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Abstract
The state-of-the-art technology for theoretically exact local computed tomography (CT) is to
reconstruct an object function using the truncated Hilbert transform (THT) via the projection onto
convex sets (POCS) method, which is iterative and computationally expensive. Here we propose to
reconstruct the object function using the THT via singular value decomposition (SVD). First, we
review the major steps of our algorithm. Then, we implement the proposed SVD method and perform
numerical simulations. Our numerical results indicate that our approach runs two orders of magnitude
faster than the iterative approach and produces an excellent region-of-interest (ROI) reconstruction
that was previously impossible, demonstrating the feasibility of localized pre-clinical and clinical
CT as a new direction for research on exact local image reconstruction. Finally, relevant issues are
discussed.
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I. Introduction
Let μ(r ⃗) be a smooth function on a compact support Ω ⊂ R2, with r ⃗ = (r1, r2) and R2 denoting
the two-dimensional (2D) real space. Define the line integral

(1)

for s ∈ R and 0 ≤ ϕ < π, where u⃗(ϕ) = (cos ϕ, sin ϕ) and u⃗⊥ = (ϕ) (−sin ϕ, cos ϕ) . p(s, ϕ) can
be extended to ϕ ∈ R with p(s, ϕ + π) = p(−s, ϕ). For a fixed ϕ0, by Noo et al. [1], the
backprojection of differential data

(2)

can be expressed as the Hilbert transform of μ along the line L through r ⃗0 which is parallel to
n⃗ (−sin ϕ0, cos ϕ0):
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(3)

where “PV” indicates the Cauchy principal value, and HL the Hilbert Transform along the line
L.

For clinical applications, it is highly desirable to minimize the x-ray dose during a CT scan
because the ionizing radiation may induce cancers and genetic damage in the patient. Naturally,
the limited data reconstruction strategy can be used to reduce the x-ray dose significantly. This
strategy may improve the data acquisition speed at the same time. Let us denote the 2D μ(r ⃗)
on a line L as f(x) and b(r ⃗0) as g(x) where x is the one-dimensional (1D) coordinate along the
line L. Assume the intersection of the compact support and the line L is the interval (c1, c2)
with c1 < c2, which imply that f(x) = 0 for x ∉ (c1, c2). Also, let us assume that the backprojection
of differential data can be exactly obtained from the original projection data through the interval
(c3, c4) with c3 < c4. All the intervals (c3, c4) form a sub-region inside the compact support of
μ(r ⃗). This sub-region usually is called the region-of-interest (ROI) or field of view (FOV).
Recovering the object function inside the ROI is generally called local image reconstruction.
Using the above notations, Eq. (3) can be rewritten as

(4)

In this paper, we call g(x) on the interval (c3, c4) as the truncated Hilbert Transform (THT).
By the sufficient reconstruction condition of the backprojection filtration algorithms [1-3], f
(x) can be exactly reconstructed on the whole compact support interval (c1, c2) if c3 < c1 < c2
< c4 (Fig. 1(a)). Lately, Defrise et al. [4] proposed the enhanced condition that f(x) can be
exactly reconstructed on the interval (c1, c4) if c3 < c1 < c4 < c2 (Fig. 1(b)). In the case of c1 <
c3 < c4 < c2, it is the well known local reconstruction problem that does not have a unique
solution [5]. However, we recently proved that the exact reconstruction is possible in this case
with some prior knowledge, which leads to many clinical or pre-clinical applications [6,7]. If
there exist real numbers c1 < c3 < c5 < c4 < c2 and f(x) is known on the interval (c3, c5), f(x)
can be exactly reconstructed on the interval [c5, c4) (Fig. 1(c)). Although the projection onto
convex sets (POCS) method has been employed to recover f(x) iteratively [4,7], it is
computationally very expensive. To our best knowledge, there is no analytic method to recover
f(x) in the cases of c3 < c1 < c4 < c2 and c1 < c3 < c5 < c4 < c2. Therefore, it is crucial to develop
a fast yet stable method for the local reconstruction using the THT.

In this paper, we propose to recover f(x) using the THT via singular value decomposition (SVD)
[8,9]. In the next section, we review the major steps of our algorithm. In the third section, we
demonstrate in the numerical simulation that the SVD method is superior to the POCS method
in terms of computational efficiency. In the last section, we discuss relevant issues and conclude
the paper.

II. Singular Value Decomposition
For our local reconstruction problem, the THT g(x) in Eq. (4) can be exactly computed from
a truncated projection dataset via Eq. (2). That is, b(r ⃗0) is computed only from the projection
data whose paths go through the point r ⃗0. For brevity, we assume that the readers are familiar
with the backprojection process [1,2,10] and focus on how to recover f(x) from Eq.(4).
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To introduce the SVD method for reconstruction of f(x) , we first discretize the real x -axis with
a uniform sampling interval xδ. Both f(x) and g(x) are then sampled on the discrete points on
the x -axis. Denote f(x) on the sampling points in (c1, c2) as f1, f2, ⋯ fn ⋯, fN and g(x) on the
sampling points in (c3, c4) as g1, g2, ⋯ gm, ⋯ gM. Eq.(4) can be written as

(5)

where

(6)

(7)

(8)

In Eqs.(6) and (7), “T” represents the transpose operator. In Eq.(8), hm,n is the weighting
coefficient. Let x f,n and xg,m be the corresponding coordinates on the x -axis for fn and gm.
Based on the discrete Hilbert Kernel developed in [11], it is easy to show that

(9)

With

(10)

The case lm,n = 0 in Eq.(9) exactly corresponds to the singular point in the Cauchy principal
integral in Eq.(4). If some fn are known, we may divide F into two parts

(11)

where Fu is the unknown part while Fk is the known part. Correspondingly, the coefficient
matrix H can be divided into the two parts

(12)

Then, we immediately arrives at a linear equation system
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(13)

with G̃ = G − Hk Fk, H̃ = Hu and F̃ = Fu. It should be pointed out that Eq. (13) covers all the
reconstruction problems illustrated in Figure 1.

In most of our applications, Eq. (13) is not well-posed in general. Hence, we cannot solve F̃
satisfactorily using the common least-square method. Assuming that the dimension of F̃ is Ñ,
the dimension of G̃ and H̃ are M and M × Ñ, respectively. According to the SVD theory, the
matrix H̃ has a SVD in the following form [8,9]

(14)

where U and V are orthogonal matrices of M × M and Ñ × Ñ respectively, and Λ is a M × Ñ
diagonal matrix whose diagonal elements with λq satisfying λ1 ≥ ⋯ ≥ λq ≥ ⋯ λQ with Q = min
(M, Ñ) . In this way, we have a stable numerical solution for F̃ [8,9],

(15)

where Λ−1 is an orthogonal matrix of Ñ × M whose diagonal elements  is defined as

(16)

and ε > 0 is a free constant parameter. The method defined by Eqs. (15) and (16) is called
truncated SVD (TSVD) [8], which is a special case of regularization. The more general
regularization method is to solve F̃ by minimizing the object function

(17)

where S is a matrix of Ñ × Ñ, and ξ a free constant parameter. When S is a unit diagonal matrix,
the solution of (17) can be expressed as Eq. (15) except that

(18)

Eqs. (15) and (18) is called the Tikhonov regularization [8]. Both ε in Eq. (16) and ξ in Eq.
(18) play the same role in controlling the “smoothness” of the regularized solution.

III. Numerical Simulation
The SVD method described above was implemented in MatLab on a regular PC (1.0G memory,
2.8G CPU). As illustrated in Figure 2, the function μ(r ⃗) is an axial slice of the FORBILD thorax
phantom [12] with two small ellipses added into the heart to make it more challenging for
reconstruction, which was also used in the paper by Defrise et al. [4]. Non-truncated fan-beam
projection data of 1200 directions were analytically computed over a full-scan range, covering
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a field of view with a radius of 25cm. The radius of the scanning trajectory was assumed to be
57cm. The distance between the x-ray source and detector was 114 cm. There were 1200
detector elements along an 80cm line detector. Hence, the backprojection function at any point
can be calculated along any line to simulate different field of view. In our simulation, a full
reconstruction of the phantom was represented as a matrix of 1136×636. Our experimental
design consisted of two stages. In the first stages, we reconstructed the ROIs only using the
available THT datasets. In the second stages, we introduced a priori information into the SVD
method to improve the image quality. Specifically, we imposed the exact support constraint in
the SVD reconstruction, which was the same as done in the POCS reconstruction. For better
comparison between the SVD and POCS methods, we re-simulated all the cases described in
[7] using both the methods. Based on our experience, the TSVD and Tikhonov regularization
do not differ significantly. Hence, in the following we only present our results using TSVD
with ε = 0.05.

Figure 3 shows the images that were reconstructed within a rectangular ROI of 337×362 pixels
indicated in Figure 2(a), while Figure 4 are the images reconstructed within a cross-shaped
ROI of 366×362 pixels indicated in Figure 2(b). We assumed that in the Figure 2(b) the central
rectangular part of the cross-shaped ROI was known. To validate the stability of the SVD
method, the above results were repeated by adding Poisson noise with 2 × 105 photons per
incident ray [13]. The corresponding images are presented in Figures 3 and 4. It should be
pointed out that the known images in the rectangular parts in Figure 2(b) were from the
reconstructed images using the conventional FBP method from the same noise-free/noisy
datasets. Also, the images in Figure 4 were reconstructed along two groups of parallel lines
which are horizontal and vertical respectively. While the TSVD method only took 1.43s and
2.92s to recover Figure 3(a) and Figure 4(a) respectively, the POCS method used 252.11s and
314.39s to reconstruct Figure 3(b) and Figure 4(b). Since the build-in SVD decomposition and
Matrix operations (for both SVD and POCS methods) in Matlab are well optimized, based on
our experience the SVD method proposed in this paper can reduce the computational time by
two orders of magnitude, as compared to that required by the POCS method with comparable
simulation parameters [7].

In reference to Figures 3 and 4, the following comments are in order. First, all the reconstructed
images using either the SVD or POCS methods produced streak artifacts, especially near the
regions where the truncated Hilbert transforms were not available, that is, near the point c3 or
c4. According to Defrise et al. [4], these artifacts were caused by the high contrast structures
located just outside the field of view. This argument can be also made based on the stability
analysis in our previous work [7] or that by Defrise et al. [4]. Second, from the reconstructed
images with and without noise, we conclude that reconstructed images using the SVD method
have an image quality comparable to that with the POCS method in terms of contrast resolution
and image noise. This evidence is in strong support of the exact reconstruction claims made
by Defrise et al. [4] and our group [7]. Third, although we assumed the support of the object
function when the SVD method was applied, it is not necessary to know the exact support. In
fact, we can assume a larger support to cover the exact support in practical applications. Fourth,
prior information is helpful to improve the image quality. Although the SVD method is not as
flexible as the POCS method to incorporate the prior information, we can optimize the
transform matrix S in Eq. (17) subject to additional constraints. However, these need more
theoretical analysis and numerical tests. We will work along this direction and report our results
in the future.

IV. Discussions and Conclusion
In the classic references on SVD [8,9], it was assumed that the dimension of H̃ satisfying M ≥
Ñ which implies that the number of measured data should not smaller than that of the unknown
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variables. For the reconstruction problem from THT, this requires that (a) (c4 − c3) > (c2 −
c1) in the case of c3 < c1 < c4 < c2 and (b) (c4 − c3) > (c2 − c5) + (c3 − c1) in the case of c1 <
c3 < c5 < c4 < c2. Hansen derived the perturbation bounds to demonstrate the stability of SVD
for recovering all the Ñ variables with M ≥ Ñ. Under this condition M ≥ Ñ, Hansen proved that
if δ is the ∥•∥2 norm of the error of the measured data, the ∥•∥2 norm of the reconstruction error
will be bounded by a constant multiple of δ. This reconstruction error bound is better than what
was obtained in [4] and [7], which is only less than a constant multiple of a fractional power
of δ. On the other hand, the most common case is M < Ñ for the reconstruction problem from
the THT that cannot be covered by Hansen’s results. Although the SVD method can not stable
recover all the Ñ variables, as illustrated in the this study, it can obtain a stable estimation for
a majority of the unknown variables, which have been theoretically established [4,7]. We will
report more theoretical analysis and estimation results on the perturbation bounds in the near
future.

In the review process of this manuscript, a reviewer brought to our attention a conference
abstract by Kudo [14], in which he reported a uniqueness result on the interior reconstruction.
Specifically, he claimed the following theorem that “Let S be a pathwise connected set (non-
convex set is allowed) which corresponds to a ROI. Let H be a subset of S on which the 1-D
Hilbert transform Hf (x, y) is accessible using the DBP method. Then, the object f (x, y) is
uniquely determined on S if the following two conditions are satisfied. (1) f (x, y) is known a
priori on the set K = S \ H. (2) There exists a subset (possibly a small subset) of S (denoted by
B) on which both Hf (x, y) and f (x, y) are known.” In Nov. 2007, Kudo et al. presented their
latest results along this line [15], in which they excluded the lower case in Figure 1 (c) (a non-
convex ROI case) that is a counter-example to the theorem in [14]. Additionally, in [14] Kudo
did not request that set B be of non-zero measure and did not mention a technique to achieve
exact ROI reconstruction. As a matter of fact, after reading the paper by Defrise et al. [4] in
May, 2006, we immediately had the hypothesis that the exact interior reconstruction is solvable
for any set B, and considered it as a key to solve our long-standing conjecture on the correctness
of an exact FBP helical cone-beam formula that utilizes curved filtering paths [16]. However,
we have been unable to perform analytic continuation from knowledge on a set of zero measure.
Hence, our work on exact interior reconstruction should be considered as original.

In conclusion, local image reconstruction using the THT makes it possible to recover a ROI
exactly under the condition that there is some known region in the ROI. In practice, we may
find that the known information inside a sub-region of the ROI, such as air around a tooth,
water in a device, or metal in a semiconductor. Our method represents the-state-of-art
understanding of exact local CT. Because it requires the minimum amount of projection data,
this approach helps not only reduce the x-ray radiation exposure but also improve the data
acquisition speed. The SVD method we proposed here offers an efficient and stable way for
this purpose, which is the main contribution of this technical note. More work will be conducted
for further improvement of image quality along this direction.
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Figure 1.
Various exact reconstruction regions using the truncated Hilbert Transform based on different
sufficient conditions. (a) The exact reconstruction region by Noo et al.[1], (b) that by Defrise
et al. [4], and (c) that by our group [7].
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Figure 2.
Representative slice of the thorax phantom [6]. (a) A rectangular ROI satisfying Defrise’s
condition in [4] and (b) a cross-shaped ROI inside the object compact support with some known
region satisfying our condition in [7]. The display window is [0.9,1.1] in both the cases.
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Figure 3.
Reconstructed results in the rectangular ROI shown in Figure 2(a). (a) The image reconstructed
using the TSVD method without any prior information, (b) the counterpart of (a) reconstructed
using the POCS method; (c) an improved version of (a) reconstructed using the TSVD with
the known compact support; (d) the counterpart of (c) reconstructed using the POCS method.
(e)-(h) are the counterparts of (a)-(d) in the noisy data case. The display window is [0.9,1.1].
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Figure 4.
Reconstructed results in the cross-shaped ROI shown in Figure 2(b), which are arranged in the
way similar to Figure 3.
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