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“Pharmacologic targeted regulation of BMMSCs by aspirin may offer a new approach
for estrogen-deficient osteoporosis treatment.”

Osteoporosis, the most prevalent skeletal disorder, is recognized by low bone mineral density
(BMD) and structural deterioration of bone tissue, both of which lead to bone fragility fractures
[1]. Postmenopausal osteoporosis is the most common and significant form of this disease,
whereby the loss of estrogen causes an imbalance in bone metabolism. This imbalance is due
to an overactivated osteoclast activity, and a temporal increase in osteoblast activity that is
unable to rescue osteoclast-mediated bone resorption [1]. Although many systemic and local
regulators are involved in estrogen-deficient osteoporosis, it appears that activated T
lymphocytes are the key factor inducing osteoclast overactivation in postmenopausal
osteoporosis [2–4]. Investigations focused on understanding the role of osteogenic cells in
postmenopausal osteoporosis have been on the rise over the last several years. These studies
demonstrate a potential link between cell death and osteoporosis [5,6]. It has been proposed
that irregular apoptosis of osteoblasts/osteocytes leads to the imbalanced bone remodeling in
osteoporosis [7,8]. To expand the knowledge of this form of osteoporosis to correctly treat the
disease, each aspect of the bone resorption and formation must be well understood. Currently,
the role of osteoblasts and their progenitor bone marrow mesenchymal stem cells (BMMSCs)
in osteoporosis is not well known.

BMMSCs are known as multipotent stem cells and are capable of differentiating into a variety
of cell types including osteoblasts, chondrocytes, adipocytes and myoblasts [9–11]. The
BMMSC/osteoblast lineage not only participates in de novo bone matrix formation to balance
osteoclast-mediated bone resorption during the bone remodeling process, but also plays a
critical role in maintaining homeostasis of the bone/marrow system [12]. This homeostasis
includes governing the hematopoietic stem cell (HSC) niche [12–15] and modulation of
immune cells, such as T and B lymphocytes, dendritic cells (DCs) and natural killer (NK) cells
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[16–22]. Recently, transplantation of culture-expanded BMMSCs has been successfully used
to treat a variety of clinical disorders such as graft-versus-host-disease via inhibiting T-
lymphocyte proliferation and activity [23–25] and ameliorating HSC engraftment [26,27].
Since BMMSCs reside in the same marrow compartment with immune cells, it will be
interesting to examine whether immune cells affect BMMSCs.

The deficiency of the Fas/Fas ligand system can cause various immune disorders associated
with inappropriate T-lymphocyte proliferation, such as organ transplantation graft rejection,
systemic lupus erythematosus and lymphoid tumors [28]. Expression of Fas/FasL on the
lymphoid/myeloid lineage cells plays an important role in immune homeostasis, T lymphocytes
and NK cell-mediated toxicity, as well as Fas-mediated tumor killing [29]. The current study
showed that BMMSCs expressing Fas and CD3-activated T lymphocytes were capable of
inducing BMMSC apoptosis in a direct cell co-culture system, but not in an indirect cell co-
culture system [30]. By contrast, the perforin pathway, one of the major apoptotic mechanisms
by T lymphocytes [31], was not involved in CD3-activated T-cell mediated BMMSC apoptosis.
Furthermore, it was found that activated T lymphocytes failed to induce apoptosis in Fas-
mutated BMMSCs. Therefore, the study suggested that the Fas/FasL pathway is a predominant
cell death pathway in T-cell mediated BMMSC apoptosis [32].

In an effort to treat this form of osteoporosis, scientists have begun examining the use of a T-
lymphocyte adoptive transfer system. Currently, the most often studied T-lymphocyte adoptive
transfer system is used to study inflammatory bowel disease (IBD) [33,34]. Studies have shown
that with an application of a widely used T-lymphocyte adoptive transfer system to immune-
deficient recipient mice, CD4+CD45RB+/high T lymphocytes account for the development of
IBD. By contrast, transfer of the reciprocal CD4+CD45RB−/low population not only failed to
induce colitis, but also prevented the symptoms [35]. Interestingly, IBD patients ordinarily
express decreased bone mass, an increased risk of developing osteoporosis, and associated
fragility fractures and morbidity [36,37]. However, the role of activated T lymphocytes on
osteogenic progenitor cells in IBD patients has remained unclear. Adoptive transfer of
CD4+CD45RB+/high T lymphocytes into T-lymphocyte deficient mice with ovaryectomy,
which lacked the osteoporosis phenotype due to the absence of T lymphocytes [38],
demonstrated a typical BMD reduction and trabecular bone resorption in femurs [30]. Also,
the impairment of BMMSCs was elucidated by several assays including colony-forming units
fibroblastic (CFU-F) number, proliferation capacity and osteogenic capacity in vitro and in
vivo [30]. As expected, osteoclast activity was upregulated in these CD4+CD45RB+/high T-
lymphocyte transfer mice by in vivo osteoclast assays, including an osteoclast-specific enzyme
tartrate resistant acid phosphatase (TRAP) staining and in serum levels of soluble RANKL
(sRANKL), a critical osteoclast differentiation factor. Furthermore, this upregulation was also
seen in C-terminal telopeptide of type I collagen (CTX), a functional marker for osteoclast
resorption. These findings provide direct evidence to support the hypothesis that interplays
between T lymphocytes and BMMSCs may be critical for pathogenesis of osteoporosis.

While studies have investigated the role of T lymphocytes and osteoporosis, treatment
measures have been researched to determine an appropriate pathway for these patients. Aspirin
is a hugely popular and widely used NSAID. This drug is also known to prevent heart attacks
by daily low dose intervention. The effect of aspirin is shown in multiple biological pathways,
such as inhibiting cyclooxygenase 2 (COX2) and cyclooxygenase 1 (COX1), and prostaglandin
E2 activities. According to epidemiological studies, the regular use of aspirin or NSAIDs may
have a moderate beneficial effect on BMD in postmenopausal women [39]; however, there
appears no clinical significance regarding the protective effect on the subsequent risk of
fractures [40]. Therefore, more detailed studies are necessary to examine whether aspirin is
able to offer therapeutic effects to patients suffering from osteoporosis and, more importantly,
to elucidate the mechanism by which aspirin may affect bone integrity.
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“According to epidemiological studies, the regular use of aspirin or NSAIDs may
have a moderate beneficial effect on BMD in postmenopausal women.”

Women lose bone at a high rate during the initial years following menopause. Therefore, ovary-
removed (ovariectomized [OVX]) mice are a suitable model to study osteoporosis. The
estrogen-deficient mice show typical osteoporosis hallmarks such as reduction of BMD,
reduced trabecular bone mass associated with overactivated osteoclast function (excess bone
resorption) [41] and activation of T lymphocytes linked to osteoblast/osteocyte cell death
[38]. Interestingly, estrogen-deficient OVX mice showed significant BMMSC damages
including an increase in CFU-F number and cell proliferation, and a decrease in osteogenic
capacity in vitro and in vivo [30]. When aspirin (0.6 mg/ml) was continuously given to OVX
mice, their femurs showed a higher level of BMD than those control OXV, following 4 weeks
of treatment (Figure 1) [30]. Aspirin was also shown to rescue impaired BMMSC function,
such as recovering CFU-F number and osteogenic capacities. In addition, aspirin lessened
osteoclast activity in OVX mice, as seen by decreased TRAP-positive cells and serum levels
of sRANKL and CTX. When cultured BMMSCs were treated with aspirin, they showed
improved anti-apoptotic capacity (Figure 2) and elevated mineralized tissue formation in
vitro and in vivo [30]. Interestingly, aspirin was able to upregulate telomerase activity in
BMMSCs in vitro [30], as seen in other cell types [42]. It was known that acquired telomerase
activity in BMMSCs enhanced osteogenesis in vitro and in vivo via the Runx2 pathway [43].
Therefore, upregulation of telomerase activity in BMMSCs may contribute to aspirin-mediated
improvement of osteogenesis. Aspirin-elevated telomerase levels in BMMSCs was much lower
than that in cancer cells, implying a safe use of aspirin to improve BMMSC functions.

Here, we provided experimental evidence that activated T lymphocytes are responsible for the
BMMSC apoptosis through the Fas/FasL pathway, resulting in an accelerated osteoporosis
phenotype in OVX mice. Moreover, aspirin appears to prevent osteoporosis by inhibiting
BMMSC apoptosis and osteoclast-mediated bone resorption. Therefore, pharmacologic
targeted regulation of BMMSCs by aspirin may offer a new approach for estrogen-deficient
osteoporosis treatment. However, more detailed studies on the mechanism of aspirin-mediated
anti-osteoporosis and proper dosing is critical to elucidate the role of aspirin in osteoporosis
treatment.
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Figure 1. Representative horizontal μCT images of femurs
In OVX mice (B), the femur showed the decrement of trabecular bone mass (yellow circled
area) when compared with the nonsurgery group (A). Aspirin treatment (OVX + ASP; (C))
improved the bone mass in OVX mice.
ASP: Aspirin; OVX: Ovariectomized.
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Figure 2. Representative images of co-culture with BMMSCs and LN cells
BMMSCs were seeded on the culture wells, followed by the co-culture with [LN+] or without
[LN−] LN cells in the presence or absence of ASP at indicated concentrations. LN cells were
activated by plate-bounded anti-CD3 antibody (1 μg/ml) for three days or not before the co-
culture. Three days after the co-culture, the wells were washed well and stained with toluidine
blue (red box). Activated LN cells induced BMMSC death as shown BMMSC-non-staining
well, but ASP treatment rescues the BMMSC death under the co-culture with activated LN
cells. Nonactivated LN cells were not capable of the BMMSC death stimulated with or without
ASP.
ASP: Aspirin; BMMSC: Bone marrow mesenchymal stem cell; LN: Lymph node.
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