
A Non Mouse-Adapted Dengue Virus Strain as a New
Model of Severe Dengue Infection in AG129 Mice
Grace K. Tan1, Jowin K. W. Ng1, Scott L. Trasti2, Wouter Schul3, George Yip4, Sylvie Alonso1*

1 Department of Microbiology, Immunology Programme, National University of Singapore, Singapore, Singapore, 2 Comparative Medicine Centre, National University of

Singapore, Singapore, Singapore, 3 Novartis Institute for Tropical Diseases (NITD), Singapore, Singapore, 4 Department of Anatomy, National University of Singapore,

Singapore, Singapore

Abstract

The spread of dengue (DEN) worldwide combined with an increased severity of the DEN-associated clinical outcomes have
made this mosquito-borne virus of great global public health importance. Progress in understanding DEN pathogenesis and
in developing effective treatments has been hampered by the lack of a suitable small animal model. Most of the DEN clinical
isolates and cell culture-passaged DEN virus strains reported so far require either host adaptation, inoculation with a high
dose and/or intravenous administration to elicit a virulent phenotype in mice which results, at best, in a productive infection
with no, few, or irrelevant disease manifestations, and with mice dying within few days at the peak of viremia. Here we
describe a non-mouse-adapted DEN2 virus strain (D2Y98P) that is highly infectious in AG129 mice (lacking interferon-a/b
and -c receptors) upon intraperitoneal administration. Infection with a high dose of D2Y98P induced cytokine storm,
massive organ damage, and severe vascular leakage, leading to haemorrhage and rapid death of the animals at the peak of
viremia. In contrast, very interestingly and uniquely, infection with a low dose of D2Y98P led to asymptomatic viral
dissemination and replication in relevant organs, followed by non-paralytic death of the animals few days after virus
clearance, similar to the disease kinetic in humans. Spleen damage, liver dysfunction and increased vascular permeability,
but no haemorrhage, were observed in moribund animals, suggesting intact vascular integrity, a cardinal feature in DEN
shock syndrome. Infection with D2Y98P thus offers the opportunity to further decipher some of the aspects of dengue
pathogenesis and provides a new platform for drug and vaccine testing.
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Introduction

Dengue (DEN) virus belongs to the Flaviviridae family, Flavivirus

genus, and is the causative agent of DEN disease, a mosquito-

borne illness that is endemic in subtropical and tropical countries

[1]. With approximately half of the world’s population residing in

DEN endemic regions [2] and more than 50 million new

infections projected to occur annually [3], DEN certainly poses

as a global economic and health threat.

Infection with one of the four DEN serotypes can be

asymptomatic or trigger a wide spectrum of clinical manifestations,

ranging from mild acute febrile illness to classical dengue fever

(DF), and to severe dengue hemorrhagic fever/dengue shock

syndrome (DHF/DSS), characterized by fever, hemorrhagic

tendency, thrombocytopenia, and capillary leakage according to

the WHO guidelines [4]. Despite the increasing attention and

research efforts devoted to DEN in recent years, the cellular and

molecular mechanisms responsible for DEN pathogenesis remain

largely unknown. Current hypotheses for the development of

severe DEN that involve dysfunction of the host immune system

include enhancing mechanisms induced by sub-neutralizing cross-

reactive antibodies and memory T cells [3,5]. Other non-

enhancing mechanisms implicating the immune system include

auto-immune responses against cross-reactive viral components,

such as DEN non-structural 1 (NS1) protein [6,7]. Platelet lysis,

nitric oxide-mediated apoptosis of endothelial cells and comple-

ment activation have also been proposed to mediate thrombocy-

topenia and vascular leakage [8]. In addition, host genetic

predisposition [9–11] and virus virulence [12,13] were reported

as risk factors for the development of severe DEN.

No effective drugs or vaccines against DEN are currently

available on the market [14]. Undeniably, progress in deciphering

the mechanisms responsible for DEN pathogenesis and in

developing effective prophylactic and/or therapeutic treatments

has been impeded by the lack of suitable animal models [15].

Humans and mosquitoes represent so far the only natural hosts for

DEN virus. Non-human primates have been reported to be

permissive to DEN infection but no apparent clinical symptoms of

the disease were observed [16,17], although a recent study

reported signs of hemorrhage in rhesus macaques intravenously

infected with a high dose of a DEN2 virus strain [18]. In addition,

since the infected animals develop transient viremia and antibody

responses, they have been useful for evaluating the efficacy of

vaccine and antiviral candidates prior to clinical trials in humans

[19,20]. However, for ethical and economical reasons, non-human

primates do not represent a sustainable option for DEN research.

Alternatively, the mouse model has been explored [15]. However,

most of the DEN virus laboratory strains and clinical isolates do
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not replicate efficiently in mice. Mouse-adapted DEN virus strains

displayed a higher infectivity but led to irrelevant clinical

manifestations such as paralysis [21,22]. Alternatively, a variety

of mouse genetic backgrounds have been explored that displayed

greater susceptibility to DEN infection [23–30]. Among them,

AG129 mice, deficient in interferon (IFN)- a/b and -c receptors,

were shown to allow effective replication of DEN virus [30–33].

However, great heterogeneity in the susceptibility of these mice to

DEN virus strains, even within the same serotype, was reported

[32] with none or few of DEN disease manifestations [30].

Moreover, administration of high viral doses was necessary to

trigger a virulent phenotype which resulted in the animals’ death

within few days at the peak of viremia [30]. This is in contrast to

humans for whom signs of severe DEN generally occur during or

after defervescence when DEN virus is no longer detectable in the

patient’s blood [3,34,35].

Here we describe a unique non mouse-adapted strain of DEN

virus serotype 2 (D2Y98P) which is highly infectious in AG129

mice upon intraperitoneal administration. Infection with a high

viral dose of D2Y98P resulted in an acute model of infection with

mice dying at the peak of viremia, whereas infection with a low

viral dose led to asymptomatic dissemination and replication of the

virus followed by death of the animals after the virus has been

cleared from its host.

Materials and Methods

Ethics statement
All the animal experiments were carried out under the

guidelines of the National University of Singapore animal study

board.

Virus strain and growth conditions
The virus strain used in this study (D2Y98P) derives from a

1998 DEN2 Singapore human isolate that has been exclusively

passaged for about 20 rounds in Aedes albopictus C6/36 cells. C6/36

cells (ATCC# CRL-1660) were maintained in Leibovitz’s L-15

medium (GIBCO) supplemented with 5% fetal calf serum (FCS),

and virus propagation was carried out as described previously

[32]. Virus stocks were stored 280uC. When necessary, heat-

inactivation of the virus was performed at 55uC for 15 min.

Virus quantitation
Plaque assay was carried out to quantify the number of

infectious viral particles using BHK-21 (Baby Hamster Kidney,

ATCC# CCL-10) cells as described previously [36] with slight

modifications. Briefly, BHK cells were cultured to approx. 80%

confluency in 24-well plates (NUNC, NY, USA). The virus stock

was 10-fold serially diluted from 1021 to 1028 in RPMI 1640

(GIBCO). BHK-21 monolayers were infected with 100 ul of each

virus dilution. After incubation at 37uC and 5% C02 atmosphere

for 1 hr with rocking at 15 min intervals, the medium was

decanted and 1 ml of 1% (w/v) carboxymethyl cellulose in RPMI

supplemented with 2% FCS was added to each well. After 4 days

incubation at 37uC in 5% CO2, the cells were fixed with 4%

paraformaldehyde and stained for 30 min with 200 ml of 1%

crystal violet dissolved in 37% formaldehyde. After thorough

rinsing with water, the plates were dried and the plaques were

scored visually.

Mice infection
AG129 [129/Sv mice deficient in both alpha/beta (IFN-a/b)

and gamma (IFN-c) interferon receptors] were obtained from

B&K Universal (UK). They were housed under specific pathogen-

free conditions in individual ventilated cages. Eight to 9 week-old

mice were administered with 107 to 102 plaque forming units

(PFU) of D2Y98P via the intraperitoneal (ip.) route (0.4 ml in

sterile PBS). Where indicated, mice were inoculated with the same

dose and volume of heat-inactivated D2Y98P.

Antibody titres
Systemic antibody titres against D2Y98P were determined by

enzyme-linked immunoadsorbent assay (ELISA) as described

previously [32]. Briefly, 96-well plates (Corning costar, NY,

USA) were coated overnight at 4uC with 105 PFU of heat-

inactivated D2Y98P virus in 0.1M NaHCO3 buffer at pH 9.6.

Two-fold serially diluted serum samples (1:25 to 1:25,600) were

added to the wells and incubated for 1 hr at 37uC. HRP-

conjugated anti-mouse IgM (Chemicon) or IgG (H+L) (Bio-rad)

secondary antibody were used at a 1:3,000 dilution. Detection was

performed using SigmaFastTM O-phenylenediamine dihydrochlo-

ride substrate (Sigma Aldrich) according to the manufacturer’s

instructions. The reaction was stopped with 75 ml of 1M H2SO4

and absorbance was read at 490 nm using an ELISA plate reader

(Bio-rad model 680). ELISA titres were defined as the reciprocal of

the highest serum dilution that equals to 3 times the absorbance

reading from uninfected mouse serum sample.

Plaque reduction neutralization test (PRNT)
PRNT was carried out as described previously [36] with

modifications. Briefly, mouse serum samples were heated at 56uC
for 30 min to inactivate complement. Two-fold serial dilutions of

the sera (1:10 to 1:10,240 in RPMI 1640) were mixed in 96-well

plates with an equal volume containing 30 PFU of D2Y98P, and

incubated at 37uC for 1 hr with rocking every 15 min. Each mix

(100 ml) was transferred onto BHK monolayers grown in 24-well

plates, and incubated at 37uC for 1 hr. The mix was decanted, and

plaque assay was carried out as described above. The percentage

of plaque reduction was derived relative to the control consisting of

virus mixed with uninfected serum: [1- (number of plaques in test

wells/number of plaques in control wells) *100]. Fifty percent

Author Summary

The spread of dengue (DEN) worldwide combined with an
increased severity of the DEN-associated clinical outcomes
have made this mosquito-borne virus of great global
public health importance. Infection with DEN virus can be
asymptomatic or trigger a wide spectrum of clinical
manifestations, ranging from mild acute febrile illness to
classical dengue fever and to severe DEN hemorrhagic
fever/DEN shock syndrome (DHF/DSS). Progress in under-
standing DEN disease and in developing effective treat-
ments has been hampered by the lack of a suitable animal
model that can reproduce all or part of the disease’s
clinical manifestations and outcome. Only a few of the DEN
virus strains reported so far elicit a virulent phenotype in
mice, which results at best in an acute infection where
mice die within few days with no, few or irrelevant disease
manifestations. Here we describe a DEN virus strain which
is highly virulent in mice and reproduces some of the
aspects of severe DEN in humans, including the disease
kinetics, organ damage/dysfunction and increased vascular
permeability. This DEN virus strain thus offers the
opportunity to further decipher some of the mechanisms
involved in DEN pathogenesis, and provides a new
platform for drug and vaccine testing in the mouse model.
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neutralization titres (PRNT50) were determined for each sample by

fitting a variable sigmoidal curve in GraphPad Prism 5.00

(GraphPad Software). Data are expressed as the reciprocal of

the highest serum dilution for which PRNT50 is obtained.

Determination of virus titres in infected mice
Blood samples were collected in 0.4% sodium citrate and

centrifuged for 5 min at 6,000 g to obtain plasma. The presence of

infectious viral particles was determined by plaque assay as

described above.

To assess the levels of infectious virus in the tissues from infected

mice, the animals were euthanized and perfused systemically with

50 ml sterile PBS. Whole tissue from the brain, intestines, liver and

spleen were harvested from individual mice, kept on ice and their

wet weights were recorded prior to any further processing.

Samples were then trimmed and homogenized using a mechanical

homogenizer (Omni) for 5 minutes in 1 ml RPMI 1640 at medium

speed on ice. Thoroughly homogenized tissues were clarified by

centrifugation at 14,000 rpm for 10 min at 4uC to pellet debris.

The supernatant was filter-sterilized using a 0.22 mm diameter

pore size filter and the volume was recorded. The level of

infectious virus within the filtrate is thus considered representative

of the total level of infectious virus present in the harvested organ.

Ten-fold serial dilutions of each filtrate (from neat to 1:105) were

assayed in a standard virus plaque assay on BHK-21 cells as

described above. Triplicate wells were run for each dilution of

each sample. Data are finally expressed as log10 [mean 6 SD] in

PFU per gram of wet tissue with a limit of sensitivity set at 1.0 log10

PFU/g of tissue. Five mice per time point per group were assessed.

Results are representative of two experiments.

Histology
Mice were euthanized, and tissues were harvested and

immediately fixed in 10% formalin in PBS. Fixed tissues were

paraffin embedded, sectioned and stained with Hematoxylin and

Eosin (H&E).

Vascular leakage assessment
Vascular leakage was assessed using Evans Blue dye as a marker

for albumin extravasation as described previously [30,37] with

modifications. Briefly, 0.2 ml of Evans blue dye (0.5% w/v in PBS)

(Sigma Aldrich) were injected intravenously into the mice. After

2 hrs, the animals were euthanized and extensively perfused with

sterile PBS. Vascular permeability in the tissues was determined

visually and quantitatively; the tissues were harvested and weighed

prior to dye extraction using N,N-dimethylformamide (Sigma;

4 ml/g of tissue wet weight) at 37uC for 24 hrs after which

absorbance was read at 620 nm. Data are expressed as fold

increase in OD620nm per g of tissue wet weight compared to the

uninfected control.

Cytokine detection
Cytokine (IFN-c, TNF-a and IL-6) expression levels were

measured in individual serum samples using individual detection

kits (R&D), according to the manufacturer’ instructions. After

incubation with detection antibodies and streptavidin-PE com-

plexes, absorbance was read at 450 nm. Five mice per group and

per time point were used.

Hematology
Mouse blood samples were collected in K2EDTA and serum

tubes (Biomed Diagnostics). Whole blood was immediately

analysed for cell counts using automated hematology analyzer

Cell Dyn – 3700 (Abbott). Serum alanine (ALT) and aspartate

(AST) aminotransferases, and albumin levels were quantified using

chemistry analyzer COBAS C111 (ROCHE).

Statistical analysis
The results were analyzed using the unpaired Student t test.

Differences were considered significant (*) at p value ,0.05.

Results

Survival rate of D2Y98P-infected AG129 mice
To test the infectious potential of the D2Y98P strain, AG129

mice were intraperitoneally (ip.) infected with 10-fold serially

diluted viral doses ranging from 107 to 102 PFU. Survival rates

indicated that infection with 104 PFU and above induced 100%

mortality whereas 20% and 90% survival rates were observed in

animals infected with 103 and 102 PFU, respectively (Fig. 1).

Figure 1. Survival rates in AG129 mice infected with a dose range of D2Y98P virus. AG129 mice were infected intraperitoneally (ip.) with
10-fold serially diluted viral doses of D2Y98P ranging from 107 to 102 PFU. Ten mice per group were used. Data are representative of at least 3
independent experiments.
doi:10.1371/journal.pntd.0000672.g001
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Moreover, in mice infected with lethal doses, a clear correlation

between viral dose and time-of-death was observed, with increased

heterogeneity as the infectious dose is lower.

Upon infection with 107 and 106 PFU, initial clinical signs

included ruffled fur and hunched posture, which further

progressed to bloatedness, lethargy, diarrhoea-like symptoms,

moribund state and finally death of the animals. None of the mice

exhibited paralysis or significant body weight loss during the

course of infection (Fig. 2A). In contrast, upon infection with 105

PFU and below, no signs of diarrhoea were observed and near

moribund state, rapid body weight loss was measured (Fig. 2B).

Mice ip. inoculated with heat-inactivated D2Y98P (107 PFU

equivalent) displayed none of the disease manifestations or death.

In addition, neither disease manifestation nor transient viremia

was observed in immunocompetent Balb/c and C57Bl/6 mice ip.

infected with 107 PFU of D2Y98P (data not shown).

Viremia and antibody titres
Although both viral doses eventually induced 100% mortality in

AG129 mice, ip. infection with 107 and 104 PFU of D2Y98P gave

very different disease kinetics, suggesting that different mecha-

nisms and players are involved in the disease progression. We thus

decided to further characterize both the ‘‘acute’’ and ‘‘delayed’’

models of DEN infection.

Systemic virus titres were monitored over the course of infection

for both viral doses. In mice infected with 107 PFU, the peak of

viremia (105 PFU/ml) coincided with the animals’ death at 5 days

p.i. (Fig. 3A). In contrast, in mice infected with 104 PFU, viremia

peaked at around 104 PFU/ml at 6 days p.i., followed by viral

clearance from the blood circulation prior to animal death

(Fig. 3B), similar to the disease kinetic described in severe DEN

patients [3,34,35,38].

Furthermore, specific IgM and IgG antibody titres were

monitored over the course of infection. Significant IgM but

weak IgG responses were measured in mice infected with 107

PFU which both peaked at the time of death, 5 days p.i.

(Fig. 3C). Instead, in mice infected with 104 PFU, significant

IgG antibody titers were detected which progressively

increased over time, while the IgM antibody response peaked

at day 10 p.i. and waned by day 18 p.i. (Fig. 3D). Neutralizing

antibody titres correlated with the IgG antibody responses

(Fig. 3E&F).

Tissue tropism and kinetic of virus replication in D2Y98P-
infected mice

Gross pathological examination of the organs within the

intraperitoneal cavity from moribund animals infected with 107

PFU of D2Y98P revealed overt abnormalities that included a

severely distended stomach, a significantly enlarged spleen and

focal areas of haemorrhage in the liver, observable after systemic

perfusion of the mice with saline (Fig. 4A). These features were not

observed in moribund animals infected with 104 PFU (data not

shown).

Tissue tropism and kinetic of viral replication were deter-

mined in the intestines, liver, spleen, and brain from animals

infected with either 107 or 104 PFU of D2Y98P. No infectious

viral particles were detected in the intestines. In the spleen, liver

and brain, the kinetic of the virus titers corresponded to the

viremia profile; in animals infected with 107 PFU, virus titres in

the infected organs increased logarithmically in conjunction

with disease advancement, reaching their highest at the time of

death (Fig. 4B-D). Instead, in animals infected with 104 PFU,

the virus titres peaked at 5 or 6 days p.i. in the liver, spleen and

brain, and progressively dropped until complete clearance by

day 8 p.i. (Fig. 4B-D). Interestingly, the peak of virus titres

achieved in the liver and spleen was comparable in both animal

groups whereas peak titres in the brain (Fig. 4D) and plasma

(Fig. 3A&B) were about 1 log higher in mice infected with 107

PFU.

Histological examination of organs from D2Y98P-
infected mice

Brain, spleen, liver and intestines were harvested from mice

infected with 107 or 104 PFU of D2Y98P over the course of

infection. Histological examination of H&E stained-sections from

animals infected with 107 PFU revealed progressive damage at

both tissue and cellular levels which culminated at the time of

death (Fig. 5A). The well defined limits of the splenic red and

white pulp began to blur by day 3 p.i. (data not shown) and the

spleen architecture was completely lost by day 5 p.i. (Fig. 5A). A

larger magnification revealed the presence of apoptotic debris.

The liver displayed focal areas of haemorrhage and edema of cell

masses. Lymphoid aggregates and inflammatory infiltrates were

also detected at the portal tract and within the sinusoidal spaces of

the liver (data not shown). At the cellular level, extensive

Figure 2. Body weight changes in D2Y98P-infected mice. Mice were ip. infected with 107 or 106 (A), or with 105 to 102 (B) PFU of D2Y98P. Body
weight changes were monitored daily (A) or every other day (B) post-infection (p.i.). Results are expressed as the [mean 6 SD] of body weight loss in
percentage compared to initial body weight. Ten mice per group were monitored. Results are representative of 2 independent experiments.
doi:10.1371/journal.pntd.0000672.g002
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cytopathic effects that included hepatocyte swelling, cytoplasmic

vacuolation and degeneration were observed. Liver damage was

reflected by the significantly increased levels of aspartate (ALT)

and alanine (AST) transaminases measured in the serum of the

infected animals (Fig. 5B). Interestingly, despite the absence of

detectable virus particles in the intestines, these tissues displayed

marked infiltration of inflammatory cells and extensive architec-

tural distortion at moribund state (Fig. 5A). Severe detachment

and disintegration of the intestinal villi resulting in a debris-filled

intestinal lumen was noted.

In animals infected with 104 PFU of D2Y98P, no visible organ

damage was noticeable at the peak of viremia, 6 days p.i. (Fig. 5A).

However, at moribund state, the splenic architecture was severely

impaired to an extent comparable to that observed in animals

infected with 107 PFU. In contrast, the liver and intestines were

moderately affected with only localized areas of visible damage.

Moderate but significant increase in the systemic levels of ALT

and AST was measured at moribund state (Fig. 5B), indicative of

some liver dysfunction. Apart from slight vascular congestion,

brain sections from both animal groups did not display any

significant pathological changes at any time post-infection

(Fig. 5A).

Vascular leakage in D2Y98P-infected mice
Vascular leakage, a hallmark of severe DEN infection in

humans, was investigated in D2Y98P-infected AG129 mice using

Evans blue dye extrusion assay [30,37]. At moribund state, severe

vascular leakage was observed (Fig. 6A) and measured (Fig. 6B) in

the spleen, liver and intestines from animals infected with 107 PFU

compared to uninfected controls. Consistently, significant de-

Figure 3. Viremia and antibody titres in D2Y98P-infected mice. Mice were ip. infected with 107 (A, C, E) or 104 (B, D, F) PFU of D2Y98P. At the
indicated time points, five infected animals were bled and euthanized immediately. Viremia titres (A, B), specific anti-IgM (black circle) and IgG (open
circle) titers (C, D), and PRNT50 (E, F) were determined for each individual serum. Results are representative of 2 independent experiments.
doi:10.1371/journal.pntd.0000672.g003
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creased levels in serum albumin were measured in these infected

animals, indicative of plasmatic proteins leakage (Fig. 6C).

In animals infected with 104 PFU, marginal dye extrusion was

observed in the liver, intestines and spleen at the peak of viremia (6

days p.i.) whereas at moribund state, dye extrusion was markedly

increased in all the organs examined (Fig. 6A&B). The extent of

leakage in the liver and intestines was lesser than that observed in

mice infected with 107 PFU, whereas dye extrusion in the spleen

was as high as in the animals infected with 107 PFU (Fig. 6B).

Interestingly, and in contrast to animals infected with 107 PFU,

serum albumin concentration measured in animals infected with

104 PFU was significantly higher than that measured in uninfected

control animals (Fig. 6C), suggestive of hemoconcentration.

Cytokine expression levels in D2Y98P-infected mice
Enhanced cytokine production may lead to increased vascular

permeability and has been proposed to contribute to DHF/DSS

pathogenesis [39,40]. The expression profile of three key pro-

inflammatory cytokines, namely IFN-c, IL-6 and TNF-a, was

monitored over the course of infection in the serum of animals

infected with 107 or 104 PFU of D2Y98P. In animals infected with

107 PFU, the cytokine expression levels increased consistently over

time and peaked at the time of death of the animals (Fig. 7). In

contrast, in animals infected with 104 PFU, the production of these

pro-inflammatory cytokines corresponded to the viremia profile,

peaking at day 6 p.i., followed by a progressive decline to reach

basal production levels at moribund stage (Fig. 7). Of note, peak

values of the systemic levels of these three cytokines were

significantly higher in animals infected with 107 PFU compared

to animals infected with 104 PFU.

Hematology in D2Y98P-infected mice
Hematological disorders have been associated with DEN

disease and tentatively used as diagnostic and prognostic markers

[41,42]. Total counts of red blood cells (RBC), white blood cells

(WBC), lymphocytes, platelets and neutrophils were monitored in

D2Y98P-infected mice over the course of infection (Table 1).

In animals infected with 107 PFU, significant increase in RBC

concentration and hematocrit was measured at day 3 p.i.

compared to uninfected controls, indicative of hemoconcentration.

At moribund state however (day 5 p.i.), the levels of RBC and

hematocrit dropped, suggestive of hemorrhage. However, the

levels of WBC, neutrophils and platelets increased substantially

over time. Transient depletion in lymphocyte counts was observed

at day 3 p.i. followed by significant increase at day 5 p.i.

In animals infected with 104 PFU, progressive increase in RBC

counts and hematocrit was observed over the course of infection,

indicative of hemoconcentration. WBC, neutrophils, and platelets

levels similarly increased progressively and reached peak values at

10 days p.i. At moribund state however, the levels measured were

Figure 4. Pathology and virus titres in the liver, spleen and brain of D2Y98P-infected mice. (A) Mice were ip. infected with 107 PFU of
D2Y98P, and were sacrificed at moribund state and perfused extensively with PBS. Representative gross appearance of organs in the intraperitoneal
cavity of uninfected (left panel) and ip. infected (right panel) mice. Insets highlight the difference in the spleen size between both animal groups.
Virus titres were determined in the liver (B), spleen (C) and brain (D) from AG129 mice ip. infected with 107 (black circle) or 104 (open circle) PFU of
D2Y98P virus. Results are expressed as log10 [mean 6 SD] in PFU per gram of tissue. Five mice per time point per group were assessed. Results are
representative of 2 independent experiments.
doi:10.1371/journal.pntd.0000672.g004
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comparable to those measured in uninfected controls. Transient

lymphopenia was observed at the peak of viremia (day 6 p.i.)

followed by a very significant increase at day 10 p.i. Basal

lymphocytes level was measured at moribund state.

Altogether, the hematological parameters indicate that infection

with 107 PFU of D2Y98P led to haemorrhage tendency, whereas

infection with 104 PFU resulted in hemoconcentration. Remark-

ably, no evidence of thrombocytopenia was observed in the

infected animals as reflected by the platelets counts which were not

found statistically different from the uninfected controls.

Discussion

A growing number of immunocompetent, immunosuppressed

and humanized mouse models of DEN infection have been

explored, using an increasing number of mouse-adapted or cell-

Figure 5. Histopathology of D2Y98P-infected mice. (A) Representative H&E-stained tissue sections from the spleen, liver, intestines and brain
of AG129 mice ip. infected with 107 or 104 PFU of D2Y98P virus. Animals were euthanized at day 6 p.i. (104 PFU dose) or at moribund state (104 and
107 PFU doses). Sections were viewed under a light microscope at 50x (spleen) or 100x (liver, intestines, brain) magnifications. Insets at the right
bottom corners are observations made at 400x magnification. Representative sections from uninfected animals are shown in the left panels. Arrows
indicate apoptotic debris (inset spleen), hemorrhage and edema (liver) or vacuolation of hepatocytes (inset liver), and inflammatory cells (inset
intestines). Legend: RP, red pulp; WP, white pulp. (B) Serum levels of aspartate (AST) and alanine (ALT) transaminases. Mice were ip. infected with 107

or 104 PFU of D2Y98P. The animals were bled and euthanized at day 6 p.i. (104 PFU) or at moribund state (104 and 107 PFU). Five mice per group and
per time point were used. Results are expressed in U/L as the [mean 6 SD] and are representative of 2 independent experiments.
doi:10.1371/journal.pntd.0000672.g005

Figure 6. Vascular leakage in D2Y98P-infected mice. AG129 mice were inoculated ip. with 107 or 104 PFU of D2Y98P. At day 6 p.i. (104 PFU
dose) or at moribund state (both doses), mice were intravenously administered with Evans blue. After 2 hours, they were perfused extensively with
PBS and assessed for Evans Blue extravasation in tissues. (A) Evan’s blue extravasation in the peritoneal cavity (top panel) and intestines (bottom
panel) of uninfected or D2Y98P-infected mouse at moribund state. (B) Quantification of Evans blue dye in the intestine, liver and spleen from mice.
Five animals per group per time point were individually processed. Data are expressed as the [mean 6 SD] of fold increases in OD620nm per gram of
wet tissue compared to uninfected controls. (C) Serum albumin concentration. Results are expressed as the [mean 6 SD] of 5 animals per time point
per group. *p,0.05. Results are representative of 2 independent experiments.
doi:10.1371/journal.pntd.0000672.g006
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culture passaged DEN virus strains. However, none of these have

so far managed to recapitulate all the clinical symptoms and

manifestations of DEN disease as observed in humans. As humans

and mosquitoes represent the only two natural hosts for DEN

virus, it is unrealistic to hope address all the features of DEN

pathogenesis in a single mouse model. However, previous studies

have shown that it is possible to reproduce, and thus study, one or

few aspects of DEN pathogenesis in a specific mouse model of

DEN infection defined by a particular mouse background infected

with a specific DEN virus strain through a particular route of

administration and at a particular infectious dose. For example, a

mouse model of DEN hemorrhage has recently been reported

through intradermal infection of immunocompetent mice with a

high dose of the non-mouse adapted DEN2 virus strain 16681

originally isolated from a DHF patient [43,44]. Likewise, a

humanized mouse strain infected subcutaneously with various

DEN virus strains reportedly displayed clinical signs of DEN fever,

including fever, viremia, erythema, and thrombocytopenia [45].

Similarly, the AG129 mouse model has allowed the investigation

of some aspects of DEN pathogenesis including virus tropism,

vascular leakage, and pathogenesis in context of a functional

adaptive immune system [33]. Furthermore, the AG129 mouse

background has proven useful for vaccine and drug testing

[31,32]. However, the lack of IFN a/b2 and c2signalling draws

some limitations and calls for cautious interpretation of the

findings and observations made in this mouse model. Further-

more, the susceptibility of AG129 mice to DEN infection appears

to greatly depend on the DEN virus strain [32] and a limited

number only have so far been reported to result in a productive

infection with no, few or irrelevant clinical manifestations [30,32].

Moreover, administration of high viral doses was necessary to

trigger a virulent phenotype which resulted in animal death within

few days at the peak of viremia [30].

Here we describe a non mouse-adapted DEN virus strain,

D2Y98P, which is highly infectious in AG129 mice. D2Y98P is a

serotype 2 DEN virus strain originally isolated in 1998 from a

Singapore DEN-infected patient whose disease status at the time of

sample collection, and disease outcome are unfortunately not

known. The virus has been exclusively amplified in mosquito cells

for less than 20 rounds. Interestingly, an earlier passage (P13)

displayed a more attenuated virulent phenotype upon infection of

AG129 mice (G. Tan, personal communication). This observation

therefore suggests that mutation(s) have occurred in the viral

genome upon amplification in mosquito cells that rendered the

virus more virulent. Identification of the nucleotide changes

between the two virus passages is currently in progress in our

laboratory.

Infection of AG129 mice with a high dose (107 PFU) of

D2Y98P induced an acute lethal DEN infection where the peak

of viremia and virus titres in the infected organs coincided with

death of the animals, accompanied by cytokine storm, massive

organ damage, and severe vascular damage leading to haemor-

rhage. It is thus likely that in this acute model of DEN infection,

the pathological events are a consequence of both virus-induced

Figure 7. Pro-inflammatory cytokine expression in D2Y98P-infected mice. AG129 mice were ip. infected with 107 or 104 PFU of D2Y98P,
bled at the indicated time points and immediately euthanized. Serum levels of IFN-c (A), IL-6 (B) and TNF-a (C) were quantified. Results are expressed
in pg/ml as the [mean 6 SD] of 5 mice per time point and per group.
doi:10.1371/journal.pntd.0000672.g007

Table 1. Hematology in D2Y98P-infected mice.

Cell types Uninfected 107 PFU 104 PFU

Day 3 p.i. Moribund Day 6 p.i. Day 10 p.i. Moribund

WBC 4.85 (0.54) 5.68 (0.68) 24.32* (1.61) 9.49* (1.23) 20.76* (4.75) 4.33 (0.73)

NEU 0.54 (0.09) 3.49* (0.21) 8.17* (1.14) 6.35* (1.19) 8.03* (2.67) 1.07* (0.09)

LYM 3.86 (0.36) 1.25* (0.11) 8.2* (2.07) 2.23* (0.31) 10.88* (2.34) 2.99 (1.00)

RBC 7.56 (0.31) 9.58* (0.27) 7.31 (0.53) 9.48* (0.54) 9.95* (0.21) 10.87* (0.43)

HCT 41.10 (1.2) 47.22* (1.14) 38.22 (2.6) 45.34* (2.36) 47.78* (0.92) 53.88* (1.11)

PLT 464.6 (65.4) 427.2 (26.1) 552.8 (43.3) 476.2 (23.33) 706.2* (40.85) 499.8 (42.87)

AG129 mice were ip. infected with 107 or 104 PFU of D2Y98P. At the indicated time points, 5 mice per group per time point were bled and euthanized. Blood samples
were processed to determine white blood cells (WBC), neutrophils (NEU), lymphocytes (LYM), red blood cells (RBC), hematocrit (HCT), and platelets (PLT) counts. A
group of uninfected mice was included as control. WBC, NEU, LYM and PLT counts are given in K/uL (103 cells/ul), RBC count in M/uL (106 cells/ul), and HCT in
percentage (%). Data are expressed as the [mean 6 SD] of individual measurements and are representative of 2 independent experiments. * p,0.05 compared to
uninfected controls.
doi:10.1371/journal.pntd.0000672.t001
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cell death and massive inflammation reaction [39,40]. Such

virulent phenotype is similar to that described previously by

Shresta and colleagues using the D2S10 DEN virus strain [30]. In

contrast, infection of AG129 mice with a lower dose (104 PFU) of

D2Y98P led to a transient asymptomatic systemic viral infection

followed by death of the animals few days after viral clearance,

similar to the disease kinetic described in humans [3,38]. A strong

neutralizing IgG antibody response was measured in the infected

animals and is likely to be involved in the viral clearance.

Although increased vascular permeability (as indicated by

increased serum albumin concentration and Evan’s blue dye

extrusion) was observed in the moribund animals, the actual

cause of the animals’ death remains elusive. Apparent destruction

of the splenic architecture and liver dysfunction at moribund

stage are likely to contribute to the sickness. Furthermore, as the

disease progressed, infected animals appeared lethargic and

displayed reduced motility. This may result in reduced water

intake and dehydration of the animal, hence contributing to the

sharp body weight loss observed towards moribund stage and

consequently leading to animal death.

Widespread immune activation in response to acute DEN

infection has been well documented in DEN patients, and

circulating levels of various pro-inflammatory cytokines were

found to be elevated in patients with severe DEN [40]. Likewise,

the levels of three key pro-inflammatory cytokines implicated in

DF/DHF, namely IL-6, TNF-a and IFN-c, were significantly

elevated in the D2Y98P-infected AG129 mice and were directly

dependent on the initial infectious dose. Consistently, extensive

damage of various organs including the spleen, liver and

intestines was observed in animals infected with a high viral

dose (107 PFU). In contrast, lower levels of cytokine production in

animals infected with a low viral dose (104 PFU) correlated with

milder organ damage except for the spleen that appeared at

moribund stage, to be as extensively damaged as in animals

infected with a high viral dose; the absence of infectious viral

particles in the moribund animals excludes a direct virus

cytopathic effect but rather suggests some immunological

disorder that may arise from the overstimulation of immune

cells possibly by persistent viral antigens.

In contrast to the liver and spleen, no histological damage or

abnormalities were detected in the brain of animals infected with

107 PFU or 104 PFU, although infectious viral particles were

readily detected in this tissue after systemic perfusion. This

observation suggests that the virus is capable of extravasating from

the systemic circulation and cross the blood-brain barrier but may

not effectively replicate in the brain. Therefore, in this mouse

model, and as reported in dengue patients [46,47], meningitis

and/or encephalitis may not contribute significantly to disease

severity.

The action of a variety of cytokines, chemokines, and other

soluble mediators on endothelial cells has been proposed to affect

vascular permeability during DEN infection [39]. Vascular

leakage is a hallmark of DHF/DSS leading to hemoconcentration

and hemorrhagic manifestations [41,48], as observed in mice

infected with 107 PFU of D2Y98P for whom focal areas of

haemorrhage were observed in the liver, and low hematocrit and

serum albumin levels were measured. In this animal group, high

levels of pro-inflammatory cytokines are likely responsible for the

observed severe vascular leakage, particularly in the intestines

where no infectious viral particles were detected.

However, in mice infected with 104 PFU, neither significant

vascular leakage nor hemorrhage was detected at the peak of

viremia despite elevated levels of IFN-c, IL-6 and TNF-a.

Instead, increased vascular permeability was clearly observed at

moribund stage where the production of these three cytokines has

returned to basal level. This observation suggests that other pro-

inflammatory cytokines may be involved in the increased vascular

permeability observed in this low viral dose infection model.

Indeed, in addition to IFN-c, IL-6 and TNF-a, a number of

cytokines, chemokines and other soluble mediators have been

demonstrated or proposed to play a role in vascular leakage in

DEN disease [39]. Alternatively or additionally, other mediators

previously proposed to increase vascular permeability such as

immune complexes [49], nitrite oxide production [39], or cross-

reactive anti-NS1 antibodies [6,7], may be at play. Furthermore,

hemoconcentration and increased serum albumin level suggests

that fluid only but not proteins or cells, leaks from the blood

vessels. Increased vascular permeability without morphological

damage of the capillary endothelium is believed to be the cardinal

feature of DSS [39,49] and thus appears to be reproduced in this

mouse model of DEN infection. Further investigation is however

needed to decipher the actual mechanisms underlying this

phenomenon.

Remarkably, thrombocytopenia, a hallmark of severe disease in

DEN patients, was not detected in the animals infected with

D2Y98P virus, regardless of the initial infectious dose. Transient

drop in platelet counts has been previously observed in a number

of mouse models of DEN infection [15] including AG129 [33],

ruling out the possibility that the lack of IFNc signalling in these

mice would impair the mechanism(s) involved in thrombocytope-

nia. The absence of thrombocytopenia in our model may thus be

inherent to the D2Y98P virus strain. A number of immunological

mechanisms and effectors have been proposed to play a role in

thrombocytopenia during DEN infection [50–53], but the

differential ability of DEN virus strains to induce thrombocytope-

nia in a single model of DEN infection has never been

investigated.

In conclusion, the attractiveness of the D2Y98P strain lies in its

ability to induce, without the need for mouse-adaptation and upon

peripheral administration of a low viral dose, a virulent phenotype

in AG129 mice with a productive viral replication and

dissemination accompanied by some relevant clinical manifesta-

tions, including disease kinetic, organ damage/dysfunction and

increased vascular permeability. This model thus offers the

opportunity to further dissect some of the mechanisms involved

in DEN pathogenesis with the caveat that AG129 mice are

defective in IFN signalling. Furthermore, the induction of a disease

kinetic where the time-of-death window is distinct from the

viremic phase makes this low viral dose model unique and an

attractive platform for assessing the efficacy of DEN vaccine and

drug candidates.
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