT1 (c = 2.24; v =

0.04), and DNA repair genes (high c: P = 3 3 10�10, q < 1 3 10�4;

high v: P = 0.006, q = 0.07) such as UBE2B (c = 2.53; v = 0.002).

Discussion
We have developed, assessed, and used a new series of measure-

ments that aim to capture the effect of DNA sequence change

on transcriptional regulation. Although our model crudely ap-

proximates the known complexity of this process and does not

include more poorly understood processes such as TFBS turnover

(Dermitzakis and Clark 2002), it is not obviously less sophisticated

than the dN/dS measurement commonly and successfully used

to study protein-coding evolution. An important component to

Figure 4. Box plot of c = dT/dS values arranged by GO cellular com-
ponent term, for each term associated with significantly high (above di-
viding line) or low (below dividing line) c values, as determined by the
Wilcoxon rank sum test (P < 1 3 10�4) performed by FUNC (see Methods).
The vertical bar in each box indicates the median c, the extents of each
box the first and third quartiles of c, and the whiskers extend to the fur-
thest data point that is no more than 1.5 times the interquartile range from
the nearest quartile. High outliers are used in calculating statistics, but are
omitted from the display for clarity.

Figure 5. Scatter plot of median c = dT/dS versus median v = dN/dS for
the genes in 1402 GO terms. Only terms that are annotated on at least 15
genes are shown. The term has a significantly high or low value of c (blue),
v (red), both measurements (yellow), or neither measurement (gray), as
determined by FDR threshold q < 0.05. Labels indicate the terms with the
10 highest and 10 lowest c values.
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the Sunflower model is that it penalizes the creation of motifs

overlapping with existing motifs. The aggregate evolutionary sig-

nature of this measurement shows an expected suppression of

highly perturbing mutations in both human–dog and mouse–rat

promoter comparisons. In contrast, ancestral mammalian repeats,

thought to be predominantly neutral, show no difference in pre-

dicted impact between observed and unobserved mutations. The

functional processes that have transcriptional sensitivity agree

with preconceptions derived from our understanding of cellular

and molecular biology.

While PWM methods are often used to predict TF occupancy,

we cannot be certain that such methods accurately estimate TF

binding or transcriptional output. One major limitation of our

technique is that it relies on the assumption that the PWM-based

method it uses will be accurate much of the time. Another limi-

tation is the lack of a complete set of PWMs for TFs. The devel-

opment of a number of high-throughput methods for quantifying

in vitro binding preferences (Mukherjee et al. 2004) will provide

a larger set of matrices over time, and the integration with other

methods (Ren et al. 2000; Hudson and Snyder 2006; Robertson

et al. 2007; Wang et al. 2007; Jothi et al. 2008) will likely drive the

library of accessible matrices closer to completion. It is interesting

to note that the set of distal enhancers did not show the same

separation of observed versus unobserved changes. The lack of en-

hancer-specific factors may well be the explanation for this result,

as JASPAR’s contents have a bias toward promoter-associated TFs.

A more complex problem is how to set the entry probabilities

to each petal. We have chosen to take a uniform prior as a way to

handle the large diversity of cell types that vary in expression

values. Potentially, one could consider integrating this signal over

a variety of relative expression levels of the transcription factors at

the expense of a more computationally expensive procedure. Re-

lated to this problem is the issue of redundancy in PWMs. The

JASPAR database provides a curated PWM set with some efforts

made toward eliminating redundancy. The JASPAR PWMs used in

this study (Supplemental Table 1) include a pair of PWMs repre-

senting different motifs recognized by one protein (ZNF42_1-4,

ZNF42_5-13), two motifs recognized by dimers that include one

overlapping protein (HAND1-TCF3, TAL1-TCF3), and two pairs of

PWMs from the same protein recognizing similar motifs but with

data from different sources (NFKB, NFKB1; RORA, RORA1). In re-

ality, some redundancy is acceptable because there are likely to be

some transcription factors with similar motifs in vivo. Increasing

the number of TFs considered by the model will increase the re-

dundancy in motifs yet still more accurately model the actual

processes in living cells.

It is feasible to imagine more complex impact models than

the one presented here, such as considering compensatory crea-

tion of new binding sites in a TFBS turnover model, at the con-

ceptual and computational expense that comes with more com-

plicated models. This would be analogous to integrating structural

adjacency of amino acids for protein selection. It is interesting to

note that, probably due to the complexity of a more advanced

model, the simpler site-wise model in protein sequences has

remained the predominant evolutionary model.

The c measurement generated using pairwise alignments

shows a weak correlation between orthologs in different clades

(Supplemental Fig. 5; rS = 0.33; P < 2.2 3 10�16). This means that

this measure of selection is consistent between clades, at least

within mammals, although obviously it will not have the same

consistency as v measurements generated from a maximum like-

lihood method on a single multiple alignment. It would be pos-

sible to use the Sunflower method to find pairwise dT values for

multiple species pairs from a single alignment, but effective use

of multispecies alignments would require integration of the Sun-

flower change model during the sampling of potential ancestral

sequences in the tree. This is an interesting approach that requires

both more theoretical and practical work. Similar to the research

arising from the dN/dS model, the pairwise model presented here

would be the starting point for that work.

The protein-coding v measurement has the property that

neutral changes are predicted (and observed) to be around v = 1,

while the c measurement does not come with such a principle for

its interpretation. Much of the use of v, however, consists in av-

eraging values over several genes, where identifying deviations

from the bulk distribution (as performed in this analysis) is the

primary mode of analyzing gene sets. In contrast, the c measure-

ment lends itself more naturally to the joint analysis of multiple

changes, such as those found on haplotypes. As genome-wide as-

sociation studies implicate haplotypes, and extensive resequenc-

ing (Kaiser 2008) will provide a complete set of changes on nearly

all common haplotypes, a haplotype-level analysis of functional

changes will become a more important form of analysis. In-

tegration of these mechanistic models with expression quantita-

tive trait locus studies (Veyrieras et al. 2008) in the context of

complete sequencing will provide an interesting comparison.

Many of the associations of c were expected, such as the sup-

pression of promoter changes in signal transduction and de-

velopmental genes. The bulk suppression of c in genes associated

with extracellular components and the plasma membrane is more

puzzling, in particular given the striking signals of positive selection

in these proteins (Kim et al. 2007). Alternatively, inappropriate ex-

pression of many extracellular proteins may have a far more dele-

terious effect, given their potential to interact with other compo-

nents outside of the cell. More generally, c is not strongly correlated

with the protein-coding v, showing a very different behavior of

transcriptional selection compared with protein-coding selection.

In this work, we focused on an evolutionary analysis of intra-

mammalian substitutions, although one could apply the same

framework both to other clades and to other mutational processes,

such as natural polymorphisms and somatic changes discovered in

cancer. In the latter two cases the low rate of change will make

gaining statistical power hard, just as analyzing protein changes

also requires extensive aggregation of signals (Stratton et al. 2009).

With the large number of sequenced genomes appropriate for this

analysis and the aggressive generation of polymorphism and so-

matic mutation data sets, Sunflower provides a key additional tool

in the interpretation of genomic sequence differences.

Methods

Posterior inference
Sunflower does posterior inference using an algorithm we call
Sunflower-Reference. The algorithm calculates the posterior prob-
ability Pk,i = P(xi | k) that a particular nucleotide xi was emitted by
a given state k in the Sunflower model. The results are the same as
the standard Forward-Backward algorithm when the silent state is
the start state (ksilent = 0).

Posterior inference is equivalent to tracing all of the pathways
through this model that can emit a single sequence, and estimat-
ing the posterior probability that the model is in each of the states
at each position of that sequence. Underlying the model is the
physical mechanism that transcription factors are continuously
binding and leaving chromosomal sequences, at a rate related to

An effective model for natural selection in promoters

Genome Research 689
www.genome.org



their affinity for the sequence. The statistical mechanics of the
biophysical model are approximated by the probabilities that
a transcription factor is bound in the sequence model. Indeed,
PWMs, which are frequently thought of as purely probabilistic
concepts, were originally proposed as part of a statistical me-
chanics model (Berg and von Hippel 1987).

The new parameters in Sunflower-Reference allow two opti-
mizations. The first is the use of connection set vectors cf and cb,
which contain information about which states are connected to
which other states, relieving the algorithm from the necessity in
each round of doing calculations involving transition probabilities
of zero. The other optimization is that one can specify a calculation
starting position i to indicate that the intermediate forward matrix
F and backward matrix B have already been partially calculated,
such that recalculation is only necessary in the forward direction
for values >i, and in the reverse direction for values <i.

We wrote Sunflower in the Python language (van Rossum
2006) and inner loops in the C language (Kernighan and Ritchie
1988) for speed.

Comparing joint and single-motif models

We compared the joint model used in the rest of this work with
single-motif control models for each motif m to investigate the
importance of the domino effect. After performing posterior in-
ference on all of the models, we derived a two-state probability
distribution for each motif from the joint model at each position
by taking P(xi | m) and 1 � P(xi | m). We then compared each
probability distribution generated from the joint model Pjoint with
the equivalent probability distributions from the single-motif
model Psingle by taking the relative entropy H(Pjoint k Psingle) .

The binding shift t

The algorithm used to investigate the effects of mutations can be
described simply. First, run the Sunflower-Reference algorithm
with a Sunflower model and a nucleic acid sequence to get the
posterior probability matrix P. Then use the Sunflower-Mutate
algorithm to calculate the relative entropy H(P k P9) = t for each
position i and each nucleotide a 2 A = {A, C, G, T}:

Sunflower-Mutate(A, E, X = (x1. . .xn), F = (fk,x)m3n, B, P)

X0 = ðx01. . .x0nÞ )X1

F0 = ðf 0k;xÞm 3 n)F2

for i )1 to n3

do for each a in A4

do if a = xi5

then ti�1;a)0:06

else x0i )a7

P0)Sunflower-ReferenceðA;E;X0;F0;B;iÞ8

ti�1;a)HðP kP0Þ9

x0i)xi10

f 0i�1)f i�111

return T = ðti;xÞn 3 jAj12

This algorithm includes a significant optimization over the na-
ive implementation, because it uses the three extra arguments
in Sunflower-Reference to avoid rerunning the whole Forward-
Backward algorithm each time. Only those columns j of the for-
ward matrix where j $ i and the backward matrix where j # i are
recalculated, as the left and right partitions of these two matrices,
respectively, would have the same value as when calculated from
the reference sequence.

Sunflower avoids the binary classification of binding and
thresholds commonly used in TFBS finders, as they are not es-
sential to the biology of transcription finding (Roider et al. 2007),
and uses a probabilistic model instead. The result of Sunflower-
Reference is a two-dimensional matrix of the posterior probabili-
ties defined at each position for each PWM column of all TFs in the
input set. These values specify how likely it is that a particular TF
binds to a particular string of positions.

The promoter distance dT

One can think of the binding shift measurement t introduced
above as a measurement of the synonymity of a particular nucle-
otide. To get a measurement of the potential disruption in TF
binding for a gene, T, similar to the total number of nonsyn-
onymous nucleotides, N, one first must select a region of interest.
We limit our inspection to only those nucleotides we are most sure
have an effect on transcripts by selecting the region [�100, + 100)
relative to the TSS. These are the nucleotides where t is highest on
average. If the value of T is used for further comparisons to an
aligned sequence, then we exclude positions that do not align.
We use P to refer to the set of included positions in the region of
interest.

Inspired by the logic used by Nei and Gojobori (1986) to as-
sign a fractional synonymity to protein-coding nucleotides that
are only partially degenerate, we consider the average binding shift
from the reference nucleotide to all other possibilities as a mea-
surement of the potential disruption for that nucleotide. Summing
the values for all these nucleotides, and dividing by 3, the number
of different possible substitutions, we get

T =
1

3
+
i2P

+
a2A

ti;a�

To compare a human promoter with sequence X = (x0. . .xn)
with the promoter in a related species, we limit to only those
alignments of upstream regions of Ensembl orthologs with fewer
than 25% gap columns. We call the sequence in the other species
Y = (y0. . .yn), and the two positions align at each position i. With Y,
we can define the amount of observed binding profile disruption

Td = +
i2P

ti;yi
�

Since ti;yi
= 0 whenever xi = yi, Td is nonzero only at positions where

the two sequences differ. While ti;yi
may be larger than the average

t for any given position, this is unlikely to be true across the whole
gene.

Using T and Td, we can calculate a proportion of binding
profile disruption

pT =
Td

T
;

analogous to pN and pS (Nei and Gojobori 1986). We use the Jukes–
Cantor equation (Jukes and Cantor 1964), which performs a pro-
portion such as this into a distance measurement

dT = � 3

4
lnð1� 4

3
pT Þ:
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Gene Ontology enrichment analysis

We use FUNC (Prüfer et al. 2007) to determine GO terms enriched
for a particular gene set (hypergeometric test) or for low or high
values of various measurements associated with genes (Wilcoxon
rank sum test). Considering the genes in a specified set as marked,
the hypergeometric test compares the number of marked genes
associated with a GO term with the number of marked genes as-
sociated with any term in a specific ontology. The Wilcoxon rank
sum test involves rank-ordering genes by a measurement, and then
comparing the ranks of the genes associated with one GO term
with the ranks of the other genes associated with any other term in
a specific ontology. We use the false discovery rate (FDR) reported
by FUNC as an FDR threshold q (Storey and Tibshirani 2003).
To alleviate the multiple testing problem, we consider a term to
be enriched only when q < 0.05. For measurements that involve
alignments of potential transcriptional regulatory regions, we in-
clude in the analysis only those sequences where fewer than 50 of
the pairwise alignment columns include gaps.
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fitness: A quantitative model for the evolution of yeast transcription
factor binding sites. Proc Natl Acad Sci 105: 12376–12381.

Nei M, Gojobori T. 1986. Simple methods for estimating the numbers of
synonymous and nonsynonymous nucleotide substitutions. Mol Biol
Evol 3: 418–426.

Nei M, Kumar S. 2000. Molecular evolution and phylogenetics. Oxford
University Press, Oxford, UK.

Nielsen R. 2001. Statistical tests of selective neutrality in the age of
genomics. Heredity 86: 641–647.

Paten B, Herrero J, Beal K, Fitzgerald S, Birney E. 2008. Enredo and Pecan:
Genome-wide mammalian consistency-based multiple alignment with
paralogs. Genome Res 18: 1814–1828.

Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M,
Minovitsky S, Dubchak I, Holt A, Lewis KD, et al. 2006. In vivo
enhancer analysis of human conserved non-coding sequences. Nature
444: 499–502.

Perler F, Efstratiadis A, Lomedico P, Gilbert W, Kolodner R, Dodgson J. 1980.
The evolution of genes: The chicken preproinsulin gene. Cell 20:
555–566.
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