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Abstract
The classes of monotone or convex (and necessarily monotone) densities on ℝ+ can be viewed as
special cases of the classes of k-monotone densities on ℝ+. These classes bridge the gap between the
classes of monotone (1-monotone) and convex decreasing (2-monotone) densities for which
asymptotic results are known, and the class of completely monotone (∞-monotone) densities on
ℝ+. In this paper we consider non-parametric maximum likelihood and least squares estimators of a
k-monotone density g0.We prove existence of the estimators and give characterizations. We also
establish consistency properties, and show that the estimators are splines of degree k − 1 with simple
knots. We further provide asymptotic minimax risk lower bounds for estimating the derivatives

, at a fixed point x0 under the assumption that .
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1 Introduction
Densities with monotone or convex shape are encountered in many non-parametric estimation
problems. Monotone densities arise naturally via connections with renewal theory and uniform
mixing; see Vardi, (1989) and Woodroofe and Sun (1993), for examples of the former, and
Woodroofe and Sun (1993), for the latter in an astronomical context. Estimation of monotone
densities on (0, ∞) was initiated by Grenander (1956a,b) with related work by Ayer et al.
(1955), Brunk (1958), and Van Eeden (1957a,b). Asymptotic theory of the maximum
likelihood estimation (MLE) was developed by Prakasa Rao (1969)with later contributions by
Groeneboom (1985, 1989), and Kim and Pollard (1990).

Convex densities arise in connection with Poisson process models for bird migration and scale
mixtures of triangular densities; see, for example, Hampel, (1987) and Anevski, (2003).
Estimation of convex densities on (0, ∞) was apparently initiated by Anevski (1994) (see also
Anevski, 2003), and was pursued by Jongbloed (1995). The limit distribution theory for the
MLE and least square (LS) estimators and their first derivative at a fixed point was obtained
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by Groeneboom, Jongbloed, and Wellner (2001). For consistent estimation of the estimators
at the origin, see. Balabdaoui (2007).

Estimation in the class of k-monotone densities on ℝ+, denoted hereafter by k, has been very
recently considered in Balabdaoui and Wellner (2007) and has several motivating components.
By definition, g is k-monotone on (0, ∞) if g is non-negative and (−1)lg(l) is non-increasing
and convex for l ∈ {0, …, k − 2} for k ≥ 2, and simply non-negative and non-increasing when
k = 1. As will be shown in section 2, it follows from the results of Williamson (1956), Lévy
(1962), and Gneiting (1999) that g is a k-monotone density if and only if it can be represented
as a scale mixture of beta(1, k) densities. For k = 1 this recovers the well-known facts that
monotone densities are scale mixtures of uniform densities, and, for k = 2, that convex
decreasing densities are scale mixtures of the triangular, or beta(1, 2), densities. Besides the
obvious goal of generalizing the existing theory for the 1-monotone (i.e., monotone) and 2-
monotone (i.e., convex and decreasing) classes 1 and 2, these classes provide a potential
link to the important limiting case of the k-monotone classes, namely the class ∞ of completely
monotone densities. Densities g in ∞ have the property that (−1)lg(l)(x) ≥ 0 for all x ∈ (0, ∞)
and l ∈ {0, 1, …}. It follows from Bernstein’s theorem (see, e.g., Feller, 1971, p. 439, or
Gneiting, 1998) that g ∈ ∞ if and only if it can be represented as a scale mixture of exponential
densities. Completely monotone densities arise naturally in connection with mixtures of
Poisson processes and have been used in reliability theory and empirical Bayes estimation, see
Jewell (1982) and the references therein, and Balabdaoui and Wellner (2007) for further
motivation and references.

In Balabdaoui and Wellner (2007), the joint limit distribution theory for the MLE and LSE of
a k-monotone density and their higher derivatives up to degree k − 1 at a fixed point is
established modulo a spline conjecture. The rate of convergence of the j-th derivative, j = 0,
…,k − 1 is shown to be n(k−j)/(2k + 1). Note that these rates coincide with the minimax lower
bounds obtained here. As for the joint limiting distribution, it depends on a Gaussian process
Hk defined uniquely almost surely as follows:

• Hk(t)≥Yk(t), t ∈ ℝ.

• (−1)k Hk is 2k-convex; that is,  exists and is convex.

• The process Hk satisfies

where Yk is the (k − 1)-th fold integral of a two-sided Brownian motion plus (−1)kk!/(2k)!t2k,
t ∈ ℝ. Jewell (1982) initiated the study of MLE in the family ∞ and succeeded in showing
that the MLE F̂n of the mixing distribution function is almost surely weakly consistent.
Although consistency of the MLE follows now rather easily from the results of Pfanzagl
(1988) and van de Geer (1993), little is known about rates of convergence or asymptotic
distribution theory for either the estimator of the mixed density or the estimator of the mixing
distribution function. As noted in Balabdaoui and Wellner (2007), it may be possible to obtain
some insight into the asymptotics of the MLE of a completely monotone density by better
understanding the behavior of the MLE of a k-monotone density for arbitrary k>2. Indeed, as
the class ∞ is the intersection of all of the ks, it can be well approximated by k with a large
k.

Existence of the MLE and LSE of a k-monotone density, their characterization, their structure
(splines of degree k − 1 and with simple knots), and consistency of their derivatives up to degree
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k − 1 are used in Balabdaoui and Wellner (2007). In this paper, we give proofs of those essential
properties in sections 2 and 3. In section 4, we establish asymptotic minimax lower bounds for

estimation of  under the assumption that  exists and is non-zero.

In the sequel, X1, …, Xn are i.i.d. random variables with density g0 ∈ k, n is the corresponding
empirical distribution function. We write X(1),…, X(n) for the order statistics of X1,…, Xn, use
the notation z+ = z1[z≥0], and write λ for Lebesgue measure on ℝ.

2 Existence and characterizations
2.1 Mixture representation

Lemma 1 characterizing integrable k-monotone functions and giving an inversion formula
follows from the results of Williamson (1956).

LEMMA 1—(Integrable k-monotone characterization) A function g is an integrable k-
monotone function if and only if it is of the form

(1)

where F is non-decreasing and bounded on (0, ∞). Thus g is a k-monotone density if and only
if it is of the form of Equation 1 for some distribution function F on (0, ∞). If F in Equation 1

satisfies , then at a continuity point t > 0, F is given by

(2)

where .

PROOF—The representation in equation 1 follows from theorem 5 of Lévy (1962) by taking
k = n + 1 and f ≡ 0 on (−∞, 0]. The inversion formula 2 follows from lemma 1 in Williamson
(1956) together with an integration by parts argument.

For k = 1 (k = 2), note that the characterization matches with the well-known fact that a density
is non-decreasing (non-decreasing and convex) on (0, ∞) if and only if it is a mixture of uniform
densities (triangular densities). More generally, the characterization establishes a one-to-one
correspondence between the class of k-monotone densities and the class of scale mixture of
beta densities with parameters 1 and k. From the inversion formula in equation 2, one can see
that a natural estimator for the mixing distribution F is obtained by plugging in an estimator
for the density g and it becomes clear that the rate of convergence of estimators of F will be
controlled by the corresponding rate of convergence for estimators of the highest derivative
g(k−1) of g. When k increases the densities become smoother, and therefore the inverse problem
of estimating the mixing distribution F becomes harder.

2.2 Existence and characterization of the estimators
We now consider the MLE and LSE of a k-monotone density g0. We show that these estimators
exist and give characterizations thereof. In the following, λ is the Lebesgue measure, k is the
class of all k-monotone functions on (0, ∞), and k ⊂ L1(λ) is the class of all integrable k-
monotone functions. Note that k ⊂ k ∩ L1(λ).
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Let

be the log-likelihood function (really n−1 times the log-likelihood function). We want to
maximize ln(g) over g ∈ k. To do this, we change the optimization problem to one over the
whole cone k ∩ L1(λ). This can be done by introducing the ‘adjusted likelihood function’
ψn(g) defined (as in Silverman, 1982) as follows:

for g ∈ k ∩ L1(λ). Note that, using the one-to-one correspondence between the mixed k-
monotone function g = gF and its corresponding mixing distribution F, maximizing ψn over
the space k ∩ L1(λ) is equivalent to maximizing

over the space of bounded and non-increasing functions F on (0, ∞).

LEMMA 2—The maximizer ĝn of ψn over k ∩L1(λ) exists and belongs to k (and hence is a
density). Furthermore, ĝn is of the form

where m ∈ ℕ \ {0}, and ŵ1, ⋯, ŵm and â1, ⋯,âm are respectively the weights and the support
points of the maximizing (discrete) mixing distribution F̂n.

REMARK 1—It follows from lemma 2.2 that the MLE ĝn is a k-monotone spline of degree
k − 1 with m simple knots â1, ⋯,âm (for a definition of splines and multiplicity of the knots,
see, e.g., de Boor, 1978, and De Vore and Lorentz, 1993). Note that this is also equivalent to
saying that ĝn is a finite mixture of beta’s with parameters 1 and k.

REMARK 2—It can be shown that the support points of the mixing distribution F̂n fall stricty
between the order statistics X(1),‥‥,X(n) with at most one support point in (X(i), X(i+1)). Note
also that by definition of the MLE, the last support point has to be strictly larger than X(n).

PROOF OF LEMMA 2—From Lindsay (1983), we conclude that there exists a unique
maximizer of ln and the maximum is achieved by a finite mixture of at most n beta densities
with parameters 1 and k. We denote this maximizer by f̂n.

By arguing as in Groeneboom et al. (2001, p. 1662), let g ∈ k ∩ L1(λ) such that .
Then g/c ∈ k, and we can write
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Hence, ĝn = f̂n.

REMARK 3—Considering maximization over the bigger set k ∩ L1(λ) is motivated by the
fact that this set is a cone. Characterization of the MLE takes then a simpler form than the one
we would obtain with k.

Lemma 3 gives a necessary and sufficient condition for a function ĝn ∈ k ∩ L1(λ) to be the
MLE.

For k ≥ 3 it generalizes lemma 2.4 of Groeneboom et al. (2001).

LEMMA 3—Let X1, ⋯, Xn be i.i.d. random variables from the true density g0. A k-monotone
spline ĝn of degree k − 1 and simple knots â1, ⋯, âm is the MLE if and only if for all t > 0

(3)

(4)

PROOF—See the Appendix.

REMARK 4—Note that t is a knot in {â1, ⋯, âm} if and only if
. Thus, the equality condition in Equation 4 can re-

expressed in terms of the left and right (k − 1)-th derivative of ĝn as in Lemma 2.4 of
Groeneboom et al. (2001) in the particular case of k = 2.

The MLE ĝn can be computed by means of the support reduction algorithm of Groeneboom,
Jongbloed, and Wellner (2008); also see Baladaoui and Wellner (2004) for further details.

Now, we briefly consider the LSE. The LS criterion is:

(5)

We want to minimize this over g ∈ k ∩ L2(λ), the subset of square integrable k-monotone
densities. Although existence of a minimizer of Qn over k ∩ L2(λ) is quite easily established,
the minimizer has a somewhat complicated characterization owing to the density constraint

. Therefore, we will actually consider the alternative optimization problem of
minimizing Qn(g) over k ∩ L2(λ). Here, one might wonder why consider the LSE when the
MLE is a ‘natural’ density estimator. It turns out that the random processes involved in the
characterization of the LSE for a finite sample size n gives a great insight into the limiting
distribution of the estimator and its derivatives up to degree k − 1. Thus, even though the MLE
and LSE are asymptotically equivalent, it is easier to understand and establish the asymptotic
theory of the MLE through the LSE: compare the characterization of the MLE in lemma 3 with
the characterization of the LSE (over k ∩ L2(λ)) given in lemma A.2. (For more details, see
Balabdaoui and Wellner, 2007). We will not develop the characterization of the LSE further
here, but postpone this study to the Appendix.
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3 Consistency
In this section, we will prove that both the MLE and LSE are strongly consistent. Furthermore,
we will show that this consistency is uniform on intervals of the form [c, ∞), where c > 0.

Consistency of the MLEs for the classes k in the sense of Hellinger convergence of the mixed
density is a relatively simple straightforward consequence of the methods of Pfanzagl (1988)
and van de Geer (1993). As usual, the Hellinger distance H is given by

 for any common dominating measure μ.

PROPOSITION 1
Suppose that ĝn is the MLE of g0 in the class k. Then,

Furthermore, F̂n →d F0 almost surely where F̂n is the MLE of the mixing distribution function
F0

PROOF
Note that math k = {gF :F is a d.f. on (0, ∞)} with

and kx is the the scaled beta(1, k) kernel; that is, . For all x > 0, the kernel
kx is bounded, continuous, and it is easy to see that it satisfies limt↘0kx(t) = limt→∞kx(t) = 0.
Hence, the map F ↦ gF is continuous with respect to the vague topology for all x > 0. This
implies that the class

is continuous in F with respect to the vague topology for every x > 0. Now, as the family of
sub-distributions F on (0, ∞) is compact for the vague topology (see, e.g., Bauer, 1981), and
the class  is uniformly bounded by 1, we conclude by lemma 5.1 of van der Geer (1993) that
g is P0-Glivenko–Cantelli. It follows by corollary 1 of van der Vaart and Wellner (2000) that
H(ĝn, g0)→a.s. 0. The second assertion of the proposition follows from lemma 5.2 of van de
Geer (1993).

Lemma 4 establishes a useful bound for k-monotone densities.

LEMMA 4
If g is a k-monotone density function for k ≥ 2, then

for all x > 0.
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PROOF
We have

by an easy calculation. [Note that when k = 2, this bound equals 1/(2x) which agrees with the
bound given by Jongbloed (1995, p. 117) and Groeneboom et al., (2001, p. 1669) in this case.]

PROPOSITION 2
Let c > 0. Then for j = 0, 1, ⋯, k − 2

and for each x > 0 at which g0 is (k − 1)-times differentiable, .

PROOF
Using the first part in the characterization of the MLE, we have

(6)

Let F̂n denote again the MLE of the mixing distribution. By the Helly–Bray theorem, there
exists a subsequence {F̂l} that converges weakly to some distribution function F̂ and hence for
all x > 0 ĝl (x) → ĝ(x) as l → ∞ where

The previous convergence is uniform on [c, ∞), c > 0. This follows as ĝl and ĝ are monotone
and ĝ is continuous.

Using the inequality 6 we can show that the limit ĝ and g0 have to be the same, which implies
the consistency result. The proof follows along the lines of Groeneboom et al. (2001, p. 1674–
1675; see the Appendix). Consistency of the higher derivatives can be shown recursively using
convexity of  for j = 1, …, k − 1 in the same way as in the proof of lemma 3.1 of
Groeneboom et al. (2001): for small h > 0, convexity of  allows us to write, for j = 0,
…, k −2,

By letting n → ∞, this implies that
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By letting h ↘ 0, we conclude consistency of  for x ∈ (0, ∞). Note that
consistency of  is uniform on intervals of the form [c, ∞) because of
continuity of those derivatives. For k − 1, only pointwise strong consistency of 
can be claimed.

We also have strong and uniform consistency of the LSE ḡn on intervals of the form [c, ∞),
c > 0. The relevant result and proof are deferred to the Appendix.

4 Asymptotic minimax risk lower bounds for the rates of convergence
In this section, our goal is to derive minimax lower bounds for the behavior of any estimator
of a k-monotone density g and its first k − 1 derivatives at a point x0 for which the k-th derivative
exists and is non-zero. The proof will rely on the basic lemma 4.1 of Groeneboom (1996); see
also Jongbloed (2000). This basic method seems to go back to Donoho and Liu (1987, 1991).

As before, let k denote the class of k-monotone densities on [0, ∞). Here is the notation we
will need. Consider estimation of the j-th derivative of g ∈ k at x0 for j ∈ {0, 1, …, k − 1}.
If T ̂n is an arbitrary estimator of the real-valued functional T of g, then the (L1-minimax risk
based on a sample X1,…,Xn of size n from g which is known to be in a suitable subset k,n of

k is defined by

Here the infimum ranges over all possible measurable functions tn : ℝ n → ℝ, and T ̂n =
tn(X1,…,Xn). When the subclasses k,n are taken to be shrinking to one fixed g0 ∈ k, the
minimax risk is called local at g0. The shrinking classes (parameterized by τ > 0) used here are
Hellinger balls centered at g0:

The behavior, for n → ∞ of such a local minimax risk MMR1 will depend on n (rate of
convergence to zero) and the density g0 toward which the subclasses shrink. Lemma 5 is the
basic tool for proving such a lower bound.

LEMMA 5
Assume that there exists some subset {gε : ε > 0} of densities in k,nsuch that, as ε ↓ 0,

for some c > 0 and r > 0. Then

Balabdaoui and Wellner Page 8

Stat Neerl. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



PROOF
See Groeneboom (1996) and Jongbloed (2000).

Here is the main result of this section.

PROPOSITION 3
Let g0 ∈ k and x0 be a fixed point in (0, ∞) such that g0 is k-times continuously differentiable
at x0 (k ≥ 2). An asymptotic lower bound for the local minimax risk of any estimator T̂n,j for

estimating the functional  is given by:

where dk,j > 0, j ∈ {0, …, k − 1}. Here

where

Proposition 3 also yields lower bounds for estimation of the corresponding mixing distribution
function F at a fixed point.

COROLLARY 1
Let g0 ∈ k and let x0 be a fixed point in (0, ∞) such that g0 is k-times continuously differentiable
at x0, k ≥ 2. Then, for estimating T g0 = F0(x0) where F0 is given in terms of g0 by 2,

PROOF
See the Appendix.
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Both the rates of convergence n(k−j)/(2k + 1) and the dependence of our lower bound on the

constants g0(x0) and  match with the known results for k = 1 and k = 2 owing to
Groeneboom (1985) and Groeneboom et al.. (2001), and reappears in the limit distribution
theory for k ≥ 3 in Balabdaoui and Wellner (2007).

Appendix

PROOF OF LEMMA 3
The arguments generalize those in the proof of lemma 2.4 of Groeneboom et al. (2001). If ĝn
is the MLE, let  for some t > 0. For all ε > 0, we have that ĝn + εgt ∈ k ∩
L1(λ), and hence

yielding the inequality in Equation 3. If t ∈ {â1, ⋯, âm}, then for ε ∈ ℝ such that |ε| is small
enough, ĝn + εgt ∈  k ∩ L1(λ), and hence

yielding the identity in Equation 4.

Suppose now that ĝn is a k-monotone spline of degree k − 1 and with simple knots satisfying
the condition in Equation 3, and let g ∈ k ∩ L1(λ). By lemma 1, there exists a non-decreasing
and bounded function F on (0, ∞) such that

We can write

using the inequality log z ≥ 1 − 1/z, z > 0

Hence, ĝn is the MLE.
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Establishing the characterization and structure of the LSE
In this optimization problem, existence requires more work because there is no available theory
as in the case of the MLE. However, we will show that even though the resulting estimator
does not necessarily have total mass one, it does have total mass converging almost surely to
one and it consistently estimates g0 ∈ k.

Using arguments similar to those in the proof of theorem 1 in Williamson (1956), one can show
that g ∈ k if and only if

for a positive measure μ on (0, ∞). Thus, we can rewrite the criterion Qn in terms of the
corresponding measures μ: by Fubini’s theorem

where , and

where . Hence it follows that, with g = gμ

Now, we want to minimize Φn over the set χ of all non-negative measures μ on (0, ∞).

PROPOSITION A.1
The functional Φn admits a unique minimizer μ̃, and hence the LSE gñ exists and is unique.

PROOF
Uniqueness follows from strict convexity of Φn. To prove existence, it can be shown that Φn
can be restricted to a subset  of χ on which it is lower semicontinuous, and hence the
minimization problem admits a solution by applying theorem 38.B of Zeidler (1985, p. 152).
In the following, we will exhibit the subset , and show that the conditions of Zeidler’s theorem
are satisfied.

We begin by checking the hypotheses of Zeidler’s theorem 38.B (Zeidler, p. 152 1985). We
identity X of Zeidler’s theorem with the space χ of non-negative measures on [0, ∞), and we
show that we can take M of Zeidler’s theorem to be

for some constant D < ∞.
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First, we can, without loss, restrict the minimization to the space of non-negative measures on
[X(1), ∞), where X(1) > 0 is the first-order statistic of the data. To see this, note that we can
decompose any measure μ as μ = μ1 + μ2, where μ1 is concentrated on [0, X(1)) and μ2 is
concentrated on [X(1), ∞). As the second term of Qn is zero for μ1, the contribution of the μ1
component to Qn(μ) is always non-negative, so we make inf Qn(μ) no larger by restricting to
measures on [X(1), ∞).

We can restrict further to measures μ with  for some finite D = Dω. To show
this, we first give a lower bound for rk(s, t). For s, t ≥ t0 > 0 we have

(A.1)

where v0 ≈ 1.59. To prove Equation A.1, we will use the inequality

(A.2)

[This inequality holds by straightforward computation; see Hall and Wellner (1979), especially
their proposition 2.]

Thus, we compute

as

But, we also have

for s, t ≥ t0, so we conclude that Equation A.1 holds.

From the inequality A.1, we conclude that for measures μ concentrated on [X(1), ∞) we have

In contrast,
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Combining these two inequalities it follows that for any measure μ concentrated on [X(1), ∞)
we have

This lower bound is strictly positive if

But for such measures μ we can make Φ smaller by taking the zero measure. Thus, we may
restrict the minimization problem to the collection of measures μ satisfying

(A.3)

Now we decompose any measure μ on [X(1), ∞) as μ = μ1 + μ2 where μ1 is concentrated on
[X(1), MX(n)] and μ2 is concentrated on (MX(n), ∞) for some (large) M > 0. Then, it follows that

if

and hence we can restrict to measures μ with

for every M ≥ 1.

But this implies that μ satisfies

Balabdaoui and Wellner Page 13

Stat Neerl. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



for some 0 < D = Dω < ∞, and this implies that tk−1 is uniformly integrable over μ ∈ .

Alternatively, for λ ≥ 1 we have

uniformly in μ ∈ .

This implies that for {μm} ⊂  satisfying μm ⇒ μ0 we have

and hence Φn is lower semicontinuous on :

As Qn is lower semi-compact (i.e., the sets r ≡{μ ∈  : Φn(μ) ≤ r} are compact for r ∈ ℝ),
the existence of a minimum follows from Zeidler (1985, theorem 38.B, p. 152).

Lemma A.2 characterizes the LSE.

LEMMA A.1
For k ≥ 1 define n and H ̃n respectively by

and

for t ≥ 0. Then gñ is the LSE over k ∩ L2(λ) if and only if the following conditions are satisfied:

(A.4)

PROOF
The arguments are very similar to those used in the proof of lemma 3.
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Now, to prove that the LSE is a spline of degree k − 1 with simple knots, we need the following
intermediate result.

PROPOSITION A.2
Let [a, b]] ⊆ (0, ∞) and let g be a non-negative and non-increasing function on [a, b]. For any
polynomial Pk − 1 of degree ≤ k − 1 on [a, b], if the function

admits infinitely many zeros in [a, b], then there exists t0 ∈ [a, b] such that g ≡ 0 on [t0, b] and
g > 0 on [a, t0) if t0 > a.

PROOF
By applying the mean value theorem k times, it follows that (k − 1)!g = Δ(k) admits infinitely
many zeros in [a, b]. But as g is assumed to be non-negative and non-increasing, this implies
that if t0 is the smallest zero of g in [a, b], then g ≡ 0 on [t0, b]. By definition of t0, g > 0 on
[a, t0) if t0 > a.

Now we will use the characterization of the LSE g̃n together with the previous proposition to
show that it is a finite mixture of beta(1, k)s. We know from lemma A.1 that g̃n is the LSE if
and only if Equation A.4 holds. The equality condition in the second part of equation A.4
implies that H ̃n and n have to be equal at any point of increase of the monotone function

. Therefore, the set of points of increase of  is included in the set of
zeros of the function Δ̃n = H ̃n − n.

Now, note that n can be given by the explicit expression:

In other words, n is a spline of degree k − 1 with simple knots at X(1), …, X(n), the order
statistics of X1, …, Xn. Also note that the function  cannot have a positive density
with respect to Lebesgue measure λ. Indeed, if we assume otherwise, then we can find 0 ≤j
≤n and an interval  ⊂ (X(j), X(j + 1))(with X(0) = 0 and X(n + 1) = ∞) such that  has a non-empty

interior, and H ̃n ≡ n on . This implies that , as n is a polynomial of degree k
− 1 on , and hence g̃n ≡ 0 on . But the latter is impossible as it was assumed that 
was strictly increasing on I. Thus, the monotone function  can have only two
components: discrete and singular. In the following, we will prove that it is actually discrete
with finitely many points of jump.

PROPOSITION A.2
There exists m ∈ ℕ\{0}, ã1, ⋯, ãm and w1̃, ⋯, wm̃ such that for all x > 0, the LSE g̃n is given
by
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(A.5)

Consequently, the equality part in Equation A.4 can be re-expressed as H ̃n(t) = n(t) if t is a
point in the support of the minimizing (mixing) measure F̃n (or a knot of g̃n).

PROOF
We need to consider two cases:

i. The number of zeros of Δ̃n = H ̃n − n is finite. This implies by the equality condition
in Equation A.4 that the number of points of increase of  is also finite.
Therefore,  is discrete with finitely many jumps and hence g̃n is of the
form given in Equation A.5.

ii. Now, suppose that Δ̃n has infinitely many zeros. Let j be the smallest integer in {0,
⋯, n − 1} such that [X(j), X(j + 1)] contains infinitely many zeros of Δ̃n,k (with X(0) =
0 and X(n + 1) = ∞). By proposition A.2, if tj is the smallest zero of g̃n in [X(j),
X(j + 1)], then g̃n ≡ 0 on [tj, X(j + 1)] and g̃n > 0 on [X(j), tj) if tj > X(j). Note that from
the proof of proposition A.1, we know that the minimizing measure μ̃n does not put
any mass on (0, X(1)], and hence the integer j has to be strictly greater than 0.

Now, by definition of j, Δ̃n has finitely many zeros to the left of X(j), which implies that
 has finitely many points of increase in (0, X(j)). We also know that g̃n ≡ 0 on [tj,

∞). Thus we only need to show that the number of points of increase of  in [X(j),
tj) is finite, when tj > X(j). This can be argued as follows. Consider zj to be the smallest zero of
Δ̃n in [X(j), X(j + 1)). If zj ≥ tj, then we cannot possibly have any point of increase of

 in [X(j), tj) because it would imply that we have a zero of Δ̃n that is strictly smaller
than zj. If zj < tj, then for the same reason,  has no point of increase in [X(j), zj).
Finally,  cannot have infinitely many points of increase in [zj, tj) because that would
imply that Δ̃n has infinitely many zeros in (zj, tj), and hence by lemma A.1, we can find

 such that g̃n ≡ 0 on . But, this is impossible as g̃n > 0 on [X(j), tj).

PROOF OF THE IDENTITY

ĝ = g0 (proof of Proposition 2). For 0 < α < 1 define . Let ε > 0 be small so that
ε < ηε.

By Equation 6, there exists a number Dε > 0 such that ĝl (ηε) ≥ Dε for sufficiently large l. To
see this, note that Equation 6, implies that

and hence
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by the choice of ηε, and the claim follows by taking . Hence, by the
bound in lemma 4, we have

It follows that g0/ĝl is uniformly bounded on the interval [ε,ηε]; that is, there exist two constants
c̠ε and c̄ε such that for all x ∈ [ε, ηε]

In fact,

while

Therefore,

uniformly on [ε, ηε]. Using Equation 6, we have for sufficiently large l and

But as l converges weakly to G0 the distribution function of g0 and g0/ĝ is continuous and
bounded on [ε, ηε]; we conclude that

Now, by Lebesgue’s monotone convergence theorem, we conclude that

which is equivalent to
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(A.6)

Define . Then, ĥ = τ−1ĝ is a k-monotone density. By Equation A.6, we have that

Now, consider the function

defined on the class d of all continuous densities g on [0, ∞). Minimizing K is equivalent to
minimizing

It is easy to see that the integrand is minimized pointwise by taking g(x) = g0(x).Hence,
inf d K(g) ≥ 1. In particular, K(ĥ) ≥ 1 which implies that τ = 1.

Now, if g ≠ g0 at a point x, it follows that g ≠ g0 on an interval of positive length. Hence, g0 ≠
g ⇒ K(g) > 1. We conclude that we have necessarily ĥ = ĝ = g0.

PROPOSITION A.4

Fix c > 0 and suppose that the true k-monotone density g0 satisfies . Then,
‖g̃n − g0 ‖2→ a.s. 0,

for j = 0, 1, ⋯, k − 2, and, for each x > 0 at which g0 is (k − 1)-times differentiable,

. Here, ‖ · ‖2 denotes the L2-norm.

PROOF
The main difficulty here is that the LSE g̃n is not necessarily a density in that it may integrate

to more than one; indeed it can be shown that 
for k ≥ 3. However, once we show that g̃n stays bounded in L2 with high probability, the proof
of consistency will be much like the one used for k = 2; that is, consistency of the LSE of a
convex and decreasing density (see Groeneboom et al., 2001). The proof for k = 2 is based on
the very important fact that the LSE is a density, which helps in showing that g̃n at the last
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jump point τn ∈ [0, δ] of  for a fixed δ > 0 is uniformly bounded. The proof would have been

similar if we only knew that .

Here we will first show that . Note that the equality part in Equation (A.4) can

be re-written as  and hence

(A.7)

where ũn ≡ g̃n/‖g̃n‖2 satisfies ‖ũn‖2 = 1. Take ℱk to be the class of functions

In the following, we show that ℱk has an envelope G ∈ L1(G0). Note that for g ∈ ℱk we have

as g is decreasing. Therefore, g(x) ≤ 1/√x ≡ G(x) for all x > 0 and g ∈ ℱk; that is G is an envelope
for the class ℱk. As G ∈ L1(G0) (by our hypothesis) it follows from the strong law that

and hence by Equation A.7 the integral  is bounded (almost surely) by some constant
Mk.

Now we are ready to complete the proof. Let δ > 0 and τn be the last jump point of  if
there are jump points in the interval (0, δ]; otherwise, we take τn to be 0. To show that the
sequence (g̃n(τn))n stays bounded, we consider two cases:

1. τn ≥ δ/2. Let n be large enough so that . We have

(A.8)

2. τn < δ/2. We have

Using that g̃n is a polynomial of degree k − 1 on the interval [τn, δ], we have
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and hence . By combining the bounds, we have for large
. Now, as g̃n(δ) ≤ g̃n(τn), the sequence g̃n(x) is uniformly

bounded almost surely for all x ≥ δ. Using a Cantor diagonalization argument, we can
find a subsequence {nl} so that, for each x ≥ δ, gnl(x) → g̃(x), as l → ∞. By Fatou’s
lemma, we have

(A.9)

However, the characterization of g̃n implies that Qn(g̃n) ≤ Qn(g0), and this yields

Thus, we can write

(A.10)

as l → ∞. The last convergence is justified as follows: as  is bounded almost
surely, we can find a constant C > 0 such that g̃nl − g0 admits , as an
envelope. Since G ∈ L1(G0) by hypothesis and as the class of functions {(g − g0)
1[G≤M] : g ∈ k ∩ L2(λ)} is a Glivenko-Cantelli class for every M > 0 (each element is
a difference of two bounded monotone functions) Equation A.10 holds. From

Equation A.9, we conclude that , and therefore, g̃ ≡ g0 on (0,
∞) as δ > 0 can be chosen arbitrarily small. We have proved that there exists Ω0 with
P(Ω0) = 1 and such that for each ω ∈ Ω0 and any given subsequence g̃nk (·, ω), we
can extract a further subsequence g̃nl (·, ω) that converges to g0 on (0, ∞). It follows
that g̃n converges to g0 on (0, ∞), and this convergence is uniform on intervals of the
form [c, ∞), c > 0 by the monotonicity and continuity of g0. As for the MLE,
consistency of the higher derivatives can be shown recursively using the convexity
of  for j =1, …, k − 2.

PROOF OF PROPOSITION 3
Let μ be a positive number and consider the function g̃μ defined by

Now, consider the perturbation

Balabdaoui and Wellner Page 20

Stat Neerl. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where s(μ) is a scale to be determined later. If μ is chosen small enough so that the true density
g0 is k-times continuously differentiable on [x0 − μ, x0 + μ], the perturbed function gμ is also
k-times differentiable on [x0 − μ, x0 + μ] with a continuous k-th derivative. Now, let r be the
function defined on (0, ∞) by

Then, we can write g̃μ as g̃μ(x) = μ2k + 3r((x − x0)/μ). Then, for 0 ≤j ≤k

The scale s(μ) should be chosen so that  for all 0 ≤j ≤k, for x ∈ [x0 − μ, x0 + μ].

But for μ small enough, the sign of  will be that of , and hence gμ is k-

monotone. For j = k, . Assume that r(k)(0) ≠ 0. Set

. Then, for 0 ≤j ≤k − 1

as μ → 0, and

To compute r(j)(0), note that for m ≥ 2 and 2n ≥ m we have

where in the last equality we used Leibniz’s formula for the derivatives of a product; see, for
example, Apostol (1957, p. 99). Evaluating the last expression at x = 0 yields

If m is even, we find that
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as xn − m/2,0 = 1. Similarly, when m is odd,

as xn − (m−1)/2,1 = 0. Now we have, for 1 ≤j ≤k,

and hence

Therefore, when j is even the second term vanishes and

When j is odd, the first term vanishes and

Summarizing, we have shown that

We set Ck,j = r(j)(0) for 1 ≤j ≤k. Then, Ck,k becomes
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The previous expressions can be given in a more compact form. After some algebra, we find
that

(A.11)

We have for 0 ≤j ≤k − 1,

where we defined  for j ∈ {0, …, k − 1}. Furthermore, by computation and
change of variables,

as μ ↘ 0. This gives control of the Hellinger distance as well in view of Jongbloed (2000,
lemma 2, p. 282), or Jongbloed (1995, corollary 3.2, pp. 30–31). We set

Now, by using the change of variable ε = μ2k + 1(bk + o(1)), where

so that μ = (ε/bk)1/(2k + 1)(1 + o(1)), then for 0 ≤j ≤k − 1, the modulus of continuity, mj, of the
functional Tj satisfies
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The result is that mj (ε) ≥ (rk,jε)(k − j)/2k + 1/(1+o(1)),where  and
hence

(A.12)

which can be rewritten as

for j = 0, ⋯, k − 1. Finally, note that the fact that the function gμ is not exactly a density will
not affect the obtained constants its integral converges to 1 as μ → 0.

PROOF OF COROLLARY 1

Let . Using the inversion formula in Equation 2, we have

For j = 1, …, k, we have already established before that

. In constrast, we have for μ > 0 small enough

Hence,

Using again the change of variable ε = μ2k + 1 (bk + o(1)), we obtain the claimed lower bound
in the same way as in proprosition 3.
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