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Genes involved in cancer susceptibility and progression
can serve as templates for searching protein networks for
novel cancer genes. To this end, we introduce a general
network searching method, MaxLink, and apply it to find
and rank cancer gene candidates by their connectivity to
known cancer genes. Using a comprehensive protein in-
teraction network, we searched for genes connected to
known cancer genes. First, we compiled a new set of 812
genes involved in cancer, more than twice the number in
the Cancer Gene Census. Their network neighbors were
then extracted. This candidate list was refined by select-
ing genes with unexpectedly high levels of connectivity to
cancer genes and without previous association to cancer.
This produced a list of 1891 new cancer candidates with
up to 55 connections to known cancer genes. We vali-
dated our method by cross-validation, Gene Ontology
term bias, and differential expression in cancer versus
normal tissue. An example novel cancer gene candidate is
presented with detailed analysis of the local network and
neighbor annotation. Our study provides a ranked list of
high priority targets for further studies in cancer research.
Supplemental material is included. Molecular & Cellular
Proteomics 9:648–655, 2010.

The function of a protein can be expressed in terms of its
interactions with other molecules. All interactions between all
proteins define the “protein interactome,” i.e. the complete in-
teraction network of the proteins of an organism. These net-
works form the backbone of molecular pathways and cellular
processes. Thus, the construction of interaction networks will
shed light on many aspects of the dynamic and interactive
function of human proteins.

Several efforts in reconstructing the human interactome are
ongoing. Interactions may be measured directly with high
throughput yeast two-hybrid or pulldown assays (1, 2). Experi-
mental interactions have been collected from multiple sources
to build large interaction networks (3–5). The network can be
augmented considerably by inferred interactions either in the
same or from other species (6–10). The largest predicted human
interactome is currently provided by FunCoup (11), which uses

eight types of evidence and transfers interactions extensively
from model organism orthologs.

The development of new therapeutics and diagnostics rely
on the understanding of disease mechanisms. Therefore, the
identification of novel disease-associated genes is of great
importance. Disease genes have traditionally been found by
genetic linkage analysis or gene association studies, but this
is very time-consuming and costly and often fails due to lack
of data. Particularly for complex diseases involving many
genes, these methods are unreliable (12).

Bioinformatics methods can be used to accelerate disease
gene discovery either based on gene annotation and se-
quence features (13, 14) or based on network analysis (15–
19). The network-based methods normally connect gene net-
works with phenotype networks to infer gene-disease
relationships. These works, however, are limited to using only
direct interaction data and/or were only applied to rank a short
list of candidate genes in a genomic interval.

Here we describe a new generic network-based approach,
MaxLink, for predicting novel candidate members to known
biomolecular processes and pathways. A typical application
is the identification of new disease genes based on a set of
known disease genes. We applied MaxLink to the human
interactome generated by FunCoup to screen for new cancer
genes. To seed the screen, we compiled a list of 812 known
cancer genes, 364 from the Cancer Gene Census (20) and 448
genes from text mining.

MaxLink assigns a score to every new candidate gene
based on the number of links to a seed set. We show that the
maxlink score is a useful indicator of candidate reliability by
three types of validations: cross-validation, differential cancer
expression, and GO1 term analysis. The screen resulted in
nearly 2000 candidates of which nearly 200 are connected to
over 10 known cancer genes. These genes have, to our
knowledge, no clear former evidence supporting association
with cancer. However, their network connection to cancer
genes makes them worth particular focus when developing
biomarkers or studying oncogenesis. As the candidate list is
long, it makes sense to explore the top ranking genes first.

MATERIALS AND METHODS

Retrieval of Known Cancer Genes—The input data set of known
cancer genes was collected from Swiss-Prot (21) and from the CancerFrom the Stockholm Bioinformatics Centre, Stockholm University
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Gene Census (20). The Swiss-Prot genes were identified by searching
annotations in the CC field, which represents curated annotations
and includes a subcategory for annotations indicating disease in-
volvement. The disease annotations of the CC field were matched
against cancer-specific terms (see supplemental Table 4), and
genes for which a match could be found were added to the set of
known cancer genes. Genes and matching keywords are detailed in
supplemental Table 1.

GO Analysis of Known Cancer Genes—The Gene Ontology func-
tional term analysis was done using the amiGO web site. Enrichment
analysis of terms in the major cluster (348 genes) versus UniProtKB
(20,740 genes) resulted in a total of 231 terms with p � 10�2. This list
was abbreviated by requiring p � 10�10 and enrichment �5, resulting
in 34 GO terms (supplemental Table 2).

Network-based Identification of Candidate Genes—We used the
human FunCoup protein network (11) to identify network neighbors to
the previously retrieved input genes. Only links with a confidence
value �0.75 were considered. Each candidate gene was assigned a
maxlink score for ranking that equals the number of linked known
cancer genes.

Annotation Filter—To identify genes with possible cancer annota-
tions, the complete UniProt (22) DE, KW, CC, and FT fields as well as
reference titles were searched for cancer-specific text terms
(supplemental Table 4). Genes with a match were excluded from the
candidates list. Additionally, genes with a gene identifier not found in
the current version (version 51) of Ensembl (23) were also excluded.

Connectivity Filter—If the majority of a candidate’s connections
were to non-cancer genes, it was deemed of low cancer specificity
and was rejected. For this analysis, we divided all genes into two sets:
1) the known cancer genes plus all genes with any cancer annotation
(see “Annotation Filter” above) and 2) all other genes. The gene
counts of these sets were 4953 and 12,198. Consequently, genes
exhibiting over 2.46 times more links to genes not associated with
cancer than to the known cancer genes were removed.

Differential Expression in Human Protein Atlas—We devised a
score (differential expression score (DE)) for differential protein ex-
pression levels in 18 different cancer types relative to their normal
tissue counterparts (see Table I) from the 3.0 version of the Human
Protein Atlas. DE was calculated by subtracting the average expres-
sion in a normal tissue from the average expression in the corre-
sponding cancer tissue for each gene and tissue. To avoid tissue-
specific biases, raw DE values for each tissue were replaced by
Z-scores based on the expression distribution of each tissue. A
Z-score of 1 represents one standard deviation above the mean.
Finally, the total DE for each gene was calculated by taking the
average of all absolute DE values for all 18 tissues.

Analysis of Cancer-associated GO Terms—GO terms for all genes
were retrieved from Ensembl via BIOMART (23), and the terms were
expanded to include all higher level terms. All GO terms for the set of
known cancer genes were tested for significant enrichment (fold
change) with a hypergeometric test. The set of cancer-associated GO
terms was then tested for significance (p � 0.05) for subsets of the
candidates composed of all genes having a number of linked known
cancer genes above or equal to a cutoff defining that subset. Relative
fold changes for subsets were subsequently calculated for each GO
term by taking the logarithm of the subset fold change divided by the
fold change of the same term for the known cancer genes.

RESULTS

We have developed an analysis pipeline to identify and rank
candidate cancer genes based on their connectivity to known
cancer genes in the FunCoup network. By “known cancer
gene,” we mean any gene with clear evidence for cancer

involvement. To analyze the interconnectedness and cluster-
ing of the known cancer genes, we first explored their network
topology. Then, using them as seeds, we extracted candidate
novel cancer genes and refined this list by applying quality
filters. Finally, to validate our approach, we used three types
of independent validation tests: cross-validation, enrichment
of cancer GO terms, and differential expression in cancer
versus normal tissue.

New Compilation of Known Cancer Genes—Our approach
starts with collecting known cancer genes. In a previous sur-
vey, the Cancer Gene Census, Futreal et al. (20) identified 364
cancer genes. By text mining Swiss-Prot for genes annotated
to be involved in cancer, we identified 703 genes. Merging this
list with the Cancer Gene Census resulted in 812 unique
cancer genes (supplemental Table 1).

To analyze this set of genes in terms of network structure,
we examined how they cluster into interconnected modules.
This revealed one major component with 348 members, 12
small clusters with 2–9 members, and 429 singletons as
shown in Fig. 1. Thus, 43% of the known cancer genes were
interconnected in a single subnetwork that should represent
processes central to cancer. To verify this, we analyzed en-
richment of functional annotation terms in the Gene Ontology
database (24) relative to all human genes. We observed
strong enrichment (�5-fold enrichment, p � 10�10) for terms
such as DNA repair and replication, cell cycle regulation, and
apoptosis (supplemental Table 2). This is well in line with
known cancer-associated processes.

Screen for Candidate Cancer Genes—The FunCoup net-
work was used to retrieve 4049 potential candidates con-

TABLE I
Eighteen corresponding cancer and normal tissues in HPA

Differential expression in cancer was measured by comparing the
expression in the cancers with the corresponding normal tissues in
the HPA database. Some of the tissues may have been renamed in
the current on-line HPA database.

Cancer type Normal tissue counterpart

Breast cancer Breast
Cervical cancer Cervix uterine
Colorectal cancer Colon and rectum
Endometrial cancer Endometrium
Head and neck cancer Oral mucosa and salivary gland
Liver cancer Liver
Lung cancer Lung and bronchus
Stomach cancer Stomach
Malignant glioma Hippocampus and cerebral cortex

(non-neuronal cells)
Malignant lymphoma Lymph node and spleen
Malignant melanoma Skin
Ovarian cancer Ovary
Pancreatic cancer Pancreas
Prostate cancer Prostate
Skin cancer Skin
Testis cancer Testis
Thyroid cancer Thyroid gland
Urothelial cancer Urinary bladder
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nected to known cancer genes by high confidence links.
Because our aim was to find genes previously not associ-
ated with cancer, the list was further refined by a number of

filters. In the first step, 1511 genes that had any annotation
suggesting a potential association with cancer were re-
moved from the list. Because FunCoup was built using data

FIG. 1. Network layout of known cancer genes. The connections between genes represent links in FunCoup with confidence �0.75. The
figure was made using Cytoscape (28). For a high resolution vector picture, see supplemental Fig. 1.
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sets of which some were linked to earlier versions of En-
sembl, 254 genes were removed to ensure that the candi-
dates are in sync with the current version. This constitutes
a broad filter and would likely remove genes with only
spurious cancer association. Hublike genes might be spu-
riously linked to many known cancer genes solely because
they have many links and not because they are involved in
cancer. Thus, 393 genes were removed in the second step
because they had fewer links to known cancer genes than
expected by chance given their connectivity in the entire
network. Such genes may have been found simply because
they are highly connected and not because of a preferential
association to the known cancer genes. A schematic rep-
resentation of the analysis work flow is shown in Fig. 2. After
all filters, a final list of 1891 candidates remained with a
maxlink score (links to known cancer genes) between 55
and 1 (see supplemental Table 3).

Validation by Cross-validation—If our method works well, it
should be able to detect the known cancer genes in a cross-
validation test. We ran MaxLink five times, leaving out 20% of

the known cancer genes each time. By doing so, we were able
to identify 41.7% of the removed genes on average. However,
only 47% of the known cancer genes had links to other input
genes; thus, the obtained retrieval is close to the theoretical
maximum restricted by the network. As we cannot assess false
positives directly, we instead looked at enrichment of the re-
moved known cancer genes among the retrieved genes, i.e.
their frequency in the retrieved set relative to their frequency in
the entire database. The average enrichment for all removed
genes was more than 5-fold (p � 10�25). However, this in-
creased to over 12-fold for the genes with highest maxlink score
(see Fig. 3).

Validation by Differential Cancer Expression—The Human
Protein Atlas (HPA) (25) contains protein expression in both
normal tissues and cancers taken from a large number of
tissues. Using these data, we calculated a normal versus
cancer DE for the 411 candidate cancer genes with expres-
sion data in HPA using all 18 cancer types.

To examine the impact of a high maxlink score, we looked
at the fraction of genes with DE above 1, i.e. when the differ-
ential expression exceeds one standard deviation on average
for all cancer types. As seen in Fig. 4, this fraction increased
for subsets of the candidates consisting of genes with a
higher maxlink score and was considerably enriched com-
pared with the known cancer genes and HPA as a whole. This

FIG. 2. Schematic representation of analysis work flow. The
number of genes remaining after each step is shown within brackets.
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FIG. 3. Enrichment of known cancer genes in cross-validation

testing of MaxLink method. The enrichment is the frequency of
cancer genes in the retrieved set relative to their frequency in the
entire database. Overall, the enrichment of cancer genes with one or
more links is just above 5. Restricting the retrieved set to genes with
a higher maxlink score produces a proportionally increased enrich-
ment. The enrichment levels at high maxlink scores are somewhat
variable due to small amounts of data.
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indicates that candidates linked to a high number of known
cancer genes are likely important for cancer.

To investigate whether this trend is caused by a decrease of
normal tissue expression or an increase in cancer expression,
we plotted the absolute expression levels as a function of
maxlink score (see Fig. 5). The overall trend is an increase of
both normal and cancer tissue expression but with a relatively
higher increase in cancers. Thus, the MaxLink approach can
enrich genes differentially expressed in a wide range of can-
cers, and the maxlink score is a useful indicator of cancer
relevance.

We noted that the average DE of the known cancer genes
was only slightly higher than that of HPA. This can be ex-
plained by the fact that HPA was started with a strong cancer
focus and is highly enriched for cancer genes.

Validation by GO Terms—If our candidate cancer genes
would show the same GO term enrichment as the known
cancer genes, this would give further support to their rele-
vance in cancer. To investigate this, we retrieved all GO terms
for the known cancer genes and tested for a significant en-
richment. Of a total of 4281 terms, enrichment greater or
equal to 2-fold was significant at the 0.05 level for 1716 terms.

These cancer-associated GO terms were subsequently
tested for enrichment in subsets of the candidate genes
grouped by increasing numbers of links to known cancer
genes. The average enrichment increased proportionally to
the number of linked known cancer genes (Fig. 6), showing

that genes more central in the cancer network are more
functionally associated with cancer.

Novel Candidate Cancer Genes—Our screen resulted in a
list of 1891 novel candidate genes (supplemental Table 3).
Given the above validations of the maxlink score as an indi-
cator of cancer relevance, it makes most sense to focus on
those candidates with the most linked known cancer genes.
The list contains 185 candidates with 10 or more linked known
cancer genes, and these should perhaps be seen as the most
urgent targets for focused cancer studies.

To illustrate how a candidate cancer gene may be analyzed
further, we chose an example, RPA1 (UniProt accession num-
ber P27694), which is a DNA-binding subunit of replication
protein A. It was functionally coupled to 34 known cancer
genes (see Fig. 7).

Can we predict what cancer type RPA1 is most likely to
cause or be associated with? According to HPA, RPA1 is
expressed in all cancer types and has differential (�DE� � 1)
expression compared with normal in seven tissues (colorec-
tal, endometrial, head and neck, pancreatic, skin, testis, and
urothelial cancer). Thus, even if RPA1 may play a more
prominent role in some cancers, it is likely to be a universal
cancer gene.

The network neighbors of RPA1 have diverse differential ex-
pression patterns, supporting the notion that it is not specific for
a certain type of cancer. In Fig. 7, the KEGG pathway member-

FIG. 4. Validation of method by differential cancer expression
in HPA. The fraction of genes linked to a certain number of known
cancer genes that is differentially expressed above one standard
deviation is shown for subsets based on maxlink score. For com-
parison, the average DE values for all known cancer genes (dashed
horizontal line) and all HPA genes (solid horizontal line) are shown.
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FIG. 5. Relative protein expression levels of candidate cancer
genes in cancer and normal tissues compared with HPA as a
whole. The average expression in both cancer (circles) and normal
(triangles) tissues was calculated for candidate subsets, binned by
maxlink score, and normalized by subtracting the average expression
of all genes in HPA for cancer and normal tissues, respectively. The
relative expression levels are not strongly correlated with maxlink
score, but the difference between cancer and normal expression
(diamonds) is. The prevalence of high differential expression at high
maxlink scores, as seen in Fig. 4, thus cannot simply be explained by
increased cancer expression or decreased normal expression. The
expression levels are discrete as used by HPA (29): 1 represents
none, 10 represents low, 50 represents moderate, and 250 represents
high expression. Expression in both normal and cancer tissues is
generally increased for genes with higher maxlink score but with a
relatively higher increase for cancer tissues.
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ship of the neighbors is indicated. Although this gives a very
incomplete picture because of the low coverage of KEGG for
cancer (for instance, breast cancer is absent), it does reveal
several cancer types such as colorectal and pancreatic.

A literature search revealed that in mice RPA1 has been
shown to cause defects in DNA double strand break repair,
which can lead to leukemia (26). (This information is not pres-
ent in UniProt.) In human, RPA1 is located in chromosomal
region 17p13.3, which has been implicated in e.g. colorectal
and breast cancer (26). These cancers had strong support by
DE in HPA for both RPA1 and its neighbors as well as from
annotation of many of the neighbors.

Our analysis based on HPA expression, the gene subnet-
work, and literature reinforces the connection between
RPA1 and cancer, lending support for the cancer types
associated with the RPA1 locus but suggesting that it may
cause cancer in any tissue. Although it was one of the top
ranking novel cancer gene candidates, there is no mention
of any cancer association in UniProt or HPA. However, the
presented evidences support that it plays a central role in
tumorigenesis.

DISCUSSION

We have described a general network-based approach
for identifying and ranking candidate novel genes relevant

to a process or disease and have applied it to find novel
cancer genes. The validations carried out show that the
ranked list produced by our method is enriched for true
cancer genes.

Cancer is in this study treated as one disease. This is
obviously a simplification but is based on the notion that
cancers originating in different tissues are often caused by
perturbations in the same pathways, for instance DNA re-
pair, cell cycle regulation, or apoptosis. It is supported by
the fact that the network of known cancer genes only
formed one large cluster (Fig. 1), which did not show very
distinct subclusters. Also, Goh et al. (27) showed that dif-
ferent cancers are often caused by the same genes. The
attractiveness of this approach is that genes found in most
cancers have a greater potential for diagnostic and thera-
peutic value.

Because of the modularity of the MaxLink pipeline, other
diseases or processes can easily be investigated. A more
traditional approach to disease gene hunting is linkage anal-
ysis where the gene associated with a disease is known to
be found in a genomic interval that can contain in the order
of a hundred genes. MaxLink could also be used to prioritize
genes for such projects as long as a fair number of genes
are already known for the disease in question. The main

1 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

2
4

98765432

2
0

FIG. 6. Validation of method by GO
term enrichment. The relative fold
change of cancer-related GO terms is
shown for candidate cancer genes
linked to a certain number of known can-
cer genes. The relative fold change of
each cancer term is the base 2 logarithm
of the fold change of the subset divided
by the fold change in the known cancer
genes. A relative fold change above 0
means that the cancer terms are more
enriched in the candidate subset than in
the set of known cancer genes. Candi-
dates linked to more than five known
cancer genes have a fold change of can-
cer terms on average greater than the
known cancer genes.
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advantage compared with other methods would be the
richness of evidence integrated in the FunCoup links. For
short lists, it may be necessary to lower the cutoff compared
with this study to obtain a reasonable amount of links.

Many of our candidate genes were supported as cancer
genes by the HPA database. However, even if a gene does
not have differential cancer/normal expression in HPA, this
does not disprove its potential implication in cancer. The
protein level changes associated with the tumor progression
may be too subtle to detect with the HPA technology. How-
ever, the predicted functional coupling to a cancer pathway is
still valid, and the gene in question may well turn out to be a
useful marker or therapeutic target.

The “total differential expression” measure used here was
only intended to investigate the validity of the MaxLink ap-
proach and not as a definite indicator of cancer relevance.
Because we average across all cancer types, a gene differ-

entially expressed in only one or a few cancer types might
receive an unfairly low total DE value.

The main result of this study is the ranked list of novel cancer
gene candidates. The 185 candidates connected to 10 or more
known cancer genes are prime targets for new experiments that
will lead the way to better understanding cancer. Some of the
candidates with a lower maxlink score may also develop into
important cancer biomarkers or targets, but there is a rationale
for focusing on the high scoring genes. A high maxlink score is
an indication that the candidate acts as a hub and plays a
central role in the process and is more likely to be of widespread
importance in many different tumors. On the other hand, such
functions are typically also important for healthy tissue homeo-
stasis and may be unsuitable as targets for inhibition. An ex-
ception to this would be hubs that act in parallel in healthy tissue
but only one is functional in a tumor. Such a situation would
make a hub an excellent cancer-specific drug target.

FIG. 7. FunCoup subnetwork of candidate cancer gene RPA1 surrounded by functionally coupled known cancer genes. RPA1 is the
yellow circle, whereas the known cancer genes are colored/shaped according to KEGG (30) pathway membership. Note that KEGG contains
a relatively small number of cancer pathways; hence, most genes are not assigned to any pathway (gray balls). All green genes are from cancer
pathways, however. The figure was made using the jSquid applet (31).
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E., Droege, A., Krobitsch, S., Korn, B., Birchmeier, W., Lehrach, H., and
Wanker, E. E. (2005) A human protein-protein interaction network: a
resource for annotating the proteome. Cell 122, 957–968

3. Bader, G. D., Betel, D., and Hogue, C. W. (2003) BIND: the biomolecular
interaction network database. Nucleic Acids Res. 31, 248–250

4. Ramani, A. K., Bunescu, R. C., Mooney, R. J., and Marcotte, E. M. (2005)
Consolidating the set of known human protein-protein interactions in
preparation for large-scale mapping of the human interactome. Genome
Biol. 6, R40

5. Peri, S., Navarro, J. D., Amanchy, R., Kristiansen, T. Z., Jonnalagadda,
C. K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T. K.,
Gronborg, M., Ibarrola, N., Deshpande, N., Shanker, K., Shivashankar,
H. N., Rashmi, B. P., Ramya, M. A., Zhao, Z., Chandrika, K. N., Padma,
N., Harsha, H. C., Yatish, A. J., Kavitha, M. P., Menezes, M., Choudhury,
D. R., Suresh, S., Ghosh, N., Saravana, R., Chandran, S., Krishna, S.,
Joy, M., Anand, S. K., Madavan, V., Joseph, A., Wong, G. W., Schi-
emann, W. P., Constantinescu, S. N., Huang, L., Khosravi-Far, R., Steen,
H., Tewari, M., Ghaffari, S., Blobe, G. C., Dang, C. V., Garcia, J. G.,
Pevsner, J., Jensen, O. N., Roepstorff, P., Deshpande, K. S., Chinnaiyan,
A. M., Hamosh, A., Chakravarti, A., and Pandey, A. (2003) Development
of human protein reference database as an initial platform for approach-
ing systems biology in humans. Genome Res. 13, 2363–2371

6. Lehner, B., and Fraser, A. G. (2004) A first-draft human protein-interaction
map. Genome Biol. 5, R63

7. Brown, K. R., and Jurisica, I. (2005) Online predicted human interactions
database. Bioinformatics 21, 2076–2082

8. Persico, M., Ceol, A., Gavrila, C., Hoffmann, R., Florio, A., and Cesareni, G.
(2005) HomoMINT: an inferred human network based on orthology map-
ping of protein interactions discovered in model organisms. BMC Bioin-
formatics 6, Suppl. 4, S21

9. Rhodes, D. R., Tomlins, S. A., Varambally, S., Mahavisno, V., Barrette, T.,
Kalyana-Sundaram, S., Ghosh, D., Pandey, A., and Chinnaiyan, A. M.
(2005) Probabilistic model of the human protein-protein interaction net-
work. Nat. Biotechnol. 23, 951–959

10. Jensen, L. J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J.,
Doerks, T., Julien, P., Roth, A., Simonovic, M., Bork, P., and von Mering,
C. (2009) STRING 8—a global view on proteins and their functional
interactions in 630 organisms. Nucleic Acids Res. 37, D412–D416

11. Alexeyenko, A., and Sonnhammer, E. L. (2009) Global networks of func-
tional coupling in eukaryotes from comprehensive data integration. Ge-
nome Res. 19, 1107–1116

12. Emahazion, T., Feuk, L., Jobs, M., Sawyer, S. L., Fredman, D., St Clair, D.,
Prince, J. A., and Brookes, A. J. (2001) SNP association studies in
Alzheimer’s disease highlight problems for complex disease analysis.
Trends Genet. 17, 407–413

13. Perez-Iratxeta, C., Bork, P., and Andrade, M. A. (2002) Association of genes

to genetically inherited diseases using data mining. Nat. Genet. 31,
316–319

14. Turner, F. S., Clutterbuck, D. R., and Semple, C. A. (2003) POCUS: mining
genomic sequence annotation to predict disease genes. Genome Biol. 4,
R75

15. George, R. A., Liu, J. Y., Feng, L. L., Bryson-Richardson, R. J., Fatkin, D.,
and Wouters, M. A. (2006) Analysis of protein sequence and interaction
data for candidate disease gene prediction. Nucleic Acids Res. 34, e130

16. Lage, K., Karlberg, E. O., Størling, Z. M., Olason, P. I., Pedersen, A. G.,
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