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Abstract
Pedigrees collected for linkage studies are a valuable resource that could be used to estimate
genetic relative risks (RRs) for genetic variants recently discovered in case-control genome wide
association studies. To estimate RRs from highly ascertained pedigrees, a pedigree “retrospective
likelihood” can be used, which adjusts for ascertainment by conditioning on the phenotypes of
pedigree members. We explore a variety of approaches to compute the retrospective likelihood,
and illustrate a Newton-Raphson method that is computationally efficient particularly for single
nucleotide polymorphisms (SNPs) modeled as log-additive effect of alleles on the RR. We also
illustrate, by simulations, that a naïve “composite likelihood” method that can lead to biased RR
estimates, mainly by not conditioning on the ascertainment process—or as we propose—the
disease status of all pedigree members. Applications of the retrospective likelihood to pedigrees
collected for a prostate cancer linkage study and recently reported risk-SNPs illustrate the utility of
our methods, with results showing that the RRs estimated from the highly ascertained pedigrees
are consistent with odds ratios estimated in case-control studies. We also evaluate the potential
impact of residual correlations of disease risk among family members due to shared unmeasured
risk factors (genetic or environmental) by allowing for a random baseline risk parameter. When
modeling only the affected family members in our data, there was little evidence for heterogeneity
in baseline risks across families.
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INTRODUCTION
Ever since genetic markers have become more abundant over the past 30 years [Botstein et
al., 1980], and their genetic maps more refined [Matise et al., 2007], many collections of
pedigrees have been assembled for linkage mapping of human diseases. The utility of some
of these collections for finding causal variants of complex disease, however, has been
diminished because of failure to replicate linkage signals that are not exceptionally strong. It
is now well recognized that family-based linkage mapping of low-penetrant causal variants
has weak power, particularly, in the presence of genetic heterogeneity and phenocopies
[Risch, 2000; Risch and Merikangas, 1996]. The recent successes of genome wide
association (GWA) studies with unrelated cases and controls [Pearson and Manolio, 2008]
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have diminished enthusiasm for pedigree-based analyses, at the risk of failing to better
understand the genetic mechanisms of disease and the role of common genetic variants in
high-risk pedigrees [Clerget-Darpoux and Elston, 2007]. Pedigree analyses might be useful,
for example, to determine whether the disease risk for a variant differs between high-risk
pedigrees collected for linkage studies vs. case-control studies. Greater risk could suggest
that other genes, or environmental risk factors that cluster in pedigrees, might modify the
risk of a measured SNP. Lower risk could suggest that the pedigrees could be explained by
other genetic factors not yet discovered. Understanding the role of common genetic variants
in pedigree data is also crucial for genetic counseling.

Despite the expanding perception that case-control studies should displace family-based
studies in the hunt for causal genetic variants, pedigree collections are often used as a
resource for diseased cases to be included in candidate gene studies, or even GWA studies.
With the need to replicate GWA studies with large collections of cases and controls
[Chanock et al., 2007], it has become common practice to tap into pedigree collections for
additional cases. Hence, although pedigree linkage mapping for complex traits might have
limited power, there is an ongoing need to evaluate the implications of genetic variants
discovered by GWA studies on high-risk pedigrees.

To estimate the disease risk of genetic variants in families, one could use family histories
collected on genotyped cases and controls by the kin-cohort approach. The kin-cohort
method requires genotyping only cases and controls, and detailed phenotype information for
their relatives [Chatterjee et al., 2001, 2003; Chatterjee and Wacholder, 2001; Gail et al.,
1999a,b; Millikan et al., 2005; Moore et al., 2001; Risch et al., 2006; Saunders and Begg,
2003; Sigurdson et al., 2004; Wacholder et al., 1998; Wang et al., 2008; Webb et al.,
2006a,b,c]. Using population allele frequencies and segregation analyses, the kin-cohort
provides estimates of genotype-specific absolute penetrances. This approach, however,
targets a random sample of cases and controls. In contrast, pedigrees collected for linkage
mapping are generally highly ascertained for multiple affected relatives, with ill-defined
sampling schemes. For this reason, adjusting for ascertainment for pedigrees collected for
linkage studies is challenging. Although several strategies have been evaluated, the most
robust approach is the retrospective likelihood for pedigrees, which considers the joint
distribution of genotypes for pedigree members, conditional on their phenotypes [Carayol
and Bonaiti-Pellie, 2004; Clayton, 2003; Hodge and Elston, 1994; Kraft and Thomas, 2000;
Whittemore, 1996]. It is well known that for likelihoods to yield consistent estimates, they
must be conditioned on at least the event that caused the data to be ascertained. For highly
ascertained pedigrees with ill-defined ascertainment schemes, conditioning on disease status
of all pedigree members is the most robust way to obtain consistent estimates of relative risk
(RR), recognizing that so much conditioning decreases statistical efficiency [Kraft and
Thomas, 2000], so the variances of the resulting risk parameters are larger than alternative
methods.

The computational challenges of the retrospective likelihood method can be significant for
large pedigrees, because of the need to sum over all possible genotype configurations for
each pedigree. An alternative approach that reduces the computational burden is to rely on
composite marginal likelihoods [Lindsay, 1988; Varin, 2008]. The basic idea is to compute
marginal likelihoods for pairs of subjects, which are much easier to compute than the joint
probability for all pedigree members. These marginal likelihoods for all possible pairs of
subjects in a pedigree are combined, as if the pairs were independent, into a composite
likelihood. The composite likelihood is maximized in the usual manner to obtain consistent
maximum likelihood estimates. Because the contributions from different pairs within a
pedigree are not independent, the variance of the estimated parameters must be computed by
a robust “sandwich” estimator [Varin, 2008]. This approach has been successful for the kin-
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cohort approach when cases and controls are randomly sampled (e.g., without regard to
family disease history) [Chatterjee and Wacholder, 2001], it has been suggested for pedigree
segregation analyses [Rabinowitz, 1996], and it has been used to construct a test statistic for
random segregation of rare variants in pedigrees [Meijers-Heijboer et al., 2002].

We evaluated the composite likelihood method for the pedigree retrospective likelihood, but
found that the RRs are biased if an overly simplistic “naïve” approach is used. The correct
composite likelihood does not reduce the computational burden, because of the need to
condition on the ascertainment process, or our more restrictive conditioning on the
phenotypes of all pedigree members. We illustrate the problems with the composite method
for retrospective likelihoods, and provide alternative strategies to compute the full
retrospective likelihood. Finally, we evaluated the potential impact of residual correlations
among family members due to shared unmeasured risk factors (genetic or environmental) by
allowing for a random baseline risk parameter. Kraft and Thomas [Kraft and Thomas, 2000]
showed that the RR estimate from the pedigree retrospective likelihood can be biased toward
the null when the disease risk across families is highly heterogeneous, although this can be
overcome by allowing for a random baseline risk parameter. In contrast, when modeling
absolute risks, Gail [Gail, 2008] and others have shown that ignoring residual familial
correlations, such as with the kin-cohort approach, can cause upward bias in absolute risk
estimates. In general, not allowing for residual familial correlations can cause bias because
the risk parameters, either RR or absolute risk, absorb the misspecifications of the model.
Our theoretical derivations are evaluated by simulations, and illustrated by applications to
pedigree data for prostate cancer, evaluating the risk of recently reported single nucleotide
polymorphisms (SNPs) detected by GWA studies.

METHODS
The retrospective likelihood for a pedigree can be easily described as the probability of the
genotypes of all pedigree members, conditional on their phenotypes. For now, we describe
computations for a single pedigree with n subjects, and later introduce indices when needed
for all pedigrees in a set of data. The retrospective likelihood for a vector G of genotypes, G′
= (g1, …, gn), and a vector Y of phenotypes, Y′ = (y1, …, yn), can be expressed as

The sum in the denominator is over all possible pedigree genotype configurations, and G*

denotes a particular configuration. Because the number of genotype configurations increases
exponentially with the size of a pedigree, the computational burden can be extreme. To
model the effect of a particular genetic variant, one needs to specify models for P(Y|G) and
P(G).

Consider a simple model for P(Y|G), such as modeling the disease risk of a single SNP. Let
y have values of 1 if diseased and 0 if not diseased. Let g have values 1, 2, or 3 for genotype
categories C/C, C/R, and R/R, where C and R denote the common and minor alleles. For
now we assume that phenotypes are independent, conditional on the SNP genotypes, but
later evaluate this assumption. When independent,
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For low-penetrant variants, the affected subjects contribute much more information than
unaffected subjects. Furthermore, highly ascertained pedigrees for linkage studies tend to
have many more affected than unaffected subjects. So, we consider a model for genetic RRs
for “affecteds only,” yet which uses the genotypes of subjects with phenotype unknown or
unaffected to restrict the possible genotype configurations among the genotyped affected
subjects. This is achieved by setting P(yi|gi) = 1 for all values of gi for subjects without
disease (this is a common “trick” for affecteds-only analyses that use genotypes of subjects
with unknown/unaffected phenotypes to constrain the possible genotype configurations
among the affecteds). Furthermore, we only used phenotype information on affecteds that
were genotyped. With these assumptions, the retrospective likelihood depends only on
genotype RRs,

For convenience, we parameterize the genotype RRs as exponential functions. Let x(gi)
denote a function that converts genotype categories to numeric codes for modeling the
genotype RRs; we use xi = x(gi) to denote the actual numeric code. For three genotype
categories, xi is a vector of two indicator variables. We simplify our exposition by assuming
a log-additive effect of the minor allele, so that xi counts the number of minor alleles, having
values 0, 1, or 2. Then, r(gi) = eβxi, where β is the per-allele log RR. With this setup,

(1)

where D denotes the set of diseased subjects (note that G remains the vector of genotypes

for all subjects), and xD is the sum of s over the diseased subjects. That is, xD is the total
number of minor alleles among the diseased subjects.

To compute P(G) under the assumption of Hardy-Weinberg equilibrium for the genotype
proportions among the pedigree founders, and Mendelian segregation among the non-
founders, it is well known that

where P(gi) depends on allele frequencies, and P(gj|gmj, gfj) is the probability of genotype gj
for a non-founder, conditional on the genotypes of its mother (gmj) and father (gfj). For now,
we assume that the SNP allele frequencies are known, and later discuss this assumption.
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The maximum likelihood estimate of β can be calculated by either a line-search or the
Newton-Raphson (NR) iterative method, based on the first and second derivatives of the
log-likelihood. The NR method is appealing because of its fast convergence, as well as the
score equations that can provide influence measures for the pedigrees. For a single pedigree,
the log-likelihood can be expressed as

Taking the first derivative with respect to β, the score equation can be expressed as

where  and

The term Q(G; β) can be viewed as a conditional probability of genotype configuration G,
conditional on the diseased subjects and the value of β, so that the score equation can be
viewed as a difference between the observed count of minor alleles among the diseased
subjects and an expected value, μ(β). Similarly, the observed information, based on the
negative second derivative, can be shown to be

a conditional variance of the count of minor alleles among the diseased subjects.

An interesting point about the retrospective likelihood in expression (1) is that it is
analogous to the likelihood for matched case-control studies, or to the Cox proportional
hazards model, which are based on “risk sets.” For the pedigree retrospective likelihood, the
risk set is the set of all possible genotype configurations among affected pedigree members,
and each item in this risk set is a genotype configuration, weighted by its probability. In
contrast, risk sets for matched case-control studies or the Cox proportional hazards model
contain “at risk” subjects, typically with equal weights (if no adjusting covariates are in the
model).

MULTIPLE GENETIC VARIANTS
When modeling multiple measured genetic variants, we show that if the variants are
independently distributed in the population (i.e., no gametic phase disequilibrium) and in
families (i.e., no linkage), and if the effects of the variants are multiplicative on disease RR
(i.e., no gene-gene interactions on the RR), then the retrospective likelihood factors into
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independent parts. Under these conditions, the genetic variants can be modeled
independently from each other.

To see how the likelihood factors for two genetic variants under our assumptions, note that
P(G1, G2) = P(G1)P(G2) and r(G1, G2) = r(G1)r(G2). Substituting these factored terms into
the retrospective likelihood implies

illustrating that the likelihood factors into retrospective likelihoods for each genetic variant.

When disease risk is small for all genotypes, such that the logistic model for disease
probability closely approximates exp(α + βx), where α is the baseline intercept, this type of
factoring also applies to polygenic background. When modeling the absolute phenotype
probabilities, such as in segregation analyses or linkage analyses, it is common to include
polygenic background to account for residual correlations among family members. This is
achieved by polygenic terms, which we denote B for a vector of variables for pedigree
members. It is typically assumed that B has a multivariate normal density function, f(B),

with mean zero and covariance matrix , where Σ is twice the kinship coefficient
matrix. An element of the kinship matrix is the probability that randomly chosen alleles
from each of two persons are identical by descent. If the effects of a measured variant and
the latent polygenic background are independent, both in population distribution and effects
on the RR, then the retrospective likelihood factors as

and the bracketed multivariate integral cancels. This cancellation is possible because of the
assumed independence of the gene considered and the polygenic component. In fact, this
type of cancellation occurs for any other independent latent variable, for example shared
environmental risk factors.

This implies that residual correlations due to background polygenic effects within pedigrees
can be ignored in the retrospective likelihood when the probability of disease is small for all
genotypes.

When disease is not rare, the baseline risk does not cancel in the retrospective likelihood, so
we need to consider a baseline risk parameter that can vary over pedigrees, such that some
pedigrees might have exceptionally high risk of disease due to shared unmeasured risk
factors (genetic or environmental), while others have much lower disease risk. Assuming a
logistic model for the probability of disease, given genotype g and random familial baseline
risk a, the logistic probability is P(yi = 1|gi, a) = eα+a+βxi/[1 + eα+a+βxi]. We assume that the
familial baseline risk has a normal distribution, a ~ N(0, σ2). To express the retrospective
likelihood in terms of RRs, consider the pedigree RR function that considers the joint
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probability of disease for all diseased pedigree members, given their observed genotypes,
divided by their joint probability when their genotypes are all set to the baseline genotype,

This RR function assumes that affected pedigree members are independent given their
observed genotypes and the pedigree-specific baseline parameter, a, and integrates out the
random baseline risk. With this RR function, the retrospective likelihood can now be
expressed as

(2)

Note that when the disease is rare, such that P(yi = 1|gi, a) ≈ eα+a+βxi, the term eβxD factors
out of the function R(G), and the integrals in the numerator and denominator cancel, so that
R(G) ≈ eβxD. This is the same as the RR function in expression (1) based on homogeneity of
baseline risk, implying that heterogeneity in disease risk across pedigrees has little effect on
rare diseases. It is important to recognize that the assumption of rare disease applies to all
levels of a measured genotype, not just rare in the population. Hence, the impact of
heterogeneity is likely to be relatively small when a disease is not common in the general
population and penetrance for different genotypes is not large. It is difficult, however, to
speculate how “rare” a disease must be to ignore potential biases from heterogeneity in risk
across pedigrees.

COMPUTING THE RETROSPECTIVE LIKELIHOOD
To compute the maximum likelihood estimate of β, we consider two different strategies.
First, a line-search can be used, requiring calculation of the lnlike for a range of β values.
The Elston-Stewart “peeling” algorithm, an efficient recursive method for pedigrees, can be
used for this purpose. The ideas of this approach have been described in the linkage analysis
context as a maximum lod score [Hodge and Elston, 1994]. Details of how this can be
implemented with the linkage routine mlink in the LINKAGE package are described in
Appendix. This approach, however, is not as rapid as the NR method, and does not give
pedigree-specific score statistics that we desire for pedigree diagnostics.

Our second approach is based on the NR iterative method. Starting with an initial value of β,
the kth iterate is updated according to βk+1 = βk U.(βk)/I.(βk), where the dot subscript denotes
the sum over all pedigrees. To quicken computations, one could store the prior joint
genotype probabilities, P(G). For n pedigree members and a SNP with three genotype
categories, there are 3n genotype configurations. When performing an “affecteds only”
retrospective likelihood, the number of stored genotype configurations can be reduced to
3nd, where nd is the number of affecteds in a pedigree. In this case, the joint genotype
probability for the affecteds can be calculated by summing over the unaffecteds, P(GD) =
ΣGU P(GD, GU). Furthermore, for the log-additive model, the sufficient statistic is xD, which
ranges over [0, …, 2nd]. So, the required stored configurations can be further reduced by
storing only x and its prior probability, P(x) = ΣG I[xD = x]P(GD), where the indicator
function I[xD = x] has values of 1 or 0. The challenge of computing P(x), with the need to
consider all possible genotype configurations, can be achieved by Monte Carlo
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“integration.” That is, by randomly assigning alleles to founders based on allele frequencies,
and then randomly “gene-dropping” to non-founders and their descendants, a specific
genotype configuration can be randomly created, and then mapped to an x value. Repeating
this process a large number of times provides a simulation-based method to estimate P(x).

To fit models that allow baseline risks for a common disease to vary over pedigrees, we
need to account for the population disease prevalence. Using prostate cancer as an example,
we assumed a normally distributed pedigree-specific risk parameter, we fixed β to the
estimate found assuming no heterogeneity, fixed prostate cancer prevalence to the US
lifetime risk of 0.17, and performed a line-search for σ2 that maximized the random-effects
retrospective likelihood in expression (2). Integrals were numerically evaluated. If σ̂2 ≠0, we
fixed σ2 to this new estimate, fixed prevalence, and updated the estimate of β. We fixed
disease prevalence because we restricted to only affecteds, and hence there is no information
to estimate the fixed-effect of the baseline disease risk, α.

COMPOSITE LIKELIHOOD
As an alternative to the full retrospective likelihood, we were motivated by the publication
of Meijers-Heijboer et al. [2002] to use a composite likelihood. Meijers-Heijboer et al.
considered a study design that genotyped one diseased index case per pedigree, and if the
index case carried a rare putative high-risk variant, then the remaining affected relatives
were genotyped. Their model for genotype RR assumed a dominant effect, and so the RR
was for carriers vs. non-carriers. But, because the variant was rare, carriers were assumed to
be heterozygous. Their approach considered the probability that a secondary diseased
subject carried the variant, conditional on the index diseased subject carrying the variant,
P(g2|g1, y1 = 1, y2 = 1). Because the variant is rare, it is assumed that it enters the pedigree
through a single founder. In this situation, the probability can be expressed in terms of a RR
parameter, r, and the degree of relationship (p) between the index and secondary cases,

For examples, p = 1 for full sibs; p = 3 for first-degree cousins. Meijers-Heijboer et al. then
combined these probabilities for all pairs of the secondary cases with the index case to create
a composite likelihood approach to test the null hypothesis of random segregation (r = 1),
and used a robust variance to account for dependence among relatives.

Our situation is slightly different, because we want to allow for a common allele, and we do
not start with a single index case genotyped. It is important, however, to recognize that if the
study design genotypes relatives conditional on the genotype of an index case, then the
retrospective likelihood should condition on the genotype of the index case to avoid bias
[Carayol and Bonaiti-Pellie, 2004]. Our approach is similar to that of Meijers-Heijboer et al.,
but we use the joint probability for pairs of subjects (instead of the conditional likelihood
used by Meijers-Heijboer et al.), and we allow for a common variant. To achieve this, we
use the likelihood from expression (1), but only for a pair of subjects,

(3)
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For a pair of subjects, P(g1, g2) is easily computed by the “ITO” method [Geppert and
Koller, 1938; Li and Sacks, 1954]. This method is based on arrays of conditional
probabilities to “transition” between genotypes of members of a relative pair. By
conditioning on identity-by-descent (ibd) of the genes of two relatives, the ITO matrices
give a method to compute P(g2|g1, ibd). The I matrix is for when two relatives share two
genes ibd; T matrix for 1 gene ibd; O matrix for zero genes ibd. Hence, the joint probability
can be expressed as

These ITO terms depend only on allele frequencies, and P(ibd) depends only on the
relationships among pedigree members [Lange, 2002; Thompson, 1986]. By computing
expression (3) for all possible pairs of affected subjects in a pedigree, and combining into a
composite likelihood, the NR method described above can be used to estimate the mle of β,
and a variance estimator can be found by a sandwich variance estimator, Var(β̂) =

I−1(β̂)VrI−1(β̂). The robust variance is , where summation is over pedigrees and
Ui· is the sum of scores over all possible pairs within the ith pedigree.

SIMULATIONS
To evaluate the statistical properties of the retrospective likelihood and the composite
likelihood approximation when there is no heterogeneity in baseline disease risk, we
simulated two types of pedigree structures. The first type had four affected sibs with parents
of unknown affection status. The second type also had four affected subjects, but these
comprised two pairs of affected siblings—two pairs connected as cousins. The parents and
grandparents had unknown affection status. For each type of pedigree, we simulated 1,000
sets of data, each with 100 pedigrees, assuming a minor allele frequency (MAF) of 0.2 and a
log-additive per-allele β= 0.405 (i.e., RR of 1.5).

Figure 1A illustrates that the full retrospective likelihood provided consistent estimates of
the log RR (pedigree with four full sibs illustrated; pedigrees with pairs of cousins showed
similar results). In contrast, panels B and C of Figure 1 illustrate that our composite
likelihood generates severely biased estimates, and much larger variances of the coefficients
than the full retrospective likelihood. To explore the cause of this bias, we simulated 500
pedigrees, each with four affected sibs, with a MAF of 0.2 and a log-additive per-allele β =
0.405. We then stepped-down from the complete retrospective likelihood with all four
affected sibs, to a retrospective likelihood with three, two, and one affected sibs. For these
calculations, we did not create a composite likelihood from all possible sets within a
pedigree, but rather just evaluated the likelihood using all four affected sibs, the first three
affected sibs (eliminating the fourth); the first two (eliminating the last two); and finally
only one subject per pedigree. That is, each of these likelihoods represents a naïve marginal
for four, three, two, and one affected subject per pedigree. The results from maximizing this
series of likelihoods are illustrated in Figure 2. It can be seen that the lnlike equations are
maximized at increasingly biased values of β as the number of affected subjects is reduced
in the retrospective likelihood.

The cause of this bias is that these “marginal” likelihoods are not correct. They condition
only on a subset of affected members per pedigree, not the complete set of affected subjects
required to achieve robust adjustment for ascertainment. To see this, consider a pedigree
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with three affecteds. The correct marginal likelihood for subjects 1 and 2 requires
summation of the full likelihood over subject 3,

This is not the same as what we (and others) have used for the composite likelihood, P(g1,
g2|y1 = 1, y2 = 1). Hence, the simplistic approach we took does not correctly adjust for
ascertainment, leading to the observed bias. To construct a correct composite likelihood
from correct marginal likelihoods, one would need to sum over the appropriate subjects after
evaluating the full retrospective likelihood, negating any computational benefits of the
composite approach. The main conceptual, and computational, challenge is the conditioning
on the phenotypes of all pedigree members.

For the calculations of both the full retrospective likelihood and the composite likelihood,
we assumed that the SNP allele frequencies were known. This is reasonable when prior
studies are based on large numbers of control subjects. We did, however, attempt to jointly
estimate β and the MAF, p. Because the mle’s of these parameters can be highly negatively
correlated, joint estimation can be problematic unless sample sizes are quite large. For this
reason, we advocate using controls from a representative population to determine allele
frequencies, which are then fixed in the retrospective likelihood when estimating β.

RELATIVE EFFICIENCY OF AFFECTEDS ONLY
We have avoided modeling the contributions from unaffected subjects for RR estimation for
several reasons. First, modeling the contributions from unaffected subjects requires more
assumptions about the baseline risk of disease (e.g., the intercept in logistic regression), and
because highly ascertained pedigrees for linkage studies tend to have many more affected
than unaffected subjects, this might require using models that assume a known population
prevalence of disease. Yet, we have used the genotypes of the unaffected subjects to
constrain the possible genotype configurations of the affected subjects in a pedigree.
Nonetheless, this raises questions about the impact on statistical efficiency when ignoring
the phenotypes of unaffected subjects. To evaluate this, we derived the relative efficiency of
the RR parameter for when unaffecteds are excluded vs. included in the model.

Starting with the retrospective likelihood in expression (2), Fisher’s information for the log
RR, β, can be shown to be

where R(G) is the pedigree RR function, the first derivative is R(G)′ = ∂R(G)/∂β, and E
denotes expectation. To take expectations, we used the likelihood to compute the
probabilities of the different genotype configurations,

Schaid et al. Page 10

Genet Epidemiol. Author manuscript; available in PMC 2010 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fisher’s information can be interpreted as the variance of the score R(G)′/R(G). For relative
efficiency calculations, we assumed phenotypes of pedigree members are independent,
conditional on the measured genotype,

To model P(yi|gi, ), we used logistic regression with an assumed population prevalence, so
that the intercept β0 is determined once we specify β and the distribution of genotypes (i.e.,
determined by population allele frequencies for founders of pedigrees).

For a retrospective likelihood based only on affecteds, R(G) = exp{βx}, where x is the sum
of the minor alleles among affecteds that have genotype configuration G. It is easy to show
that R(G)′/R(G) = x.

For a retrospective likelihood based on both affecteds and unaffecteds,

where the product is over all genotypes in configuration G, and xi is the count of minor
alleles for subject i. Similar to derivations for logistic regression, it can be shown that R(G)′/
R(G) = Σxi[yi − P(yi = 1|xi)], where P(y = 1|xi) = eβ0+βxi/(1 + eβ0+βxi).

Based on the above formulations, we computed the relative efficiency of using phenotypes
of only affecteds vs. using phenotypes of both affecteds and unaffecteds, for the two types of
pedigrees given in Figure 3. The results in Figure 4 show that the relative efficiency was
greater than one (implying affecteds-only analysis is more efficient than analyzing both
affecteds and unaffecteds) for both types of pedigrees, for minor allele frequencies ranging
0.05–0.5, for prevalence from 0.01–0.2, and for odds ratios (ORs) of 1.5 and 2.5. This
somewhat counterintuitive finding might result from the fact that unaffecteds contribute
little information for RR when penetrance is low (e.g., small ORs), and the scores from
affected and unaffected pedigree members are negatively correlated.

APPLICATIONS TO PROSTATE CANCER PEDIGREES
The Mayo Clinic study of the genetic basis of prostate cancer is based on 169 pedigrees
collected for linkage analyses, with 2–6 men with prostate cancer per pedigree, giving a total
of 469 affected genotyped men in the pedigrees. Also available is a series of 661 hospital-
based cases (a group with sporadic prostate cancer and a group with aggressive disease
defined by Gleason grade score >7), and 518 population-based controls (for a detailed
description of these samples, see [Cunningham et al., 2007]). The controls were used to
estimate SNP allele frequencies, and the pedigrees were used in the retrospective likelihood
method to estimate per-allele RRs for 28 SNPs previously reported to be associated with
prostate cancer, generally in case-control studies. For comparison, the per-allele ORs from
the case-control samples were calculated to contrast with results from the retrospective
likelihood.

The results from fitting the pedigree retrospective likelihoods are presented in Table I, and
graphically illustrated in Figure 5. The estimated per-allele RRs was largest for SNPs on
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chromosome 8 (RR = 1.85, with MAF = 0.02 for SNP rs698356), similar to prior published
reports for SNPs on chromosome 8 [Thomas et al., 2008;Yeager et al., 2007]. The likelihood
ratio P-values, illustrated in Figure 5, show multiple statistically significant associations for
SNPs on chromosomes 8, 10, 11, and X. Among these 28 SNPs, only four showed evidence
of pedigree heterogeneity in baseline risks, with σ̂2 ranging 0.5–1.0. After accounting for
this heterogeneity, the SNP RR estimates changed only slightly from the estimates that
assumed homogeneity in baseline risks (see black squares in Fig. 5).

To compare the per-allele RRs estimated by the pedigree retrospective likelihood with odds-
ratio estimates obtained by case-control studies, we compared our RR estimates with the
per-allele OR estimated by two types of cases: aggressive and sporadic, each contrasted with
population-based controls. Although there was a slight trend for the ORs from the case-
control samples to be slightly larger than those estimated by the retrospective likelihood,
illustrated in Figure 6, the 95% confidence intervals for the case-control ORs suggest that
much of this is within sampling variation of the parameter estimates. Furthermore, the OR—
an approximation to the RR—is greater than the RR when disease is not rare. For example,
for a binary exposure variable, if P+ and P− denote the probability of disease among
exposed and non-exposed subjects, respectively, then the relative risk is RR = P+/P−, in
contrast to the odds ratio, OR = RR(1 − P−)/(1 − P+). Hence, when RR>1, OR>RR. Overall,
our results suggest that the effect-size estimates are generally quite close between the highly
ascertained pedigrees and the case-control samples.

An advantage of using the NR method to compute the RR parameters for the retrospective
likelihood is that the score equations can be used to evaluate the contribution of each
pedigree to the estimation procedure. We create a standardized score per pedigree,

Because these U scores are evaluated at the mle, they are expected to cluster about zero.
Example plots are illustrated in Figure 7. The top panel is for a SNP on chromosome 8 that
had the largest RR. This SNP, however, had a small MAF of 0.02. The top panel illustrates

that many pedigrees had no risk alleles ( , with an allele count of “0” in the panel).
The standardized U scores above zero tend to be scattered across the number of risk alleles
per pedigree, suggesting no dramatic outliers. The lower panel, for a more common risk
allele (MAF = 0.30, with RR 1.25), also illustrates that pedigrees with a “0” count of risk
alleles have negative U scores, but other pedigrees with risk-allele counts of 1–4 also have
U-scores hovering around 0. Overall, there does not appear to be dramatic outlier pedigrees
for this SNP.

DISCUSSION
The benefits of using a retrospective likelihood for highly ascertained pedigrees, such as
those collected for pedigree linkage analyses, are well known [Hodge and Elston, 1994;
Kraft and Thomas, 2000; Whittemore, 1996], yet often ignored when evaluating the role of
common SNPs for high-risk pedigrees. It is important to recognize that using ascertained
pedigrees for association analyses per se does not cause a validity problem, yet adjusting for
ascertainment is necessary, in contrast to a common practice of simply using one or more
affected pedigree members in traditional case-control studies. It is also important to
recognize that our proposed methods to estimate RRs are based on comparing the genotype
configuration among affected pedigree members to that expected when alleles are randomly
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segregating in pedigrees, and founder genotypes are expected to fit Hardy-Weinberg
proportions. If pedigrees come from different populations with differing allele frequencies,
or even if the founders of a single pedigree originate from different populations with
differing allele frequencies, one could in theory allow for this heterogeneity by using
pedigree-specific or founder-specific allele frequencies. In practice, however, this level of
detailed information is rarely known. Furthermore, departure from Mendelian segregation,
such as by transmission ratio distortion caused by meiotic drive (i.e., non-random allele
segregation at gamete formation) or selective survival, could distort Mendelian segregation,
and hence bias RRs. Hence, caution is warranted when interpreting retrospective likelihood
RRs; it certainly makes sense to evaluate whether pedigrees originate from different ethnic
backgrounds, or whether the measured SNPs are in genes, or have gametic association with
genes, that are known to influence survival.

We present novel ways to compute the genotype RR parameters, using a combination of
gene-dropping and the Newton-Raphson iterative method. Gene-dropping, a Monte-Carlo
method to evaluate a multivariate summation, can be advantageous for large pedigrees for
which exact computations would take too much time. One needs to be careful, however, that
the sample space of genotype configurations is well covered. For example, when a variant is
rare, there is a very small prior probability that multiple pedigree members will be
homozygous for the rare variant. Yet, under the alternative that the RR is large, this might
not be a rare event. If the number of gene drops is too small, some prior probabilities can be
estimated as zero, which means that their corresponding configurations would be treated as
impossible, even under the alternative of large risk. Hence, a simple diagnostic of too few
gene drops is finding a prior probability estimated as zero. Fortunately, when using the log-
additive model for RRs, the sufficient statistic is x, the total count of minor alleles in a
pedigree, and many genotype configurations are summed to compute the prior probability of
x. So, using this x is also a “smoothing” over the genotype configuration prior probabilities.
Perhaps one way to evaluate whether a sufficient number of gene drops was performed is to
be sure that a minimum number (e.g., 5) of simulated counts are observed for each level of
x.

An alternative approach to improve gene-dropping is importance sampling. Importance
sampling is a technique that samples from a distribution other than the target distribution, in
order to bias the sampling of “important” configurations, and then corrects this biased
sampling by importance weights [Liu, 2001]. For our situation, importance sampling could
use a larger MAF than observed, and even a specified magnitude of RR, in order to bias the
sampling of the rare configurations, recognizing that the importance weights would be used
to weight the genotype configurations to obtain unbiased prior probabilities of the genotype
configurations. Importance sampling provides prior probability estimates with smaller
variance than the usual gene-dropping estimates. This approach is worthy of further
investigation.

Along these lines, a novel type of importance sampling that adjusts for ascertainment was
proposed by Clayton [2003]. Instead of conditioning on the phenotypes of all pedigree
members, one could improve the statistical efficiency of the estimated parameters by
conditioning on the ascertainment process. Because this would require integration over all
possible pedigree configurations given the ascertainment process, Clayton suggested
randomly sampling pseudo pedigrees. The actual pedigree and its matched set of pseudo
pedigrees are then used to create a conditional likelihood score equation, much like the score
equation we illustrate for the retrospective likelihood. Because Clayton’s method conditions
on less information—the ascertainment process—than the retrospective likelihood, it has the
potential to provide parameter estimates with smaller variance. Further evaluation of the
strengths and weaknesses of conditioning on an ill-defined ascertainment process, vs.
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conditioning on phenotypes of all pedigree members, is warranted, particularly, to examine
trade-offs of bias and efficiency.

Advantages of computing the score equations for the NR iterations are that variance
estimates of the parameters are available and pedigree-specific scores, a by-product of the
computations, are useful to evaluate the contribution of each pedigree to the resulting
parameter estimates. For our computations with affecteds-only, we found that jointly
estimating the MAF and the RR parameter lead to collinearity between these parameters,
suggesting that more stable RR estimates can be obtained when SNP allele frequencies can
be obtained from representative populations. For large-scale GWA studies, particularly
among Caucasians, reliable allele frequencies are often available. Nonetheless, sensitivity
analyses can be worthwhile, recognizing that grossly misspecified SNP allele frequencies
can bias RR estimates. This concern might be greatest when analyzing pedigrees that have
ethnic ancestry that is poorly studied, or when analyzing admixed pedigrees. Further
research to evaluate the impact of admixture in pedigrees and poorly specified SNP allele
frequencies is warranted.

We evaluated the impact of assuming that affected pedigree members are independent,
conditional on their measured SNP genotype, by fitting a model that assumes a random
pedigree-specific baseline risk parameter. This random baseline captures heterogeneity in
disease risk that might be caused by shared environmental or other genetic risk factors.
Among the 28 measured SNPs, only four were found to have non-zero variance estimates
for the random baseline; accounting for these random baselines did not substantially change
the estimated RRs. Given that multiple SNPs have been identified that increase the risk for
prostate cancer, it might be surprising that we did not detect larger effects of heterogeneity
when analyzing only one SNP at a time. Kraft and Thomas [2000] showed that the RR
estimates from the retrospective likelihood can be biased toward the null when there is
heterogeneity in the baseline risks. However, their findings suggested that the bias is small
(1–2%) when the baseline heterogeneity is not very large, which might occur for our
prostate cancer pedigrees because the RRs associated with each SNP are generally small, on
the order of 1.1–1.5. Furthermore, they focused primarily on case-control sib pairs. It is not
clear how much of their conclusions can be extrapolated to analyses based on larger
pedigrees with only affected subjects. Without unaffected subjects, there is little information
on baseline risk, and so bias from heterogeneity in baseline risk might be more difficult to
detect.

We also evaluated a marginal approach, based on pairs of affected relatives. However, when
conditioning only on the disease status of a pair of relatives, and not the disease status of all
pedigree members, the resulting pseudo-composite likelihood leads to biased genotype RRs
[although it remains a valid approach to test the null hypothesis of random segregation of
alleles, see Meijers-Heijboer et al., 2002]. As illustrated in Figure 2, analyzing a single case
from a high-risk family, and ignoring the disease status of the other family members, leads
to the greatest bias. Although selecting cases because of a strong family history of disease
can provide greater power to detect genetic associations than a random sample of cases
[Risch, 2000; Schaid and Rowland, 1998; Teng and Risch, 1999], this “size-biased”
sampling also leads to over-estimates of the genetic risk if the ascertainment process is not
considered. Unfortunately, this type of sampling is frequently used in reported case-control
studies, without adjustment for ascertainment. When sampling multiple affected subjects per
pedigree, the retrospective likelihood provides a way to adjust for ascertainment.

Our applications of the retrospective likelihood to the Mayo Clinic pedigrees ascertained for
genetic linkage studies of prostate cancer showed that the SNP RR estimates are similar to
what has been reported in the literature for case-control studies, and are similar to our own
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case-control study. This finding suggests that our high-risk pedigrees are not genetically
different, in terms SNPs reported to be associated with prostate cancer, from population-
based cases. Although one could formally test whether pedigree-based RRs differ
statistically from case-control ORs, such as by a likelihood ratio test, plotting point estimates
with their confidence intervals makes the comparisons easy to view (see Fig. 6). Further
development of the retrospective likelihood to model interactions among SNPs on the RRs,
and accounting for linkage and linkage disequilibrium when modeling multiple SNPs in
narrow genomic regions, is under development. It is important to recognize that
environmental risk factors cancel in the retrospective likelihood when genes and
environmental risk factors are independently distributed in the population, and there is no
gene-environmental interaction on the RRs. Further developments to model gene-
environment interactions in the retrospective likelihood are warranted for some complex
diseases, although environmental risk factors for prostate cancer are weak and have been
difficult to replicate.

Acknowledgments
This work was supported by the US Public Health Service, National Institutes of Health, contract grant numbers
GM065450, GM67768 (D. J. S.), CA72818 and CA15083 (S. N. T.), and CA 89600 (D. J. S., S. N. T., S. K. M.).

Contract grant sponsors: US Public Health Service; National Institutes of Health; Contract grant numbers:
GM065450; GM67768; CA72818; CA15083; CA89600.

References
Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using

restriction fragment length polymorphisms. Am J Hum Genet 1980;32:314–331. [PubMed:
6247908]

Carayol J, Bonaiti-Pellie C. Estimating penetrance from family data using a retrospective likelihood
when ascertainment depends on genotype and age of onset. Genet Epidemiol 2004;27:109–117.
[PubMed: 15305327]

Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G, Hirschhorn JN, Abecasis
G, Altshuler D, Bailey-Wilson JE, et al. Replicating genotype-phenotype associations. Nature
2007;447:655–660. [PubMed: 17554299]

Chatterjee N, Wacholder S. A marginal likelihood approach for estimating penetrance from kin-cohort
designs. Biometrics 2001;57:245–252. [PubMed: 11252606]

Chatterjee N, Shih J, Hartge P, Brody L, Tucker M, Wacholder S. Association and aggregation
analysis using kin-cohort designs with applications to genotype and family history data from the
Washington Ashkenazi Study. Genet Epidemiol 2001;21:123–138. [PubMed: 11507721]

Chatterjee N, Hartge P, Wacholder S. Adjustment for competing risk in kin-cohort estimation. Genet
Epidemiol 2003;25:303–313. [PubMed: 14639700]

Clayton D. Conditional likelihood inference under complex ascertainment using data augmentation.
Biometrika 2003;90:976–981.

Clerget-Darpoux F, Elston RC. Are linkage analysis and the collection of family data dead? Prospects
for family studies in the age of genome-wide association. Hum Hered 2007;64:91–96. [PubMed:
17476108]

Cunningham JM, Hebbring SJ, McDonnell SK, Cicek MS, Christensen GB, Wang L, Jacobsen SJ,
Cerhan JR, Blute ML, Schaid DJ, et al. Evaluation of genetic variations in the androgen and
estrogen metabolic pathways as risk factors for sporadic and familial prostate cancer. Cancer
Epidemiol Biomarkers Prev 2007;16:969–978. [PubMed: 17507624]

Gail MH. Estimation and interpretation of models of absolute risk from epidemiologic data, including
family-based studies. Lifetime Data Anal 2008;14:18–36. [PubMed: 18058231]

Gail MH, Pee D, Benichou J, Carroll R. Designing studies to estimate the penetrance of an identified
autosomal dominant mutation: cohort, case-control, and genotyped-proband designs. Genet
Epidemiol 1999a;16:15–39. [PubMed: 9915565]

Schaid et al. Page 15

Genet Epidemiol. Author manuscript; available in PMC 2010 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Gail MH, Pee D, Carroll R. Kin-cohort designs for gene characterization. J Natl Cancer Inst Monogr
1999b;26:55–60. [PubMed: 10854487]

Geppert, S.; Koller, S. Erbmathematik; Theorie der Vererbung in Bevölkerung und Sippe. Meyer, Qu,
editor. Leipzig; 1938.

Hodge SE, Elston RC. Lods, wrods, and mods: the interpretation of lod scores calculated under
different models. Genet Epidemiol 1994;11:329–342. [PubMed: 7813895]

Kraft P, Thomas D. Bias and efficiency in family-based gene-characterization studies: conditional,
prospective, retrospective, and joint likelihoods. Am J Hum Genet 2000;66:1119–1131. [PubMed:
10712222]

Lange, K. Mathematical and Statistical Methods for Genetic Analysis. New York: Springer; 2002.
Li C, Sacks L. The derivation of joint distribution and correlation between relatives by the use of

stochastic matrices. Biometrics 1954;10:347–360.
Lindsay BG. Composite likelihood methods. Contemp Math 1988;80:221–239.
Liu, J. Monte Carlo Strategies in Scientific Computing. New York: Springer-Verlag; 2001.
Matise TC, Chen F, Chen W, De La Vega FM, Hansen M, He C, Hyland FC, Kennedy GC, Kong X,

Murray SS, et al. A second-generation combined linkage physical map of the human genome.
Genome Res 2007;17:1783–1786. [PubMed: 17989245]

Meijers-Heijboer H, van den Ouweland A, Klijn J, Wasielewski M, de Snoo A, Oldenburg R,
Hollestelle A, Houben M, Crepin E, van Veghel-Plandsoen M, et al. Low-penetrance susceptibility
to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat
Genet 2002;31:55–59. Epub Apr 22, 2002. [PubMed: 11967536]

Millikan RC, Hummer AJ, Wolff MS, Hishida A, Begg CB. HER2 codon 655 polymorphism and
breast cancer: results from kin-cohort and case-control analyses. Breast Cancer Res Treat
2005;89:309–312. [PubMed: 15754131]

Moore DF, Chatterjee N, Pee D, Gail MH. Pseudo-likelihood estimates of the cumulative risk of an
autosomal dominant disease from a kin-cohort study. Genet Epidemiol 2001;20:210–227.
[PubMed: 11180447]

Pearson TA, Manolio TA. How to interpret a genome-wide association study. J Am Med Assoc
2008;299:1335–1344.

Rabinowitz D. A pseudolikelihood approach to correcting for ascertainment bias in family studies. Am
J Hum Genet 1996;59:726–730. [PubMed: 8751874]

Risch HA, McLaughlin JR, Cole DE, Rosen B, Bradley L, Fan I, Tang J, Li S, Zhang S, Shaw PA, et
al. Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort
study in Ontario, Canada. J Natl Cancer Inst 2006;98:1694–1706. [PubMed: 17148771]

Risch N. Searching for genetic determinants in the new millennium. Nature 2000;405:847–856.
[PubMed: 10866211]

Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science
1996;273:1516–1517. [PubMed: 8801636]

Saunders CL, Begg CB. Kin-cohort evaluation of relative risks of genetic variants. Genet Epidemiol
2003;24:220–229. [PubMed: 12652526]

Schaid DJ, Rowland CM. Use of parents, sibs, and unrelated controls for detection of associations
between genetic markers and disease. Am J Hum Genet 1998;63:1492–1506. [PubMed: 9792877]

Sigurdson AJ, Hauptmann M, Chatterjee N, Alexander BH, Doody MM, Rutter JL, Struewing JP. Kin-
cohort estimates for familial breast cancer risk in relation to variants in DNA base excision repair,
BRCA1 interacting and growth factor genes. BMC Cancer 2004;4:9. [PubMed: 15113441]

Teng J, Risch N. The relative power of family-based and case-control designs for linkage
disequilibrium studies of complex diseases. II. Individual genotyping. Genome Res 1999;9:234–
241. [PubMed: 10077529]

Thomas G, Jacobs KB, Yeager M, Kraft P, Wacholder S, Orr N, Yu K, Chatterjee N, Welch R,
Hutchinson A, et al. Multiple loci identified in a genome-wide association study of prostate
cancer. Nat Genet 2008;40:310–315. [PubMed: 18264096]

Thompson, E. Pedigree Analysis in Human Genetics. Baltimore: The Johns Hopkins University Press;
1986.

Schaid et al. Page 16

Genet Epidemiol. Author manuscript; available in PMC 2010 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Varin C. On composite marginal likelihoods. AStA Adv in Stat Anal 2008;92:1–28.
Wacholder S, Hartge P, Struewing JP, Pee D, McAdams M, Brody L, Tucker M. The kin-cohort study

for estimating penetrance. Am Journal of Epidemiol 1998;148:623–630. [PubMed: 9778168]
Wang Y, Clark LN, Louis ED, Mejia-Santana H, Harris J, Cote LJ, Waters C, Andrews H, Ford B,

Frucht S, et al. Risk of Parkinson disease in carriers of parkin mutations: estimation using the kin-
cohort method. Arch Neurol 2008;65:467–474. [PubMed: 18413468]

Webb EL, Rudd MF, Houlston RS. Case-control, kin-cohort and meta-analyses provide no support for
STK15 F31I as a low penetrance colorectal cancer allele. Br J Cancer 2006a;95:1047–1049.
[PubMed: 17003782]

Webb EL, Rudd MF, Houlston RS. Case-control, kin-cohort and meta-analyses provide no support for
STK15 F31I as a low penetrance colorectal cancer allele. Br J Cancer 2006b;95:1047–1049.
[PubMed: 17003782]

Webb EL, Rudd MF, Sellick GS, El Galta R, Bethke L, Wood W, Fletcher O, Penegar S, Withey L,
Qureshi M, et al. Search for low penetrance alleles for colorectal cancer through a scan of 1467
non-synonymous SNPs in 2575 cases and 2707 controls with validation by kin-cohort analysis of
14 704 first-degree relatives. Hum Mol Genet 2006c;15:3263–3271. [PubMed: 17000706]

Whittemore AS. Genome scanning for linkage: an overview. Am J Hum Genet 1996;59:704–716.
[PubMed: 8751872]

Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S, Minichiello MJ, Fearnhead P, Yu K,
Chatterjee N, Wang Z, Welch R, Staats BJ, Calle EE, Feigelson HS, Thun MJ, Rodriguez C,
Albanes D, Virtamo J, Weinstein S, Schumacher FR, Giovannucci E, Willett WC, Cancel-Tassin
G, Cussenot O, Valeri A, Andriole GL, Gelmann EP, Tucker M, Gerhard DS, Fraumeni JF,
Hoover R, Hunter DJ, Chanock SJ, Thomas G. Genome-wide association study of prostate cancer
identifies a second risk locus at 8q24. Nat Genet 2007;39:645–649. [PubMed: 17401363]

APPENDIX: RETROSPECTIVE MLE BY LINE-SEARCH WITH MLINK
The theoretical derivation of the validity of the MOD score approach is provided by Hodge
and Elston [1994]. They show that the maximized retrospective likelihood is a MOD score,
which is the ratio of a likelihood under the alternative hypothesis (in our case, modeling a
causal locus as complete linkage disequilibrium between a measured SNP allele and an
underlying disease allele), and a likelihood under the null hypothesis of no linkage and no
linkage disequilibrium. This means that mlink must be run twice. Step 1 below illustrates the
mlink datafile for calculating the log-likelihood for a causal locus, and Step 2 for the
calculating the log-likelihood for the null hypothesis. When using affecteds only, affecteds
are coded with affection = 2, and all others with affection = 0. In this case, the absolute
penetrances are not relevant, only the ratio of penetrances. For this reason, the penetrance
for the N/N genotype is arbitrary; we set it to 0.1. The examples below are illustrated for: (1)
a SNP risk allele with frequency of 0.2; (2) complete LD of SNP allele 2 with disease-locus
allele D; (3) a per-allele RR of 2. The mlink output from Step 1 gives lnlikecausal, and from
Step 2, lnlikenull. The retrospective log-likelihood is computed as lnlikeretrospective =
lnlikecausal − lnlikenull. To determine the maximum likelihood estimator of the genotype RR,
these two steps must be computed for a range of RRs to determine which value maximizes
lnlikeretrospective.

Step 1: mlink datafile for a causal locus: complete LD of SNP allele 2 with underlying
disease locus allele D, and complete linkage (recombination fraction = 0.0)

2 0 0 5 # No. of loci, risk locus, sexlinked (if 1), program

0 0.0 0.0 1 # Haplotypes for LD

1 2 # Locus order

1 2 # Disease locus with alleles N = normal, D = Disease
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1 # No. of liability classes

0.1 0.2 0.4 # relative penetrances for N/N (arbitrary), N/D (rr = 2), D/D (rr = 4)

3 2 # SNP with alleles 1 (low risk) and 2 (high risk)

0.8 0.0 0.0 0.2 # haplotype freqs for N-1, N-2, D-1, D-2

0 0 # Sex difference, interference (if 1 or 2)

0.0 # Recombination values, complete linkage

1 .5 0.0 # Rec varied, increment, finishing value

Step 2: mlink datafile under null of no LD and no linkage (recombination fraction = 0.5)

2 0 0 5 # No. of loci, risk locus, sexlinked (if 1), program

0 0.0 0.0 0 # No LD

1 2 # Locus order

1 2 # # Disease locus with alleles N = normal, D = Disease

0.8 0.2 # Disease locus allele frequencies

1 # No. of liability classes

0.1 0.2 0.4 # relative penetrances for N/N (arbitrary), N/D (rr = 2), D/D (rr = 4)

3 2 # SNP with alleles 1 (low risk) and 2 (high risk)

0.8 0.2 # SNP allele frequencies

0 0 # Sex difference, interference (if 1 or 2)

0.5 # Recombination values, no linkage

1 0.60000 0.5000 # Rec varied, Increment, Finishing value
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Fig. 1.
(A) Simulated distribution of mle β̂ from the full retrospective likelihood for pedigrees with
four full sibs; simulations centered about the true, β = 0.405. (B) Simulated distribution of
mle β̂ from the composite likelihood for four full sibs and (C) pairs of cousins. Results show
upward bias of naïve composite likelihood over true β = 0.405.
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Fig. 2.
Full retrospective likelihood for simulated data for 4 affecteds sibs, and then “stepped-
down” on the same data to naïve marginals for 3, 2, and 1 affected sibs. The mle β̂, printed
above each marginal likelihood, is shown to be upward biased over the true simulating value
of β = 0.405, with bias increasing as fewer affected subjects are used for an incorrect
marginal likelihood.
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Fig. 3.
Cousin pedigrees used for calculation of relative efficiencies for affecteds-only vs. affecteds
and unaffecteds in retrospective likelihoods.
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Fig. 4.
Relative efficiency of retrospective likelihood for affecteds-only vs. affecteds and
unaffecteds. Relative efficiency on y-axis is larger than 1.0 when affecteds-only is more
efficient than affecteds + unaffecteds for relative risk estimation. MAF = minor allele
frequency; OR = odds ratio per allele; Prevalence = population disease prevalence.
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Fig. 5.
Results from fitting the retrospective likelihood to the Mayo Clinic pedigrees for 28 SNPs
reported to be associated with prostate cancer. The upper panel illustrates the mle of the per-
allele relative risk (eβ̂) and its 95% confidence interval. For four SNPs, the variance of the
baseline risk was estimated to be non-zero; for these four SNPs the mle that accounts for
heterogeneity is depicted as a black square. The lower panel is the −log10 (P-value) from the
likelihood ratio test of the null hypothesis Ho: β = 0.
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Fig. 6.
Contrast of results from fitting the retrospective likelihood for 28 SNPs to the Mayo Clinic
linkage pedigrees vs. case-control samples. All analyses assumed log-additive effects of a
risk-allele, and the broken vertical lines are 95% confidence intervals on the case-control
odds ratio estimates.
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Fig. 7.
Standardized U scores per pedigree, vs. pedigree number, for two SNPs. The numbers in
these figures give the count of the number of risk alleles in each pedigree, and the numbers
are colored to make the numbers clearly distinguishable.

Schaid et al. Page 25

Genet Epidemiol. Author manuscript; available in PMC 2010 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Schaid et al. Page 26

TABLE I

Retrospective likelihood parameters estimates for SNPs reported to be associated with prostate cancer

Chromosome SNP MAF β̂ SE(β ̂)

2 rs721048 0.18 0.12 0.060

3 rs2660753 0.11 0.11 0.073

6 rs9364554 0.27 0.07 0.055

7 rs10486567 0.24 −0.10 0.062

7 rs6465657 0.47 −0.01 0.050

8 rs979200 0.35 −0.06 0.054

8 rs1016343 0.18 0.23 0.057

8 rs13254738 0.30 0.11 0.052

8 rs6983561 0.02 0.61 0.096

8 rs16901979 0.02 0.61 0.096

8 rs6983267 0.49 −0.06 0.050

8 rs7837328 0.43 0.01 0.051

8 rs7000448 0.36 0.10 0.051

8 rs1447295 0.10 0.36 0.062

8 rs4242382 0.10 0.35 0.063

8 rs10090154 0.10 0.37 0.062

8 rs7005795 0.44 −0.01 0.051

9 rs1571801 0.29 −0.10 0.058

10 rs10993994 0.35 0.18 0.051

10 rs4962416 0.28 −0.03 0.057

11 rs10896449 0.51 −0.24 0.051

17 rs11649743 0.22 −0.15 0.067

17 rs4430796 0.52 −0.17 0.051

17 rs3737559 0.09 0.07 0.084

17 rs1799950 0.06 −0.21 0.124

17 rs1859962 0.51 −0.09 0.050

19 rs2735839 0.14 −0.17 0.081

X rs5945619 0.30 0.23 0.073
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