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Although nitrate therapy, used in the treatment of cardiovascular disorders, is frequently associated with side-effects, mainly
headaches, the summaries of product characteristics of nitrate-containing medicines do not report detailed description
of headaches and even do not highlight the possibility of nitrate-induced migraine. Two different types of nitrate-induced
headaches have been described: (i) immediate headaches that develop within the first hour of the application, are mild or
medium severity without characteristic symptoms for migraine, and ease spontaneously; and (ii) delayed, moderate or severe
migraine-type headaches (occurring mainly in subjects with personal or family history of migraine), that develop 3–6 h after
the intake of nitrates, with debilitating, long-lasting symptoms including nausea, vomiting, photo- and/or phono-phobia.
These two types of headaches are remarkably different, not only in their timing and symptoms, but also in the persons who
are at risk. Recent studies provide evidence that the two headache types are caused by different mechanisms: immediate
headaches are connected to vasodilation caused by nitric oxide (NO) release, while migraines are triggered by other actions
such as the release of calcitonin gene-related peptide or glutamate, or changes in ion channel function mediated by cyclic
guanosine monophosphate or S-nitrosylation. Migraines usually need anti-attack medication, such as triptans, but these drugs
are contraindicated in most medical conditions that are treated using nitrates. In conclusion, these data recommend the
correction of summaries of nitrate product characteristics, and also suggest a need to develop new types of anti-migraine drugs,
effective in migraine attacks, that could be used in patients with risk for angina pectoris.
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Nitrate compounds have been used in clinical practice for
decades; their application for angina pectoris started in the
19th century. The first medicines included amyl nitrite
(Brunton, 1867), glycerol trinitrate (nitroglycerin) (Ebright,
1914), erythritol-tetranitrate and penta-erythrol-tetranitrate
(Weitzman, 1953). Other nitrates have also been introduced
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into medicine such as sodium nitroprusside for hypertension
emergency (Page et al., 1955), isosorbide dinitrate (Albert,
1961), isosorbide mononitrate (Abshagen and Sporl-Radun,
1981; Uberbacher et al., 1983) and molsidomine (Jansen
and Klepzig, 1976). Currently their most common indication
is for angina pectoris but nitrates can also be used to
treat hypertensive crisis and occasionally congestive heart
failure (Bussmann and Kaltenbach, 1976; Dupuis, 1994;
Elkayam et al., 2008). The main basic mechanism of action of
nitrates which is beneficial in the above mentioned patho-
logical conditions is to reduce preload and afterload by
vasodilation – vascular smooth muscle relaxation; thus
nitrates decrease the strain on the heart and the cardiac
oxygen demand. Nitrates are believed to exert their vasodila-
tory effect by releasing nitric oxide (NO), also known as
endothelium-derived relaxing factor (Moncada et al., 1988;
Esplugues, 2002).

Unfortunately, adverse effects such as headaches, postural
hypotension and reflex tachycardia are frequently associated
with nitrate therapy, regardless of the means of administra-
tion – be it sublingual, intravenous, oral or even transdermal
(Thadani and Ripley, 2007). As cardiovascular diseases are
very common in the human population and many patients
receive nitrates, side-effects may be encountered by a wide
variety of physicians but predominantly by general practitio-
ners, cardiologists and emergency physicians. Yet detailed
descriptions of the side-effects still do not differentiate
between a common headache (due to vasodilation) and
migraine which is a headache syndrome with specific symp-
toms and time-course that makes it distinctive from a
common headache. Even the most thorough reviews do not
provide a detailed discussion of nitrate-induced migraine
(Thadani and Rodgers, 2006; Thadani and Ripley, 2007). Sur-
prisingly, the possibility of migraine is not noted in the sum-
maries of product characteristics (SmPC) of nitrate-containing
medicinal products either (Table 1.).

A headache often develops after the administration of any
nitrate. Its incidence, according to clinical studies, varies
between 20% and 82% (Thadani and Rodgers, 2006; Elkayam
et al., 2008). Approximately 10% of the exposed patients
cannot tolerate the nitrate therapy because of unbearable
headaches (Thadani and Rodgers, 2006), although it is
unclear whether or not this intolerability is due to migraine.
Usually the headache disappears 1–1.5 h after the administra-
tion of the nitrate and the symptoms do not resemble those of
migraine without aura. However, other patients experience

real migraine attacks several hours after taking the medicine
(Bellantonio et al., 1997; Juhasz et al., 2004).

Our aim is to review the different types of nitrate-induced
headaches and to discuss the possible mechanisms underlying
these symptoms. We intend to point out that cardiovascular
patients with headache syndrome, especially with migraine
without aura, have a much greater risk of experiencing severe
headache-type side-effects compared with non-migraineurs
during nitrate therapy. We will discuss how to predict possible
severe headache-type side-effects and consider treatments rec-
ommended by international guidelines.

The drug/molecular target nomenclature applied in the
manuscript conforms to British Journal of Pharmacology’s
Guide to Receptors and Channels (Alexander et al., 2008).

Headaches are not uniform

In order to differentiate correctly between the specific types of
headaches, it is important to mention the second version of
the International Classification of Headache Disorders (Head-
ache Classification Committee of the International Headache
Society, 2004) that provides guidance for diagnosing head-
aches. Table 2 summarizes the lifetime prevalence, the char-
acteristics, the duration and the related subtypes of the
different primary headache groups. Syndromes of primary
headaches are those headaches that are not attributed to
other medical disorders or conditions based on medical
history, physical, neurological and other examinations. To
assign a particular headache diagnosis the patient must, in
most cases, experience a minimum number of attacks.

Tension-type headache is the most prevalent in the popu-
lation (Stovner et al., 2007) and if it is not frequent or chronic,
medical consultation is rare (Goadsby, 2006b). It is often
related to psychological stress or muscle tenderness and
simple analgesics are the most effective class of drugs for acute
treatment (Loder and Rizzoli, 2008).

Migraine is a common and disabling disorder. The main
characteristics which separate migraine from the occasional
tension-type headache are the associated features (Table 2.)
that eventually lead to significant limitations in patients’ lives
(Goadsby, 2006b; Lipton and Bigal, 2007). Another important
feature of migraine is its hereditary nature; several family
clustering and twin studies suggest that genetic factors play
an important role in the pathogenesis of migraine, with a
heritability of around 50% (Wessman et al., 2007). Migraine

Table 1 Different nitrate preparations and the frequency of headache

Medicine and its application The frequency of headache in SmPC
(EMC, 2010; Pharmindex, 2008)

The frequency of headache in Micromedex
database (Micromedex, Updated periodically)

Nitroglycerin aerosol Not properly specified, >10% Any formulation: >60%
Nitroglycerin sublingual pill Not properly specified, >10% Migraine and cluster are mentioned
Nitroglycerin retard tablet Not properly specified, >10%
Nitroglycerin transdermal patch very common >10%
Isosorbid-mononitrate retard tablet very common >10% Between 25–40%
Isosorbid-dinitrate tablet In the UK SmPC not specified Not marketed in Hungary. Most frequent (>10%)
Sodium Nitroprusside Not marketed in the UK and Hungary Not specified
Pentaerythrol-tetranitrate tablet Frequency is not specified. Not marketed in the UK Frequency is not specified
Molsidomine tablet Frequency is not specified. Not marketed in the UK Between 10% and 25%
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attacks can be triggered by alteration in stress level, diet, sleep
pattern or hormonal status (Goadsby, 2006b). Before a
migraine attack, about half of the patients suffer from pre-
monitory symptoms such as feeling tired or weary, difficulty
concentrating or food cravings (Silberstein, 2004). A minority
of migraineurs (approximately 30%) experience aura that
consists of reversible focal neurological symptoms – most
frequently visual or sensory – which precede, accompany, or
(rarely) follow an attack (Silberstein, 2004; Goadsby, 2007b).
Based on surveys at least 50% of patients with migraine have
never been diagnosed, or have received an inappropriate diag-
nosis, and nearly three-quarters of potential migraineurs were
only self-medicated (Brandes, 2008).

Cluster headache attacks typically occur in series (cluster
periods) lasting for weeks or months and interrupted by
remission periods usually lasting months or years (Headache
Classification Committee of the International Headache
Society, 2004). Although it is a rare type of headache, it is
important to include it in this review because nitrate
therapy may induce or exacerbate cluster attacks (Ekbom
et al., 2004).

Characteristics of NO donor-induced headaches

As previously mentioned, the beneficial effects of nitrates
relate to their NO-donating ability (Ignarro et al., 2002) and it
has been suggested that NO release is also responsible for
nitrate-induced headaches (Iversen, 1995). Subsequently,
nitrate models of vascular headache have been developed,
initiating a more systematic approach to the study of nitrate-
induced headaches (Magis et al., 2007); a recent review
(Olesen, 2008) summarizes the results of these studies in
detail.

Healthy subjects
In healthy volunteers, glycerol trinitrate (GTN) infusion (max
0.5 mg·kg-1·min-1 over 15–20 min) caused a reproducible and

immediate headache that eased rapidly after termination of
the infusion. This headache was mild or moderate with pul-
sating quality and aggravated by physical activity but without
any accompanying symptoms (e.g. photo-and phonophobia,
nausea and vomiting) (Iversen, 1995). In the first 30–60 min
following sublingual administration of GTN (0.5–0.9 mg),
approximately 30% of healthy subjects experienced a non-
specific headache that did not fulfil the International Head-
ache Society (IHS) criteria for migraine without aura, lasted
only a few minutes and disappeared spontaneously (Juhasz
et al., 2003b; 2004; Sances et al., 2004). A delayed, migraine-
type headache developed in healthy subjects only if they had
a predisposition for migraine (e.g. family history of migraine)
(Juhasz et al., 2003b; Afridi et al., 2004; Sances et al., 2004).
However, extreme NO-donor exposure [5-isosorbide-
mononitrate (5-ISMN) 30 mg three times daily] was able to
provoke migraine even in healthy subjects without risk
factors for migraine (Christiansen et al., 2000b).

Tension-type headache patients
Only one study reported the effect of GTN infusion (max
0.5 mg·kg-1·min-1 over 15–20 min) in episodic tension-type
headache patients. Seven out of nine developed immediate
headache with intensity and duration intermediate between
those of migraineurs and controls (Olesen et al., 1993). In
chronic tension-type headache patients, GTN infusion
induced immediate headache similarly to episodic tension-
type headache patients (Ashina et al., 2000). Furthermore,
chronic tension-type headache patients experienced a
delayed headache with similar characteristics to their usual
headache. The intensity of this delayed pain reached its
maximum about 8 h after the infusion and half of the
patients had to use rescue medications (Ashina et al., 2000).

Migraine patients
Migraine sufferers are the most systematically investigated
population regarding NO donor-induced headaches and the

Table 2 Summary of primary headaches based on the second version of the International Classification of Headache Disorders (Headache
Classification Committee of the International Headache Society, 2004)

Tension Migraine Cluster

Lifetime population
prevalence

Male: 42%
Female: 49%
(Stovner et al., 2007)

Male: 10%
Female: 22%
(Stovner et al., 2007)

0.12%, more prevalent in males
(Fischera et al., 2008)

Headache characteristics At least two of:
1. Bilateral
2. Pressing or tightening
3. Mild or moderate
4. NOT aggravated by routine

physical activity

At least two of:
1. Unilateral
2. Pulsating
3. Moderate or severe
4. Aggravation by routine

physical activity

1. Strictly unilateral (periorbital, temporal)
2. Severe or very severe

Associated symptoms Photophobia or phonophobia can
be present (only one of them)

At least one of:
1. Photophobia,

phonophobia
2. Nausea, vomiting

At least one of ipsilateral:
1. Conjunctival injection, lacrimation
2. Nasal conjection or rhinorrhoea
3. Eyelid oedema
4. Forehead, facial sweating
5. Miosis, ptosis
6. Restlessness, agitation

Duration 30 min – 7 days, or may be continuous 4–72 h 15–180 min

Most frequent subtypes Infrequent episodic tension-type headache
Frequent episodic tension-type headache
Chronic tension-type headache

Migraine without aura
Migraine with aura

Cluster headache
Other trigeminal autonomic cephalalgias

NO donor vasodilator-induced migraine
22 G Bagdy et al

British Journal of Pharmacology (2010) 160 20–35



main findings of these studies have been reviewed recently
(Magis et al., 2007). In this section we will focus on the char-
acteristics of the induced headaches.

During GTN infusion (max 0.5 mg·kg-1·min-1 over
15–20 min), migraineurs experienced stronger immediate
headaches (some with additional migraine-characteristic
symptoms), compared with controls or to tension-type head-
ache patients. However, in most cases this immediate head-
ache did not fulfil the criteria for migraine because
accompanying symptoms were not present (Thomsen and
Olesen, 1997). In contrast to the healthy controls, approxi-
mately 80% of the migraineurs reported delayed headaches
3–6 h after the infusion, which they labelled as a typical
migraine attack. These headaches fulfilled the IHS criteria for
migraine without aura, were moderate or severe, with similar
accompanying symptoms to those reported during spontane-
ous migraine attacks (Thomsen and Olesen, 1997; Chris-
tiansen et al., 2000a; Afridi et al., 2004).

Sublingual GTN (0.5 mg) administration provoked similar
headache patterns to the GTN infusion in migraineurs. Twice
as much migraineurs (67%) than controls experienced an
immediate headache that developed within the first hour
(mean latency: 10.5 � 2.8 min; mean duration 30.0 �

7.7 min); but these headaches did not fulfil the IHS criteria
for migraine without aura and eased spontaneously.
However, a typical migraine attack without aura sub-
sequently developed in 71% of migraine patients with a peak
headache intensity about 5–7 h after the GTN intake, but not
in the controls without risk factors for migraine (Figure 1)
(Juhasz et al., 2003b; 2004). Using sublingual GTN in a higher
dose (0.9 mg) even more migraineurs developed an immedi-
ate headache (83% with frequent migraine-characteristic
symptoms), and 78% developed a delayed migraine-type
headache with a mean latency of 140 min (Sances et al.,
2004).

It is interesting to note that GTN provocation only rarely
(0–14%) caused typical aura symptoms (Christiansen et al.,
1999; Bank, 2001; Sances et al., 2004; Afridi et al., 2005) and
patients with familial hemiplegic migraine (FHM) did not
develop a delayed migraine-type headache after GTN infusion
(Hansen et al., 2008a,b). FHM is a rare, severe, genetically
heterogeneous autosomal dominant subtype of migraine with
aura, characterized by at least some degree of weakness (hemi-
paresis) during the aura (Headache Classification Committee
of the International Headache Society, 2004).

Cluster headache patients
Cluster attacks were induced by sublingual GTN only in the
cluster headache patients whose disorder was in an active
phase (i.e. in a cluster period, see paragraph about classifica-
tion of headaches) (Fanciullacci et al., 1997; Ekbom et al.,
2004). Cluster attacks started 30–45 min after GTN intake;
pain became severe or very severe within 5–15 min and was
indistinguishable from a spontaneous attack (Fanciullacci
et al., 1997).

Nitrate-induced headaches in cardiovascular patients
Much less is known about nitrate-induced headaches as side-
effects in clinical practice. Describing the safety profile of a
medicine is not usually the main goal of a clinical study; the
primary end-point is to examine the pharmacokinetics of the
proposed medicine (phase I) or assess its effectiveness (phases
II and III). Since 1949 several clinical trials have been designed
and conducted to test the efficacy of nitrates in cardiovascular
disorders (Dewar et al., 1959; Colditz et al., 1988; Yusuf et al.,
1988; Scheidt, 1990; Held, 1992; Thadani and de Vane, 1992;
Armstrong and Moe, 1993; Jugdutt, 1994; Abshagen, 1996;
Parker, 1996; Thadani, 1997). Headache was reported as a
common side-effect but without any deeper analysis (Thadani
and Rodgers, 2006; Thadani and Ripley, 2007). Based on the
estimation that the annual incidence rate of nitrate use (pre-
scription of glyceryl trinitrate, isosorbide dinitrate and isos-
orbide mononitrate including sublingual, aerosol,
transdermal and oral preparations for new patients) is about
1.5% in the European countries (Hemingway et al., 2006) and
that 10% of nitrate-treated patients report unbearable head-
aches (Thadani and Rodgers, 2006) then in Europe alone more
than 700 000 patients every year suffer from serious nitrate-
induced headaches. However, there is no indication of the
characteristics of the headache or of the time–intensity
relationship.

Some studies have investigated the occurrence of nitrate-
induced headaches in various pathological conditions. For
example, the probability of suffering a GTN-induced head-
ache was much lower in chest-pain patients with obstructive
coronary artery disease, than in chest-pain patients with
normal coronaries or with minimal coronary artery disease
(Hsi et al., 2005); and using acute nitrate therapy the inci-
dence of reported headache was low in acute myocardial
infarction but high in unstable angina (Thadani and Ripley,
2007).

Migraine-like adverse effects after nitrate therapy have been
reported only sparsely in the past; for example, Muller et al.

Figure 1 Headache intensity (0–10 verbal scale) after sublingual
nitroglycerin (GTN, 0.5 mg) administration in controls (CO; n = 11),
in controls with risk factor for migraine (CO+; n = 2), in migraineurs
who did not develop delayed migraine type headache (M-; n = 8)
and in migraineurs who developed typical delayed migraine without
aura (M+; n = 20). (Combined data from Juhasz et al., 2003b; 2005.)
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reported hemicrania (Mueller and Meienberg, 1983) and Bank
reported migraine with aura in a patient suffering from
angina pectoris (Bank, 2001). Cluster headaches were also
observed during nitrate therapy (Ekbom et al., 2004). In sub-
jects with coexisting cluster headache and angina pectoris it
has been shown that sustained nitrate therapy induced extra
headache periods, but during active clusters angina pectoris
became remitted (Ekbom et al., 2004).

Potential mechanisms of NO-provoked
headache types

Vasodilation
The main effects of nitrates are attributed to their vasodilatory
effect by releasing NO (Moncada et al., 1988). Although the
relationship between NO and headaches has been the subject
of considerable recent discussion and research, the exact
mechanisms of the different types of NO-induced headaches
are still not clear (van der Kuy and Lohman, 2003; Goadsby,
2007b; Olesen, 2008).

One hypothesis suggests that NO, as a powerful vasodilator,
might be responsible for nitrate-induced migraine headaches
through dilation of the large cranial arteries that have been
reported during spontaneous migraine headaches (Iversen
et al., 1990). However, some recent data contradict any direct
relation between NO-induced migraine attacks and
NO-evoked vasodilation (Akerman et al., 2002b; Goadsby,
2006b; Juhasz et al., 2007); a human 3T magnetic resonance
angiography study found that migraine attacks were not asso-
ciated with vasodilation of cerebral or meningeal blood
vessels (Schoonman et al., 2008). Furthermore, sildenafil
induces migraine without any change in middle cerebral
artery diameter through activation of the cyclic guanosine
monophosphate (cGMP) pathway, which is part of the
NO-mediated signalling cascade (Kruuse et al., 2003), while
the potent vasodilator vasoactive intestinal polypeptide
causes a weak immediate headache in healthy volunteers
(Hansen et al., 2006) but does not trigger a migraine attack in
migraine patients (Rahmann et al., 2008).

Other data provide further evidence for the dissociation of
vasodilator and migraine-inducing effect of nitrates. The
5-HT2 receptor agonist meta-chlorophenylpiperazine (m-CPP)
caused migraine-type headaches with similar characteristics
to those induced by nitrates in the same patient group at risk
for NO donor-induced migraine. However, in contrast to
nitrates, this compound causes vasoconstriction and sym-
pathoadrenal activation rather than vasodilation (Bagdy
et al., 1988; Bagdy, 1998)

Taken together these observations suggest that although
NO plays a role in some aspects of the pathophysiology of
migraine it is unlikely simply to be a vascular effect. A more
likely explanation of the mechanism of action of NO in
migraine could be, for example, through the release of calci-
tonin gene-related peptide (CGRP) (Juhasz et al., 2003b;
2005). This will be discussed in the next section.

Previous studies have suggested that immediate headaches
may be related to vasodilation caused by direct activation of
the NO-cGMP pathway (Figure 3) (Akerman et al., 2002b;

Juhasz et al., 2003b). Through protein kinase G (PKG) the
NO-cGMP pathway is able to control the function of various
ion channels, including potassium channels that modify the
smooth muscle contractility and vascular tone (Sobey, 2001).
It is well documented that during NO-donor administration,
meningeal and cerebral vasodilation occur both in animals
(Dong et al., 1998; Bergerot et al., 2006) and in humans
(Schoonman et al., 2008) and human subjects also report
immediate headaches paralleling the time-course of the
vasodilation (Hansen et al., 2007). It was observed recently
that NO-donor GTN-induced dural and pial vasodilation
involved the opening of calcium-activated potassium (KCa1.1
also known as BK or Slo1) channels (Gozalov et al., 2007),
which suggests that the KCa1.1 channels may play an impor-
tant role in the NO-induced immediate headaches.

Calcitonin gene-related peptide (CGRP)
Elevated CGRP levels have been found in patients during
spontaneous migraine (Goadsby et al., 1990; Gallai et al.,
1995; Bellamy et al., 2006b) and cluster headache attacks
(Goadsby and Edvinsson, 1994; Fanciullacci et al., 1995),
which suggests the activation of the trigeminovascular system
(Goadsby, 2007b). The proven efficacy of CGRP antagonists in
migraine attacks supports the pivotal role of CGRP in
migraine pain (Doods et al., 2007; Edvinsson, 2008). Besides
CGRP antagonists, animal studies indicate a potential useful-
ness of CGRP antibodies in the treatment of migraine as these
antibodies showed a long inhibitory effect (Zeller et al., 2008).

GTN-induced migraine is the most studied human migraine
model and shows considerable similarities with spontaneous
migraine attacks (Olesen, 2008). Indeed, previous studies
have demonstrated that peripheral plasma CGRP concentra-
tion increased significantly also during the GTN-induced
delayed migraine attack (Figure 2) (Juhasz et al., 2003b; 2005),
which provides additional support for the hypothesis that
migraine attacks are a result of trigeminovascular activation
(Akerman et al., 2002b).

In contrast, the plasma CGRP concentration did not
increase significantly during the NO-induced immediate
headache (Ashina et al., 2001; Juhasz et al., 2003b). These data
support the hypothesis that the initial headache may be
related to a direct action of the NO-cGMP pathway via vasodi-
lation, independently of the CGRP release (Ashina et al.,
2001; Akerman et al., 2002b) as we discussed in the previous
section. It seems that GTN triggers a cascade of events, ini-
tially leading to vasodilation, and subsequently to the release
of CGRP which is involved in the causation of migraine in
subjects who are at risk.

The mechanism of NO-induced delayed migraine is not
clear. CGRP receptors can be found in the trigeminocervical
complex (Storer et al., 2004) and CGRP and neuronal NO
synthase (nNOS) are frequently co-localized in neurons of the
trigeminal ganglion (Hou et al., 2001) and NO regulates the
expression of the CGRP gene (Bellamy et al., 2006a). Animal
studies have demonstrated that NO donors caused biphasic
activation of the trigeminal nucleus caudalis measured by
c-fos expression (Tassorelli et al., 2000; Akerman et al., 2002b).
The second phase reached its maximum after 4 h (Pardutz
et al., 2000; Tassorelli et al., 2000) similar to the latency of
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delayed headache attacks. At the same time (4 h after
NO-donor administration) both neuronal (Pardutz et al.,
2000) and inducible (Reuter et al., 2001) NO synthase (nNOS
and iNOS) expressions were up-regulated. This cascade of
events eventually leads to CGRP release from the trigeminal

ganglion (Pardutz et al., 2000; Tassorelli et al., 2000; Akerman
et al., 2002b; Greco et al., 2008b). The CGRP release seems to
involve activation of mainly Cav2.1 (P/Q-type) and Cav3
(T-type) voltage-gated Ca2+ channels (Bellamy et al., 2006a;
Xiao et al., 2008). On the other hand, blockers of Cav1, Cav2.1
and Cav3 channels could inhibit CGRP release and conse-
quently the dural vasodilation indicating an important role of
these channels in trigeminovascular nociception (Akerman
et al., 2003). In addition, both endogenous and exogenous
CGRP-induced vasodilations have been attenuated by the KIR6
(also known as KATP) channel inhibitor glibenclamide
(Gozalov et al., 2008), which suggests that KIR6 channels,
under certain circumstances, are involved in the CGRP-
induced actions and might have a role in migraine pain
(Figure 3).

Serotonin (5-HT)
Serotonin has been implicated in migraine pathophysiology
for several years. In our previous studies, platelet serotonin
concentration was significantly lower in migraineurs (Juhasz
et al., 2003a), and after GTN administration, migraineurs
developed delayed migraine-type headaches much more fre-
quently than did controls (Juhasz et al., 2003b). Chronically
low 5-HT levels in plasma and brain have been reported to
increase the sensitivity of the trigeminovascular pathway
(Hamel, 2007), and serotonin depletion to increase nNOS
activity (Tagliaferro et al., 2001). In animal studies, hyposero-
toninergic conditions enhanced the vascular effects of GTN,
especially 30–60 min after administration (Srikiatkhachorn
et al., 2000). In addition, up-regulation of 5-HT2 receptors led
to increased NO production, through activation of nNOS
(Figure 3), and this process increased the chemically induced
pain sensitivity in animals and might be responsible for
chronic headaches in humans (Srikiatkhachorn et al., 2002;
Mehrotra et al., 2008). These data support the observation
that migraineurs are hypersensitive to NO donors.

In our GTN challenge study we could not demonstrate
significant changes in platelet serotonin concentration in
those who developed delayed migraine, but in those who
remained migraine-free we observed an early decrease in
platelet serotonin concentration, suggesting release (Figure 2)
(Juhasz et al., 2003b). Our results suggest that a significant
release of serotonin in subjects who did not develop migraine
attack may act on 5-HT1B/1D receptors, as do triptans, and thus
prevent trigeminovascular activation (Juhasz et al., 2003b;
2005). Indeed, triptans were effective in NO donor-induced
migraine attacks (Juhasz et al., 2005), prevented NO-induced
immediate headache in healthy controls (Iversen and Olesen,
1996) and also blocked NO-induced blood vessel dilatation
and trigeminovascular activation in an animal model
(Akerman et al., 2002a).

Other neurotransmitters
In general, NO is a modulator of several neuronal functions in
the brain and these effects are mainly mediated by cGMP
(Prast and Philippu, 2001; Esplugues, 2002; Garthwaite,
2008). The potential mechanisms of NO-provoked headache
types are summarized in Figure 3.

Figure 2 Effects of nitroglycerin (GTN, 0.5 mg sublingual) on
plasma calcitonin gene-related peptide (CGRP) and platelet 5-HT
concentrations in controls without delayed migraine attack (n = 10;
A) and in migraineurs with delayed migraine attack (n = 19; B). We
calculated z scores for plasma CGRP and platelet 5-HT concentrations
[(subgroup mean - grand mean)/subgroup SD] to compare their
changes during the GTN challenge. Baseline blood samples were
collected at 7.00 a.m. (-1). A secondary blood sample was taken 1 h
after sublingual application of GTN, at 9.00 a.m. (1). The next three
blood samples were taken 60 min (M1), 120 min (M2) and 180 min
(M3) after the beginning of the migraine attack. In controls, similar
time schedules were used based on preliminary data (M1: 5 h, M2:
6 h and M3: 7 h after GTN respectively). Migraine patients took
20 mg sumatriptan nasal spray immediately after the M2 blood sam-
pling. *Significant changes after sublingual GTN compared with
baseline (P < 0.05). (Combined data from Juhasz et al., 2003b; 2005.)
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It has been demonstrated that NO donors increase the
release of glutamate (via the NO-cGMP pathway), while NOS
inhibitors decrease glutamate output (Prast and Philippu,
2001; Garthwaite, 2008). The elevated glutamate level might
contribute to the central neuronal sensitization to incoming
sensory signals, which is an important factor in migraine
(Calabresi et al., 2007). A previous study showed that cere-
brospinal and plasma glutamate levels were increased in
chronic migraine patients (Peres et al., 2004). Antiepileptic
drugs which are effective in migraine prevention target the
glutamate-mediated excitatory and/or GABA-mediated
inhibitory systems in conjunction with a modulation of
voltage-gated sodium (Nav1) and calcium (Cav) channels;
indeed chronic administration of valproic acid prevented
GTN-induced delayed migraine attack (Tvedskov et al., 2004).
However, further studies are needed to investigate the role of
central sensitization and glutamate in NO-induced headaches
and migraine.

Dopamine is also believed to play an important role in the
pathophysiology of migraine although there are several con-
flicting results. Migraineurs are hypersensitive to dopamine
agonists, while dopamine antagonists have beneficial effects
in migraine treatment (Akerman and Goadsby, 2007).
Dopamine is also implicated in premonitory symptoms, such
as yawning and nausea, and may also contribute to hypoten-
sive changes (Akerman and Goadsby, 2007). Currently there is

little available information concerning dopamine and GTN-
induced headaches although, in animals, intact central
dopaminergic neurotransmission is essential for the GTN-
induced activation of brain areas involved in migraine
attacks, as well as for the hyperalgesic response to painful
stimuli elicited by the GTN (Greco et al., 2008a). It is impor-
tant to note that dopamine neurotransmission interacts
robustly with the 5-HT system. Serotonin receptors, such as
5-HT1A, 5-HT1B, 5-HT2A and 5-HT2C, that have been implicated
in migraine pathophysiology (Hamel, 2007), also modulate
dopamine release (Alex and Pehek, 2007).

Finally, we recently showed that variations in the cannab-
inoid receptor 1 gene were significantly associated with
migraine headaches (Juhasz et al., 2009). Akerman et al. dem-
onstrated that anandamide, an endogenous ligand to the
cannabinoid CB1 receptor, decreases CGRP and NO induced
dural vasodilations by 30% and 40%, respectively, in animal
models (Akerman et al., 2004). The exact mechanism of this
action is not fully understood. However, as the CB1 receptor
is able to inhibit voltage-gated calcium channels and activate
inwardly rectifying potassium channels it is possible that ion
channels have a major role in its effect.

Cyclooxygenase-2 (COX-2) – prostaglandin pathway
A previous study reported that, in the jugular venous blood,
the level of algogen prostaglandins (PGs), namely the PGE2

Figure 3 Nitrate derived NO actions relevant to nitroglycerin (GTN)-induced immediate and delayed (migraine-type) headaches. The NO
donor GTN activates the NO-cGMP pathway via the soluble guanylate cyclase enzyme (sGC). Through protein kinase G the NO-cGMP pathway
is able to control the function of various ion channels, including the calcium-activated potassium channels KCa1.1 (also known as BK or Slo1)
that modify smooth muscle contractility and may play an important role in immediate headaches. The NO-cGMP pathway also increases
calcitonin gene-related peptide (CGRP) release mainly by activation of Cav2.1 (P/Q-type) voltage-gated calcium channels. CGRP can cause
vasodilation via KIR6 channels (also known as KATP) and can cause delayed migraine-type headaches via mechanisms which are not fully
understood yet. The CB1 receptor is able to inhibit both CGRP- and NO-induced dural vessel dilation. It is possible that this is partially due to
the inhibition of Cav2.1 (P/Q-type) voltage-gated calcium channels but the mechanism is still unclear. The trigeminovascular activation, both
vasodilation and CGRP release, can be blocked via the activation of 5-HT1B/1D/1F receptors. In chronic migraine patients up-regulation of 5-HT2

receptors due to the low baseline 5-HT level may occur, and an increase in nNOS activity and elevated NO release due to an acute increase
in 5-HT release could be expected. The NO-cGMP pathway also increases the release of glutamate that has major role in central sensitization
and can lead to migraine attacks. Dopamine, prostaglandins and sodium channels also play a role in NO-induced migraine-type headaches but
further studies are needed to elucidate the exact mechanism. Red box: different type of headaches, green boxes: ion channels, orange boxes:
neurotransmitters, brown boxes: neurotransmitters and modulators, blue boxes: GTN-NO-cGMP pathway, arrows: activation lines: blockade
of action, thick lines: evidence based pathways, thin lines: hypothesized pathways.

NO donor vasodilator-induced migraine
26 G Bagdy et al

British Journal of Pharmacology (2010) 160 20–35



and the stable product of prostacyclin (PGF1a), significantly
increased during the late phase (2–4 h after the onset) of
spontaneous migraine attacks (Sarchielli et al., 2000). In
animal models of migraine, GTN activated the COX-2 – PGE2

pathway in the brainstem 4 h after GTN administration (Tas-
sorelli et al., 2007). However, it has been demonstrated that
GTN-induced vasodilation in vivo is independent of the PG
system (Ahlner et al., 1991) thus it is unlikely that the COX-2
– PGE2 pathway has a major role in immediate GTN-induced
headaches but its role in delayed migraine-type headaches
warrants further studies.

NO-induced ion channel modifications
NO modifies the function of ion channels responsible for
excitability, predominantly in two ways (Ahern et al., 2002) –
indirectly and directly. According to the classical view, all the
actions of NO are mediated by cGMP; the three principal
targets of which are PKG, cyclic nucleotide gated channels
and cyclic nucleotide phosphodiesterase. Of these, PKG pro-
vides the broadest means for controlling ion-channel func-
tions, as these proteins contain PKG phosphorylation sites
that are strongly conserved. This classical view was over-
turned following findings that NO could modify proteins
through direct chemical reactions. One such modification,
termed S-nitrosylation, occurs at the thiol side-chains of cys-
teine residues through a complex chemical mechanism
without the assistance of enzymes. However, S-nitrosylation
requires higher concentrations of NO than the activation of

the cGMP pathway. S-nitrosylation of various ion channels
can be mediated not only directly by NO, but also by NO
metabolites, peroxynitrite and other reactive oxidant species
(e.g. NO2, OH, H2O2) (Kang et al., 2007; Liu et al., 2007; Ashki
et al., 2008; Dyachenko et al., 2009). Nevertheless it was sup-
posed that the nitrosative and oxidative actions of peroxyni-
trite may play a role both in regulation of normal cellular
functions and in its well-known cytotoxic effects (Ferdinandy,
2006). Table 3 summarizes NO actions on various ion chan-
nels, focusing mainly on those that are thought to play a role
in migraine pain.

Sodium channels
The primary route by which NO modulates Nav1 channels
appears to be directly via S-nitrosylation although Nav1 chan-
nels of sensory neurons differentially respond to NO (Ham-
marstrom and Gage, 1999; Ahern et al., 2002). In one class of
sensory neurons (nodose ganglion) S-nitrosylation inhibits
both tetrodotoxin (TTX)-sensitive and -insensitive Nav1 chan-
nels (Li et al., 1998), while in dorsal root ganglia neither
TTX-sensitive nor -resistant action potentials were affected by
NO (Yoshimura et al., 2001).

A different form of Nav1 channel modulation has been
described for the ‘persistent’ Na+ current: many excitable
tissues have a component of Na+ current that is resistant to
inactivation. This ‘persistent’ Na+ current is believed to play
an important role in the integration of synaptic inputs, the
generation of rhythmic oscillations, and the pathological

Table 3 Ion channels involved in NO effects (modified from Ahern et al., 2002)

Ion channel Site Effect References

cGMP-modulated channels
Nav channel Olfactory receptors ↑ (PKG) Kawai and Miyachi (2001)

Cardiomyocytes ↓ (PKG) Ahmmed et al. (2001)
KCa1.1 channel Pituitary nerve ↑ (PKG) Klyachko et al. (2001)

Pituitary cell line ↑ (PKG) White (1999)
Smooth muscle ↑ (PKG) Pfeifer et al. (1998)
Dermal fibroblast ↑ Roh et al. (2007)
Endothelial cell ↑ Dong et al. (2008)

Kv1.5 channel Cardiomyocytes ↓ Nunez et al. (2006)
Kv4.3 channel Cardiomyocytes ↓ Gomez et al. (2008)
KIR6 channel Cardiomyocytes ↑ (PKG) Han et al. (2001)
Cav1 channel Cardiomyocytes Multiple actions Fischmeister and Mery (1996)

Cardiomyocytes ↓ Bai et al. (2004)
Hippocampal neuron ↓ (PKG) Doerner and Alger (1988)

Cav2.2 channel Retinal ganglion cell ↓ (PKG) Hirooka et al. (2000)
Dorsal root ganglion ↓ (PKG) Yoshimura et al. (2001)

Cav3 channel Olfactory receptor ↑ (PKG) Kawai and Miyachi (2001)
S-nitrosylated channels
Nav channel Nodose ganglia ↓ Li et al. (1998)

Posterior pituitary Persistence Ahern et al. (2000)
Cardiomyocytes Persistence Ahern et al. (2000)
Hippocampus Persistence Hammarstrom and Gage (1999)
Spinal cord neuron ↓ Ashki et al. (2008)

KCa1.1 channel Brain ↑ Shin et al. (1997)
Posterior pituitary ↑ Ahern et al. (1999)
Hippocampal neuron ↑ Tjong et al. (2007; 2008)
Smooth muscle ↑ Bolotina et al. (1994); Lang and Watson (1998)

Kv1.5 channel Cardiomyocytes ↓ Nunez et al. (2006)
Kv2.1 channel Cardiomyocytes ↑ Gomez et al. (2009)
Kv4.3 channel Hippocampus ↓ Liu et al. (2007)
Cav1 channel Cardiomyocytes ↓ Hu et al. (1997)
Cav1.2 channel Smooth muscle ↓ Kang et al. (2007)
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changes in electrical excitability associated with many disease
states including cardiac arrhythmias, ischaemic stroke, epi-
lepsy and probably migraine (Segal and Douglas, 1997). NO
donors have been shown to increase persistent Na+ current in
posterior pituitary nerve terminals (Ahern et al., 2000) and
hippocampal neurons (Hammarstrom and Gage, 1999). This
action of NO on Nav1 channels is thought to be a direct
chemical reaction with a protein thiol (S-nitrosylation) as
described above (Hammarstrom and Gage, 1999; Ahern et al.,
2000; Evans and Bielefeldt, 2000). In neurohypophysial nerve
terminals and in ventricular myocytes NO reduced Na+

current inactivation thus inducing persistent Na+ currents.
This effect was independent of cGMP, and was blocked by the
alkylating agent N-ethylmaleimide thus, apparently NO acts
directly on the channel or on a closely associated protein.
Persistent Na+ current could also be induced by endogenous
NO, generated enzymatically by nNOS (activated via Ca2+

loading). Both rises in cellular NO and modulation of Na+

channels were blocked by NOS inhibitors. These findings
suggest that NO is a potential physiological regulator of Nav1
channel persistence and this is likely to have important con-
sequences for the regulation of cellular excitability (Ahern
et al., 2000).

The potential role of Nav1 channels in the pathophysiology
of migraine is supported by the fact that among the well-
known prophylactic drugs amytriptyline, valproate and topi-
ramate also affect Nav1 channel function (Meldrum and
Rogawski, 2007), and also by the association between Nav1
channel mutations and FHM (see section ‘Migraine as a
channelopathy’).

Calcium channels
cGMP differentially modulates a variety of Cav channels
depending on tissue, species and age. cGMP depresses Ca2+

current in hippocampal neurons (Doerner and Alger, 1988),
inhibits the activation of Cav2.2 (N-type Ca2+) channels in
dorsal root ganglion neurons (Yoshimura et al., 2001), but has
no effect on Cav2.2 and Cav1 (L-type) channels in pituitary
nerve terminals (Klyachko et al., 2001). NO can also inhibit
cardiac Cav1 channels directly, via S-nitrosylation (Hu et al.,
1997). High voltage-activated (HVA) Ca2+ channels (Cav1,
Cav2.1, Cav2.2 and Cav3) play a prominent role in trigemi-
novascular nociception as they are localized to trigeminal
presynaptic nerve terminal in the dura and the trigeminal
nucleus caudalis. It is likely that mainly Cav2.1 channels are
involved with initiation of migraine attacks and/or aura
symptoms as well as with nociceptive transmission because
they participate in controlling the release of CGRP (Xiao
et al., 2008). Indeed, mutations in Cav2.1 channels are among
the established genetic risk factors for FHM (see section
‘Migraine as a channelopathy’). Several Ca2+ channel blockers
(dihydropyridines, flunarizine and anti-epileptics with Ca2+

channel inhibitory activity) are used as prophylactic drugs
against migraine (Evers, 2008; Meldrum and Rogawski, 2007).
Recently, it has become apparent that the molecular targets
for gabapentin and pregabalin are a2-d proteins of HVA Ca2+

channels (Davies et al., 2007); this interaction may explain
the anti-epileptic and antinociceptive actions of these drugs
(Davies et al., 2007).

Ca2+-activated K+ (KCa1.1) channels
Large-conductance, calcium-activated potassium (KCa1.1)
channels are expressed in both excitable and non-excitable
cells and are involved in many cellular functions, such as
action potential repolarization, neuronal excitability, trans-
mitter release and hormone secretion. KCa1.1 channels are
special among K+ channels, being sensitive to both intracellu-
lar Ca2+ concentrations and voltage. These features make KCa1.1
channels ideal negative feedback regulators in many cell types:
by hyperpolarizing the membrane they decrease voltage-
dependent Ca2+ entry. Located in dendrites, axons and synap-
tic terminals, KCa1.1 channels thus play an important role in
controlling the excitability of neurons (Ghatta et al., 2006;
Nardi and Olesen, 2008). Both PKG and S-nitrosylation
enhance the activity of KCa1.1 channels. In smooth muscle the
cGMP-dependent pathway predominates (Pfeifer et al., 1998)
but S-nitrosylation also seems to be involved (Bolotina et al.,
1994; Lang and Watson, 1998), and both pathways are impor-
tant in nerve terminals (Ahern et al., 2002).

As we mentioned previously, animal studies suggest that
KCa1.1 channels are involved in the NO-donor GTN-induced
dural and pial vasodilation or acetylcholine induced rabbit
middle cerebral artery dilation and thus may play an impor-
tant role in the NO-induced immediate headaches (Dong
et al., 1998; Bergerot et al., 2006; Gozalov et al., 2007).

Other potassium channels
The NO-cGMP cascade regulates several other potassium
channels. S-nitrosylation enhances the activity of Kv channel
in arterial smooth muscle (Yuan et al., 1996). PKG modulates
the neuronal voltage-gated potassium channels Kv3.1 and
Kv3.2 (Moreno et al., 2001). In vestibular hair cells cGMP
inhibits the delayed rectifier K+ current and shifts its activation
curve to more positive direction (Behrend et al., 1997). In
hippocampal CA1 neurons peroxynitrite donor caused an
inhibition of transient outward potassium current (Ito, Kv 4.3
channel) and delayed rectifier potassium current (IK) (Liu et al.,
2007). PKG enhances the activity of cardiac KIR6 channels
(Han et al., 2001). In cardiac cells NO modifies K+ currents in a
complex fashion. NO activates the slow component of the
delayed rectifier current (IKs) (Bai et al., 2004) and the inwardly
rectifying K+ current (IK1, KIR2.1 channel) (Gomez et al., 2009),
but inhibits the fast component (IKr) (Taglialatela et al., 1999),
the hKv1.5 channel which generates the ultrarapid delayed
rectifier current (IKur) (Nunez et al., 2006) and the transient
outward current (Ito) (Kv4.3 channel) (Gomez et al., 2008).

There is growing evidence that Kv7 (KCNQ) potassium
channels, especially the neuronal Kv7.2 and Kv7.3, play a role
in neurological diseases (Miceli et al., 2008). Neuronal Kv7
gene defects have been implicated in two rare forms of geneti-
cally determined human channelopathies, namely benign
familial neonatal seizures and non-syndromic autosomal-
dominant hearing loss. Compounds acting as direct activators
of neuronal Kv7 channels have been approved recently for
clinical use as analgesics and anticonvulsants (Gribkoff, 2008;
Miceli et al., 2008). As neuronal hyperexcitability is a marker
of other neurologic diseases, the role of this type of potassium
channel has been suggested in migraine also, although direct
evidence is lacking.

NO donor vasodilator-induced migraine
28 G Bagdy et al

British Journal of Pharmacology (2010) 160 20–35



Nitrate tolerance and headaches

The main limitation of nitrate therapy, especially when con-
tinuous application is required, is nitrate tolerance. Nitrate
tolerance is characterized by the decrease of vasodilator effect
of organic nitrates that can reach complete loss of vasodila-
tation within 24–48 h (Mayer and Beretta, 2008). This is a
complex, still not fully understood process that has been
related to molecular changes in intrinsic vascular processing,
such as desensitization of soluble guanylyl cyclase, oxidative
stress, uncoupling of endothelial NO synthase reduced GTN
activation because of vascular thiol depletion and inactiva-
tion of mitochondrial aldehyde dehydrogenase (ALDH-2) (see
detailed reviews from Mayer and Beretta, 2008 and Daiber
et al., 2008). Neurohormonal responses, such as sympathoa-
drenal axis activation and/or renin–angiotensin system acti-
vation, also contribute to the decreased nitrate efficacy
(Daiber et al., 2008; Mayer and Beretta, 2008).

Regarding GTN-induced headaches attenuation can be seen
after 5–7 days of the initiation of therapy (Ahlner et al., 1991).
However, this timeframe does not coincide with the vascular
nitrate tolerance mentioned above. Christiansen et al. showed
that in healthy volunteers daily 3 ¥ 30 mg 5-ISMN provoked
the most frequent and intense headaches in the first 3 days,
followed by gradual decrease in headache symptoms and tol-
erance had developed by the sixth day (Christiansen et al.,
2000b; 2008). They proposed that extracerebral arteries,
which showed only partial nitrate tolerance after 24 h, might
contribute to GTN-induced headaches besides other mecha-
nisms. On the other hand, there is no available data about
those patients whose headache was initially unbearable.
Indeed headache side-effects are the major cause of discon-
tinuation of nitrate therapy (Ahlner et al., 1991) and detailed
data on these patients’ headaches are not reported so far. As
nitrates exert diverse effects in different tissues – for example
myocardial anti-ischaemic effect has been preserved even
after vascular nitrate tolerance (Csont and Ferdinandy, 2005)
– it can be hypothesized that tolerance to GTN-induced severe
headaches are limited or absent in these patients.

Genetic and inherited vulnerability to
NO-induced headaches

To the best of our knowledge the genetic risk factors for
NO-induced delayed migraine or unbearable headache have
not been investigated yet. However, healthy subjects with a
family history of migraine are more sensitive to NO-provoked
headaches (Juhasz et al., 2003b; 2004; Afridi et al., 2004;
Sances et al., 2004), which supports the hypothesis that inher-
ited vulnerability factors play a significant role. Therefore in
this section we will summarize the relevant results from
genetic studies about migraine, but for detailed reviews see
the work of van den Maagdenberg et al. (van den Maagden-
berg et al., 2007) and Wessman et al. (Wessman et al., 2007).

Migraine as a channelopathy
Migraine is a complex genetic neurovascular disorder
(Goadsby, 2007b). Many chromosomal regions are reported to

be potentially involved, but mutations in the three genes for
FHM – CACNA1A, ATP1A2 and SCNA1A – form the only
established molecular knowledge of migraine (van den
Maagdenberg et al., 2007). From a clinical point of view, FHM
and migraine may be part of the same spectrum and may
share some pathogenetic mechanisms. Therefore, FHM seems
a valid model to study genetic factors of migraine in general.

FHM1 (CACNA1A gene)
This gene encodes the pore-forming a1A subunit of Cav2.1
calcium channels (Ophoff et al., 1998) which modulate
release of neurotransmitters at peripheral and particularly
central excitatory synapses. Many CACNA1A mutations have
been analysed with electrophysiological techniques in neu-
ronal and non-neuronal cell models (Pietrobon, 2005; Jeng
et al., 2006; Pietrobon, 2007). Because of the different experi-
mental circumstances, varying and conflicting results have
been obtained (Pietrobon, 2007). While the consistent change
found with FHM1 mutations was an enhanced single channel
Ca2+ influx with an increased channel open probability pro-
ducing a gain-of-function of Cav2.1 channels (Hans et al.,
1999; Tottene et al., 2002; 2005), other data obtained from
transfected cells indicated the opposite effect – a loss-of-
function (Cao et al., 2004; Jeng et al., 2006). Theoretically, the
observed gain-of-function of single channels should lead to
an easier opening of channels in neurons, resulting in
increased Cav2.1-dependent neurotransmitter release from
cortical neurons.

FHM2 (ATP1A2 gene)
This gene encodes the a2 subunit of sodium–potassium pump
ATPase (De fusco et al., 2003). Glial and neuronal Na+/K+

ATPase modulate the re-uptake of K+ and glutamate from the
synaptic cleft into neurons and astrocytes. Molecular studies
of a few FHM2 mutations show different functional changes
from a complete loss of function to a reduced function in the
Na+/K+ ATPase activity to variable degrees. However, the
common consequences of these mutations are reduced
reuptake of K+ and glutamate from the synaptic cleft (see
review by Pietrobon, 2007). This decreased clearance of K+ and
glutamate by astrocytes during cortical neuronal activity
could depolarize neurons resulting in an impaired recovery
from neuronal excitation.

FHM3 (SCNA1 gene)
This gene encodes the a1 subunit of neuronal voltage-gated
sodium (Nav1.1) channels that play an important role in the
generation and propagation of action potentials. Only a few
mutations (Q1489K, T1174S, L1649Q) have so far been iden-
tified, confirming the relationship between SCNA1 and FHM3
(Dichgans et al., 2005; Gargus and Tournay, 2007; Vanmolkot
et al., 2008). However, mutation scanning of a large number
of other FHM families suggests that the SCNA1 gene is a rare
cause of FHM. Mutation Q1489K, located in the cytoplasmic
linker between domains IIIS6 and IVS1 which is critical for
fast inactivation, has been studied for its functional effects
(Dichgans et al., 2005). This mutation causes a two to four
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times faster recovery from fast inactivation. These findings
suggest a gain-of-function mechanism in FHM3 with
predicted enhanced neuronal excitability and release of
neurotransmitters.

Common consequence of FHM mutations
The common consequence of FHM1, FHM2 and FHM3 muta-
tions seems to lead to increased levels of glutamate and K+ in
the synaptic cleft causing an increased propensity for cortical
spreading depression (CSD) (Ferrari and Goadsby, 2006).
There is accumulating evidence that NO production is mark-
edly augmented during CSD (Olesen, 2008). In this way,
although mutations in FHM genes (CACNA1A in FHM-1 and
ATP1A2 in FHM-2) are not associated with hypersensitivity to
NO in GTN-induced headache models (Hansen et al.,
2008a,b), both CSD and GTN provocation result in higher NO
levels in the central nervous system and may act on a
common pathological pathway. In conclusion, even though
the FHM genes are probably not directly involved in common
migraines, the study of the cellular mechanisms of enhanced
susceptibility to CSD and enhanced cortical excitability in
FHM knock-in animal models may provide unique insights
into possible mechanisms of common migraines (Pietrobon,
2007) and so also help to understand NO-induced headaches.

Nitric oxide synthase and other genes
Hypersensitivity of migraineurs to NO in the GTN-induced
headache model directed research interest towards NOS
genes. However, there is no confirmation that they play a
major role in the vulnerability to these headaches (van den
Maagdenberg et al., 2007; Wessman et al., 2007; Montagna,
2008; Olesen, 2008). Furthermore, there are no convincing
replicated results that genetic variations in the serotonergic,
dopaminergic, or other plausible pathways/systems are asso-
ciated with common forms of migraine – with or without aura
(van den Maagdenberg et al., 2007; Wessman et al., 2007;
Montagna, 2008). One possible explanation for this failure is
that headache diagnoses based on the IHS criteria (1988;
2004) might not represent biological pathways influenced by
specific genetic variations (Anttila et al., 2006; Russell, 2007;
van den Maagdenberg et al., 2007; Wessman et al., 2007).
However, the episodic nature of migraine suggests an iono-
pathic disturbance (Goadsby, 2007a) that can be primary (as
in FHM) or secondary – namely dysfunction in the ion chan-
nels’ controlling networks.

Treatment of NO donor-induced migraine

Based on experimental headache provocation studies, GTN-
induced headaches respond to the same drugs that are used to
treat primary headache disorders (Fanciullacci et al., 1997;
Ashina et al., 2000; Tvedskov et al., 2004; Juhasz et al., 2005;
Magis et al., 2007). Thus, guidelines for treating primary head-
ache patients can be adapted, after taking into account indi-
vidual circumstances such as general medical condition and
age (Evers et al., 2006; Goadsby, 2006a; Martelletti et al.,
2008). In general, triptans should be avoided in patients with

a history of coronary vascular pathology or multiple risk
factors for cardiovascular disease, although the evidence sug-
gests that they are generally safe and well-tolerated (Dodick
et al., 2004).

An accurate headache diagnosis and the recognition of the
possible role of nitrates depend on taking a careful medical
history. Unfortunately, headaches at emergency circum-
stances are frequently under-diagnosed and/or under-treated,
both in Europe and in the United States (Gupta et al., 2007;
Martelletti et al., 2008). After exclusion of other secondary
headaches, the first choice of treatment is oral or venous
non-steroidal anti-inflammatory drugs. Analgesics with evi-
dence of efficacy on the acute migraine treatment and their
recommended doses can be found in the European Federation
of Neurological Societies guideline, e.g. acetylsalicylic acid
1000 mg, ibuprofen 200–800 mg, naproxen 500–1000 mg,
diclofenac 50–100 mg, paracetamol 1000 mg (Evers et al.,
2006). Depending on the symptoms anti-emetic drugs might
be necessary, e.g. metoclopramide: 10–20 mg oral, 10 mg i.v.,
i.m. or s.c., or 20 mg suppository; domperidon 20–30 mg oral
(Ashina et al., 2000; Evers et al., 2006; Gupta et al., 2007;
Martelletti et al., 2008). It is hoped that in future, new specific
drugs without cardiovascular side-effects, such as CGRP
antagonists, might be available for relevant at-risk patients
(Doods et al., 2007).

Previous studies demonstrated that in most cases tolerance
developed to nitrate-induced headaches; this tolerance was
independent of the type of headache (whether it fulfilled the
IHS criteria for migraine without aura or not) (Christiansen
et al., 2000b; Thadani and Rodgers, 2006). However, a revised
treatment plan was necessary for about 10% of patients whose
nitrate-induced headache was unbearable (Thadani and
Rodgers, 2006). Migraine and cluster headache patients are
more susceptible to NO-induced severe headaches, so it is
possible that patients with unacceptable headaches may
suffer from migraine, or in some cases from cluster headaches,
although there is no published evidence for this hypothesis to
the best of our knowledge. Thus further studies are needed to
investigate which subgroup of cardiovascular patients are not
likely to tolerate nitrate therapy due to severe headache side-
effects. Future research could also study the possible diagnos-
tic and prognostic value of nitrate-induced headaches.

Conclusions

Nitrate compounds are frequently used as therapeutic drugs,
despite evidence that they often trigger serious migraine
attack in migraine patients (although not in healthy persons
devoid of primary headache in their medical history).
However, migraine is neither listed as an adverse effect of
these compounds, nor noted in the summaries of product
characteristics. Headache is a known side-effect of nitrates,
but it is not generally known that NO donors may cause two
markedly different types of headaches; (i) immediate head-
aches, which can occur in anyone (not just patients at risk of
migraine); although these are uncomfortable, they are not
serious and disappear spontaneously, and (ii) migraine
attacks, which occur in migraineurs (or those at risk), usually
start several hours after initial drug administration, are

NO donor vasodilator-induced migraine
30 G Bagdy et al

British Journal of Pharmacology (2010) 160 20–35



serious, debilitating, and of long duration needing special
treatment – usually anti-attack drugs, such as triptans.
However, nitrates are commonly used to treat angina pectoris,
and triptans are contraindicated for this condition. Recent
studies regarding the mechanism of action and side-effects of
nitrates provide evidence that the two headaches are caused
by different mechanisms: immediate headaches are associated
with vasodilation caused by NO release, while migraines are
triggered by other actions such as CGRP release, cGMP-
modulated or S-nitrosylation-mediated changes in ion
channel functions.

In conclusion, these data suggest that correction of summa-
ries of nitrate product characteristics is desirable. In addition,
there is an urgent need to develop new types of anti-migraine
drugs, effective in migraine attacks that could be used in
patients at risk for angina pectoris.
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