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Abstract
Human herpesvirus (HHV)-8, also called Kaposi’s sarcoma-associated herpesvirus, was discovered
in 1994 and was rapidly sequenced, revealing several unique and surprising features of its genetic
makeup. Among these discoveries was the identification of the first viral homolog of IL-6 and three
CC/β-chemokine ligands (viral CCL-1, -2 and -3), not previously found in γ-herpesviruses. Viral
IL-6 was immediately recognized as a potential contributor to HHV-8 pathogenesis, specifically
endothelial-derived Kaposi’s sarcoma and the B-cell malignancy multicentric Castleman’s disease
with which IL-6, a proangiogenic and B-cell growth factor, had previously been implicated. The
roles of the viral chemokines were speculated to involve immune evasion; however, like viral IL-6,
the viral chemokines have the potential to contribute to pathogenesis through their shared angiogenic
activities, known to be important for Kaposi’s sarcoma and HHV-8-associated primary effusion
lymphoma, and also via direct prosurvival activities. This article will discuss the molecular
properties, activities and functions of viral IL-6 and the viral CCLs, proteins that could provide
appropriate targets for antiviral and therapeutic strategies.
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Human herpesvirus (HHV)-8 was discovered in 1994 by PCR-based representational
difference analysis as a herpesvirus agent associated with Kaposi’s sarcoma (KS) [1]. HHV-8
sequences were subsequently detected in malignant B cells of multicentric Castleman’s disease
(MCD) [2]. In both cases, IL-6 had been implicated in disease development; elevated levels
of human IL-6 (hIL-6) had been detected in KS lesions and in the circulation of MCD patients,
correlating with disease severity, KS cells in culture were reported to be mitogenically
responsive to IL-6, and IL-6 was known to promote B-cell proliferation [3–7]. HHV-8 was
also identified rapidly to be present in primary effusion lymphomas (PEL), formerly referred
to as body cavity-based lymphomas, another B-cell malignancy [8–10]. Thus, when the IL-6
homolog was identified in HHV-8 [11–13] its potential role in virus-associated neoplasia was
immediately recognized and work began in several laboratories to characterize the molecular
and biological properties of this novel viral cytokine. Like viral IL (vIL)-6, the three
chemokines of HHV-8, specified by open reading frames K6 (viral CC/β-chemokine ligand
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[vCCL]-1/viral macrophage inflammatory protein [vMIP]-1A/MIP-I), K4 (vCCL-2/vMIP-1B/
MIP-II) and K4.1 (vCCL-3/viral β-chemokine [BCK]/MIP-III), were identified following
partial and complete sequencing of the viral genome [14–16]. It was discovered that each
specified angiogenic properties, as recognized by standard chick chorioallantoic and rabbit
corneal assays. Therefore, they had the potential to contribute to KS pathogenesis [17,18].

In respect to the roles of vIL-6 and vCCLs in virus biology and their potential contribution to
viral pathogenesis, it is important to note that each is expressed during productive replication
[11,15,19–21]. Therefore, it is speculated that they promote virus production, either directly
via influences on the cell in which they are produced or indirectly by way of paracrine effects
on surrounding cells, through their own activities or those of viral cytokine-induced cellular
factors. Paracrine effects are likely to include immune evasion functions of the viral
chemokines via agonist and inverse-agonist activities on cellular chemokine receptors (see
later). However, the viral chemokines, in addition to vIL-6, are also able to exert their effects
in an autocrine manner to promote cell survival. The viral chemokines vCCL-1 and -2 enhance
endothelial cell survival and virus production under lytic cycle-induced stress [22]. For vIL-6,
which, unlike the viral chemokines, can be expressed at low levels during latency (in PEL cells
at least), autocrine activity is enhanced by the ability of the viral cytokine to signal
intracellularly. Promotion of cell proliferation and survival via this route has been reported
[23]. Thus, vIL-6 has the potential to contribute to viral pathogensis in a direct autocrine manner
during latency, promoting proliferation and survival, and thereby, viral maintenance. It may
also contribute to pathogenesis in a paracrine manner during productive replication, when
induced expression of the viral cytokine allows for its abundant secretion from lytically infected
cells and influences on the growth, survival or other properties of surrounding cells (latently
infected and uninfected). Both intracrine and paracrine activities of vIL-6 are likely to
contribute to virus-associated neoplasia in addition to their presumed positive roles in viral
latency and productive replication in the context of host infection.

The molecular properties of the viral cytokines and the mechanisms they employ to mediate
signal transduction are important to understand in order to elucidate their biological activities
in respect of virus replication and viral pathogenesis and to allow the development of
therapeutic strategies to inhibit their activities. There are many questions remaining regarding
the properties and roles of the viral cytokines, but considerable progress has been made on
their characterization. The purpose of this article is to provide an overview of published
research in this area and to offer perspectives of the likely biological and pathological roles of
the viral cytokines.

Viral IL-6
Viral IL 6 was codiscovered independently by three research groups [11–13]. The viral protein
is significantly diverged from its human cellular counterpart (hIL-6), displaying only 25%
amino acid identity, but its structure is very similar to hIL-6 and to other cellular IL-6 proteins
[24,25]. It utilizes the same signal transducer, gp130, either together with or independently of
the nonsignaling α-receptor subunit, gp80, and shares activities similar to hIL-6 and other IL-6
proteins, such as activation of signal transducer and activator of transcription (STAT) and
CCAAT/enhancer-binding protein (C/EBP) transcription factors, growth support of IL-6-
dependent cells and activation of acute-phase proteins in hepatocytes [11,12,26–29]. The gp80
independence of vIL-6 and its very inefficient secretion from cells are the two major differences
between vIL-6 and cellular IL-6 proteins, and these properties have implications for the role
of the viral cytokine in virus biology, in addition to its contribution to HHV-8-associated
neoplasia. The properties and potential roles of vIL-6 in these processes are categorized and
discussed in detail in the following sections.
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Receptor binding & signaling by vIL-6
The viral cytokine, like its cellular homologs, possesses a four α-helical bundle structure in
which particular surface residues on different parts of the 3D structure are presented to distinct
interaction interfaces on each of the two gp130 signal transducer molecules to form a vIL-6-
bridged gp130 dimer (vIL-62–gp1302) [24]. In contrast to cellular IL-6 proteins, vIL-6 does
not require prior binding to gp80 to allow such interaction and complexing with gp130, but
vIL-6 can form equivalent and functional gp80-containing hexameric complexes (vIL-62–
g1302–gp802) [27,28,30–32]. The receptor-interaction sites on vIL-6 are, by analogy with
cellular counterparts, referred to as site I, II and III. These contact residues in the cytokine-
binding homology region (CHR) of gp80, gp130 CHR domains 2 and 3, and gp130 domain 1
(Ig-homology domain), respectively. Detailed information regarding the physical nature of
vIL-6-induced tetrameric complexes (vIL-62–gp1302) has been obtained via x-ray
crystallographic studies [24]. This work highlighted a vIL-6-unique hydrophobic pocket in site
II that was predicted to contribute significantly to interactions with gp130 CHR and
hypothesized to provide gp80 independence. However, in subsequent studies, mutagenesis of
these residues in vIL-6 did not abolish gp80-independent signaling by vIL-6, nor did their
introduction into hIL-6 confer gp80 independence [33]. Moreover, domain (e.g., helix B) and
amino acid substitutions involving residues unconnected with the direct interaction with g130
rendered vIL-6 gp80 dependent, implicating the importance of overall cytokine conformation
for vIL-6-induced tetrameric signaling [33]. Recently published work has provided further
support for this conclusion and determined that substitution of site III interface residues/regions
of hIL-6 with those of vIL-6 can confer gp80-independence to the human cytokine [34].
Therefore, it seems that vIL-6 naturally adopts a conformation that is conducive to dimerizing
interactions with gp130, whereas cellular IL-6 proteins first require a conformational change
mediated via binding to gp80.

Of significance in consideration of vIL-6 conformational requirements for gp130 interaction,
complexing and signaling is the recent elegant work from Dela Cruz and colleagues [35]. These
investigators examined the role of N-glycosylation for vIL-6–gp130 interactions and signal
transduction. Residues N78 and N89 are glycosylated and while glycosylation is not necessary
for the association of vIL-6 with gp130 (glycosidase treatment of the secreted protein does not
abrogate ligand–receptor association), N89 glycosylation is required for structural maturation
of the protein in order to achieve native conformation. These findings are generally consistent
with data demonstrating the interaction between vIL-6 and the endoplasmic reticulum
chaperone protein calnexin, involved in protein folding and quality control, and the requirement
of the glycosylated asparagine residues of vIL-6 for appropriate protein folding [36]. In contrast
to vIL-6, hIL-6, while glycosylated, is not dependent on glycosylation and eukaryotic cell
processing for native (active) protein conformation and does not interact with calnexin [36–
38]. This explains the 1000-fold reduced specific activity of bacterially produced recombinant
vIL-6 compared with eukaryotically produced vIL-6 and recombinant hIL-6 [27,39].

IL-6 signaling via gp130 leads to receptor recruitment and tyrosine phosphorylation-mediated
activation of STAT1 and STAT3 in addition to SHP2, which mediates activation of the MAPK
signaling pathway [40]. However, the two types of vIL-6-induced gp130 signaling complexes,
hexamer (containing gp80) and tetramer (devoid of gp80), have distinguishable signaling
profiles and biological activity. Incorporation of gp180 into vIL-6 signaling complexes leads
to enhanced signaling for a longer duration, increased STAT1:STAT3 ratios and better
promotes the growth of IL-6-responsive cells in culture [31]. This is consistent with the noted
stabilization of vIL-6-induced gp130 dimers by gp80 [30,33]. Amplitudes and durations of
STAT activation and support of cell growth by vIL-6 are greater than those mediated by hIL-6.
However, the molecular and structural basis of gp80-determined and ligand-specific
differences in signaling profiles and durations is not clear, and further research needs to be
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undertaken to understand these phenomena. Subtle conformational differences of complexes
may determine the accessibility of gp130 signaling tyrosine residues to activating JAKs,
inactivating phosphatases (SHP2), STATs and/or signaling-inhibitory SOCS proteins. The
differences in signaling mediated by gp80-containing hexameric and gp80-devoid tetrameric
complexes induced by vIL-6 may be significant in virus biology and viral pathogenesis. As
discussed later, intracellular activity of vIL-6, mediated from the endoplasmic reticulum, is
executed exclusively via tetrameric complexes, whereas both tetrameric and hexameric
complexes can form at the cell surface.

General properties & activities of vIL-6
As might be expected from the shared utilization of gp130 for signal transduction by vIL-6
and hIL-6, the two proteins are generally functionally analogous. As mentioned previously,
they activate common pathways (STAT and MAPK) and have qualitatively similar biological
effects, such as inducing acute-phase gene expression and supporting cell growth [11,26,27,
29,39,41]. Interestingly, vIL-6 can induce expression of hIL-6 in certain cell types, suggesting
the possibility of signal amplification in certain contexts and/or enabling strong paracrine
signaling when most vIL-6 is retained intracellularly [42,43].

However, there are notable differences between vIL-6 and hIL-6 activities, as detected in cell
culture assays. Using maximally active concentrations of vIL-6 and hIL-6 in the presence of
exogenously added gp80 (required for hIL-6 activity), it has been demonstrated that vIL-6 is
better able to support IL-6-dependent Baf-130 cell growth [31]. Furthermore, only vIL-6 is
able to stimulate the growth and survival of PEL cells in culture [41,44], although hIL-6 has
been reported to be specifically able to support clonal growth of PEL cells in soft agar, as
determined by using inhibitory antisense oligonucleotides [45]. The mechanisms underlying
these differences have not been determined, but the distinguishable profiles and amplitudes of
vIL-6 versus hIL-6 signaling presumably account for the different biological responses
observed [31].

Potential roles of vIL-6 in virus biology
In contrast to the extensive research undertaken on receptor interactions of vIL-6, signaling
complex formation and resulting signal transduction, little is known regarding the role of the
viral cytokine in virus biology. It has been speculated that proproliferative and prosurvival
activities of vIL-6 may contribute to the maintenance of latently infected cell pools if vIL-6 is
expressed during latency (see later) or from a subset of lytically infected cells within the
HHV-8+ population. Both direct and indirect functions of vIL-6 mediated via vIL-6-induced
cellular cytokines or other factors could be relevant to such a role during latency. However,
the predominant lytic expression of vIL-6 suggests that it functions to promote productive
replication, notwithstanding indications that such activity cannot be identified in culture.
Experimental utilization of a vIL-6-null virus revealed no effect on reactivated replication in
infected BJAB or Vero cells [46]. It remains likely that vIL-6 proreplication functions operate
in vivo, via potentially complex interactions with infected and uninfected cells. For example,
vIL-6 might enhance, through proinflammatory and/or angiogenic activities, the spread of virus
via the recruitment of permissive cells into or infected cells away from sites of active
replication. Addressing this aspect of vIL-6 function is, therefore, likely to require the
deployment of animal model systems, such as those utilizing vIL-6-encoding rhesus
rhadinovirus and appropriate viral mutants [47–49].

Possible contributions of vIL-6 to HHV-8 pathogenesis
Speculation regarding the role of vIL-6 in HHV-8 pathogenesis has focused on paracrine
contributions of the viral cytokine, owing to its lytic expression [11,20,21,50,51].
Pathogenesis-relevant activities, including the promotion of cell growth and induction of
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angiogenesis in support of B-cell and endothelial neoplasia, parallel the hypothesized role of
hIL-6 in MCD and KS [3,4,6,7]. Indeed, vIL-6 has been shown to be important for PEL cell
growth in culture and vIL-6-inducible VEGF is important for the growth and dissemination of
PEL in inoculated mice [41,52–54].

While it is likely that vIL-6 produced and released from lytically infected cells can function in
a paracrine fashion to contribute to HHV-8-associated neoplasia, it is important to note that
vIL-6 can also be produced during latency, at least in PEL cells. Intracellular, strictly autocrine
signaling by latently expressed vIL-6 contributes significantly to PEL cell proliferation and
survival via endoplasmic reticulum-localized tetrameric (gp80-devoid) signaling complexes
[23]. Thus, the inefficient secretion of vIL-6, noted initially by Meads and Medveczky [43],
may be important for restricting vIL-6 activity largely to HHV-8-infected cells during latency,
providing them with a growth and survival advantage that may contribute to PEL disease, in
addition to the maintenance of latent viral pools in the host. It is also possible that such intracrine
vIL-6 activity contributes to the high levels of active STAT3, known to be important for PEL
cell survival and implicated in many human cancers [55–58]. Cellular cytokines, such as hIL-6
and VEGF, induced by both intracrine and paracrine signaling by vIL-6 are highly likely to
contribute to HHV-8 neoplasia. In the case of latently expressed vIL-6, there would be no
restrictions on host gene expression imposed by lytic host shut-off mechanisms [59,60].
Potential mechanisms of vIL-6 involvement in HHV-8 neoplasia are illustrated in Figure 1.

HHV-8 chemokines
The viral chemokines were discovered as a result of directed and complete sequencing of the
HHV-8 genome [11,12,15,16]. The open reading frames were ultimately named K2, K4 and
K4.1, encoding vCCL-2, -1 and -3, respectively (previously referred to as vMIP-1B/vMIP-II,
vMIP-1A/vMIP-I and vBCK/vMIP-III). While clearly related to cellular CC-chemokines, the
viral proteins show limited sequence similarity to their cellular counterparts and direct
orthologs are difficult to discern with confidence. vCCL-1 and -2 have the closest amino acid
sequence similarity to both CCL-3/ MIP-1α and CCL-4/MIP-1β, while vCCL-3 is related to
CCL-2/monocyte chemotactic protein-1 and various other cellular chemokines. Owing to their
agonistic binding to Th2-expressed chemokine receptors, it has been proposed that all three
chemokines function to antagonize antiviral Th1 (cytotoxic T lymphocyte-mediated) immune
responses. In addition, the binding of vCCL-2 as a neutral ligand and cellular chemokine
antagonist to a variety of other cellular chemokine receptors has implicated this particular viral
chemokine in immune evasion via the blocking of normal chemokine-mediated responses to
viral infection. Apart from the likely functions of viral chemokines in immune evasion through
these activities, vCCL-1 and -2 also appear to function directly, in an autocrine manner, on the
cells in which they are expressed, to prolong cell survival in the face of lytic cycle-induced
proapoptotic signals and, therefore, to enhance productive replication of the virus. Prosurvival
activity of this sort clearly could contribute in a paracrine manner (as the chemokines are
expressed exclusively during lytic replication) to HHV-8 pathogenesis. The properties and
activities of the viral chemokines and their postulated roles in viral biology and pathogenesis
are discussed in the following sections.

Receptor recognition
Once the HHV-8 chemokines were identified, researchers focused on identifying the targeted
receptors. vCCL-1 and -2 were both shown to target CC chemokine receptor (CCR)8 to mediate
signaling, with vCCL-2 also reported to bind to and activate CCR3, and vCCL-3 identified as
an agonist for CCR4 [17,18,61–63]. vCCL-2 also targets the HHV-8 chemokine receptor, viral
G-protein-coupled receptor, to inhibit its constitutive (ligand-independent) activity [64]. More
recently, vCCL-2 and-3 agonistic targeting of XCR1 has been reported, in addition to
productive interactions of vCCL-1 and -2 with CCR5 [65–67]. The findings for vCCL-2 are
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discrepant with previous reports of neutral (nonsignaling) binding of XCR1 and CCR5 by
vCCL-2 and functionally antagonistic interactions of vCCL-2 with CCR5 and XCR1 agonists
[68–70]; the reasons for these discrepancies are uncertain. vCCL-2 has been reported to bind
to a variety of other receptors as a neutral ligand, therefore having the ability to block the
actions of cellular chemokines recognizing these same receptors; the receptors include CCR1,
CCR2, CCR10, CXCR4 and CX3CR1 [68,69,71,72]. As discussed later, the receptor binding
patterns exhibited by the chemokines, as agonists or antagonists, together with their lytic
expression kinetics, suggests that they may play an important role in immune evasion (Figure
2).

Potential roles of the viral chemokines in virus biology
All three of the viral chemokines are agonists for receptors that are expressed on Th2 cells and,
therefore, activate the humoral arm of the immune response rather than Th1 responses that are
involved in mediating a cytolytic attack of infected cells by the host. In consideration of such
functions, it is worth noting that vCCL-2 has been demonstrated, under flow culture conditions,
to mediate firm arrest on activated endothelial cells of Th2 cells (CCR3+/8+), via agonistic
activities, while blocking CCL5-mediated firm arrest and transmigration of Th1 cells
(CCR1+/5+) through antagonistic, neutral receptor binding [73]. Furthermore, in vivo
experiments using animal models have demonstrated effective blocking of immune
cytotoxicity by vCCL-2 and inhibition of CCL-5-mediated recruitment of CCR1+/5+ Th1 cells
[70,71]. In addition, KS tissues expressing vCCL-2 have been shown to display Th2
polarization, as evidenced by a preponderance of CCR3+ (Th2) over CCR5+/CXCR3+ (Th1)
leukocytes [73]. Clearly, the ability of vCCL-2 to act as a neutral ligand and antagonist and
target several chemokine receptors expressed on natural killer cells, Th1 and other T cells
indicates that the viral chemokine may act generally to inhibit T-cell-mediated immunity. Such
activities of vCCL-2 together with Th2 polarization by vCCL-1, -2 and -3 would be envisioned
to enhance productive replication of the virus and help prevent viral clearance during de
novo infection of the host (Figure 2).

It is likely that viral chemokines have other functions in virus biology. It has been reported,
for example, that vCCL-1 and -2 are able to promote chemotaxis and recruitment of monocytic
cells (THP-1) in vitro [67]. As monocytes are infected in vivo by HHV-8, these findings indicate
that viral chemokines may promote the recruitment of virus-permissive cells into sites of
ongoing productive replication and thereby facilitate viral amplification and dissemination.
Recruitment of permissive cells and spread of virus via infected cells may also be promoted
by virtue of the proangiogenic properties of all three chemokines [17,18]. In this model,
increased vascular permeability at sites of viral chemokine production (during lytic replication)
would enhance cellular migration into sites of productive replication and exit and dissemination
of newly infected cells from these sites. A distinct mechanism by which viral chemokines may
contribute to virus biology is through direct autocrine influence on the cells in which they are
expressed, during the virus lytic replication cycle. This hypothesis is based on the recognition
that vCCL-1 and -2 function to protect endothelial cells from stress-induced apoptosis, such
as that which occurs in lytically infected cells, and are required for optimal HHV-8 replication
in endothelial cells in culture [22]. Such survival signaling and proreplication activity is
mediated via CCR8, upon which viral chemokine signaling in endothelial cells is dependent.
CCR8 or vCCL-1/-2 depletion was found to lead to reduced viral titers in endothelial cell-based
reactivation experiments [22].

Potential contributions of vCCLs to pathogenesis
With regard to possible contributions of the viral chemokines to pathogenesis, it is of major
importance that they are each able to promote angiogenesis [17,18]. Presumably this property
is mediated via the induction of cellular angiogenic cytokines, such as VEGF, which has been
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shown to be induced by vCCL-1 in PEL cells [74]. VEGF, while likely to be relevent in KS,
is also a probable contributor to PEL disease, having been demonstrated to promote growth
and dissemination of PEL cells in inoculated mice [53]. vCCL-induced cytokines have the
potential to influence pathogenesis via their effects on cells surrounding those undergoing lytic
replication, for example by promoting cell proliferation, survival and inflammatory responses.
However, as mentioned previously, vCCL-1 and -2, at least, have the ability to mediate survival
signaling directly, and it is conceivable that this activity, demonstrated in endothelial cells
[22], could contribute to KS. Unlike other anti-apoptotic proteins of HHV-8 [75,76], the viral
chemokines can mediate their prosurvival activities via paracrine mechanisms, exerting their
influence on latently infected and other cells neighboring the lytically infected cells from which
the viral chemokines are secreted. In this way, their production in a minority of cells undergoing
lytic replication can support pathogenesis mediated primarily by latently infected cells (the
majority) in the population. This provides a means of latent–lytic cooperation in HHV-8-
associated neoplasia, a concept that is widely accepted for KS, but which also may apply to
PEL and MCD, in which VEGF, IL-6 and other activities may be relevant [5,7,52,53]. Another
contributory factor in KS again involves vCCL-1 and -2 via CCR8-mediated signaling, namely
the noted role of CCR8 in inducing vascular smooth muscle reorganization and activation of
angiogenic metalloproteinase-2 [77]. Thus, the viral chemokines may promote HHV-8
neoplasia via their angiogenic activities, their induction of various cytokines that influence cell
morphology and growth, and direct prosurvival activities.

Future perspective
The IL-6 and chemokine homologs encoded by HHV-8 provided the first examples of a viral
IL-6 homolog and γ-herpesvirus-specified chemokines. This, together with the associated
proangiogenic activities and consequent implications for potential roles in HHV-8-associated
neoplasia, led to great interest in these viral proteins. While it is difficult to determine with
precision the actual influences of these proteins in virus-associated pathogenesis, their
properties, as outlined in this article, provide support for the hypothesis that they are involved.
Not only do they promote angiogenesis, a key feature of KS and a likely contributor to PEL
and MCD, but vIL-6 also promotes B-cell growth and vIL-6, vCCL-1 and -2 mediate
prosurvival signaling in B lymphocytes and endothelial cells, which is likely to be of
significance in HHV-8 neoplasia affecting these cell types. While paracrine signaling is key
for contributions of the viral cytokines to HHV-8 neoplasia, an important and newly identified
property of vIL-6 is that it can be expressed as a bone fide latency protein (at low but
biologically active levels) and that intracellular signaling by the viral cytokine is important for
PEL cell growth, promoting both proliferation and survival. Thus, future therapeutic strategies
targeting vIL-6 could be useful for attacking latently infected cells, as well as productively
infected cells, but will require methods (e.g., RNAi-based methodologies) to inhibit vIL-6
functions intracellularly.

Ideas regarding the roles of the vIL-6 and the viral chemokines in virus biology have essentially
the same experimental basis as do hypotheses regarding the roles of the viral cytokines in virus-
associated neoplasia. Thus, proangiogenic and prosurvival properties of the cytokines,
identified in culture and in some in vivo experimental systems, point to functions that promote
virus productive replication (all viral cytokines) or maintain latent viral pools (vIL-6). The
proangiogenic activities are predicted to enhance the recruitment of HHV-8-permissive cells
and the spread of virus infection; the prosurvival functions to increase virus yield per cell, and
proproliferative and prosurvival activity of vIL-6 expressed during latency (in PEL cells at
least) to help maintain latent virus load in the host. The finding that vCCL-1 and -2 act in an
autocrine manner to promote endothelial cell survival and virus production during lytic
replication is a novel and unexpected finding, demonstrating that the viral chemokines can act
entirely independently of immune regulatory mechanisms to impact virus biology. It is possible
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that vIL-6 also functions in this manner, but supporting evidence is so far lacking. The likely
importance of cell-surface autocrine and paracrine signaling by the viral cytokines in promotion
of lytic replication suggests that the development of strategies that extracellularly target and
inactivate the viral cytokines may be particularly effective in blocking virus production and,
thereby, inhibiting likely contributions of lytic replication to HHV-8-associated disease, in
particular KS.

Future research on the biological consequences of viral chemokine signaling in cell types
infected with HHV-8 (B cells, monocytes and endothelial cells), in addition to the influence
of vIL-6 on virus lytic gene expression and virus productive replication, are warranted. These
avenues are likely to yield novel information regarding the functions of these cytokines in virus
biology and to provide new avenues to antiviral therapy.

Human herpesvirus 8 & pathogenesis

• Human herpesvirus (HHV)-8 is associated with Kaposi’s sarcoma, an endothelial
tumor, and two B-cell malignancies: primary effusion lymphoma (PEL) and
multicentric Castleman’s disease.

• Angiogenic and proinflammatory cytokines contribute to Kaposi’s sarcoma
development and may also play roles in PEL and multicentric Castleman’s disease.

HHV-8 cytokines

• HHV-8 cytokines comprise viral IL-6 (vIL-6) and three CC-chemokines (vCCL-1,
-2 and -3). All four are angiogenic.

• All HHV-8 cytokines are expressed during lytic (productive) replication; vIL-6
can be expressed at low, functional levels during latency in PEL.

• Viral cytokines have the potential to contribute to HHV-8 pathogenesis via
paracrine mechanisms; vIL-6 may also do so by autocrine signaling during latency.

Viral IL-6

• vIL-6 signals via the gp130 signal transducer and does not require the gp80 subunit
of the IL-6 receptor.

• vIL-6 can signal intracellularly from the endoplasmic reticulum and this is
important for PEL cell growth.

• Their role in HHV-8 replication is unknown.

Viral chemokines

• Chemokine receptor targeting (as agonists) suggests roles in immune evasion via
the suppression of Th1 responses.

• vCCL-2 is a broadly acting antagonist of cellular chemokines and is likely to
mediate immune evasion via this route.

• vCCL-1 and -2 support endothelial cell survival, contributing to HHV-8
replication efficiency and, potentially, to pathogeneis.
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Figure 1. Postulated activities of viral IL-6
The viral cytokine is expressed predominantly during lytic replication, presumably produced
in quantities to allow for an accumulation of significant, biologically active concentrations
extracellularly and to be able to mediate paracrine signaling. One consequence is the induction
of cellular cytokines from infected and uninfected cells alike; these cytokines can contribute,
along with vIL-6, to pathogenesis, for example by promoting cell proliferation and survival in
addition to angiogenesis. Both intracrine and cell-surface signaling can occur in lytically
infected cells (latter indicated); autocrine signaling by either route may contribute directly to
lytic replication. During latency, vIL-6 is expressed at low levels (detected in primary effusion
lymphoma cells) and intracrine signal transduction is likely to predominate. This is of
demonstrated importance for PELs cell growth; contributions of paracrine signaling in this
setting are uncertain but not required. As for paracrine signaling, intracellular activity of vIL-6
would be predicted to induce the expression of pathogenically relevant cellular cytokines.
PEL: Primary effusion lymphoma; vIL: Viral IL.
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Figure 2. Properties of human herpesvirus 8 chemokines
The viral chemokines are produced during lytic replication and are presumed to contribute
positively to virus replication both directly via autocrine activities and indirectly via
modulation of the immune system. Autocrine functions appear to include prosurvival signaling
to enhance human herpesvirus 8 replication, as determined in cultured endothelial cells (see
text for details). Immune modulation is hypothesized based on agonistic (signaling) and
antagonistic (competitive) interactions with specific cellular chemokine receptors, as indicated.
In general, chemokine agonistic interactions mediate Th2 polarization to inhibit antiviral Th1
responses, while neutral binding of several receptors by vCCL-2 prevents immune activities
mediated by cellular chemokines recognizing these receptors. The receptors include CCR2,
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CXCR4, XCR1 and CX3CR1 expressed on NK, T and B cells. Recently, vCCL-1 and -2 have
been reported to be CCR5 agonists, in contrast to previous findings of vCCL-2 antagonist
activity on CCR5 (indicated in figure), and monocyte recruitment is reported to be mediated
by vCCL-1 and -2 [67]. In addition, vCCL-3 has been reported to activate XCR1 (not indicated
in figure) [68]. Monocyte recruitment by vCCL-1 and -2 may enhance virus dissemination in
the host, as monocytes are known to be infected by human herpesvirus 8 in vivo.
CCR: CC-chemokine receptor; CXCR: CXC-chemokine receptor; DC: Dendritic cell; Eo:
Eosinophil; Mφ: Macrophage; MC: Monocytic cell; NK: Natural killer; vCCL: Viral CC/β-
chemokine ligand; XCR: XC-chemokine receptor.
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