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Abstract

Image guidance promises to improve targeting accuracy and broaden the scope of medical procedures

performed with needles. This paper takes a step toward automating the guidance of a flexible tip-
steerable needle as it is inserted into human tissue. We build upon a previously proposed
nonholonomic model of needles that derive steering from asymmetric bevel forces at the tip. The

bevel-tip needle is inserted and rotated at its base in order to steer it in six degrees of freedom. As a

first step for control, we show that the needle tip can be automatically guided to a planar slice of

tissue as it is inserted. Our approach keeps the physician in the loop to control insertion speed. The

distance of the needle tip position from the plane of interest is used to drive an observer-based
feedback controller which we prove is locally asymptotically stable. Numerical simulations
demonstrate a large domain of attraction and robustness of the controller in the face of parametric

uncertainty and measurement noise. Physical experiments with tip-steerable Nitinol needles inserted
into a transparent plastisol tissue phantom under stereo image guidance validate the effectiveness of

our approach.

Index Terms
needle steering; feedback control; nonholonomic system

[. Introduction

Successful outcomes for needle-based interventions such as interventional brachytherapy, fine
needle aspiration biopsy, thermal ablation critically depend on accurate targeting [2], [3].
Improving needle targeting accuracy, and expanding the applicability of needle interventions,
in general, involves actively steering a needle as it is inserted into tissue. Physicians often rely
on pre- or intra-operative medical imaging to guide a needle to its target. Several factors limit
performance, including the amount of steering that a needle affords after it is inserted, noisy
sensors, imperfect actuators, and tissue deformations. Furthermore, navigation in 3D under
image guidance by manipulating the needle at its base (from outside the patient) requires
profound spatial reasoning skills and extensive training. Efforts to overcome these limitations
focus on developing new needles and their placement devices [4]-[8], improving imaging
modalities for building pre- and intra-operative models [9], developing models that capture

tissue-needle interaction [10]-[12], and improved path planning [13]-[18]; refer to
Abolhassani et al. [19] for a recent survey on needle insertions.

Some results in this paper have been presented at the IEEE International Conference on Robots and Automation (ICRA), 2007 [1].
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Building on these recent improvements in needle placement, imaging, and planning, we
propose to use model-based feedback control theory for the first time, to the best of our
knowledge, for real-time image-based needle guidance. This approach relies on models of
needle steering amenable to systems theory (as opposed to, say, finite element models). Recent
efforts make progress towards such “plant models” for manipulating a needle from outside the
patient. DiMaio and Salcudean [10] show that needles that are stiff relative to the surrounding
tissue can be steered by moving the base of the needle to deflect the tissue as the needle is
inserted; they model this effect as a kinematic control system with a numerically determined
Jacobian matrix that relates base motions to needle-tip motions. Glozman and Shoham [11]
model the interaction between a flexible needle and surrounding tissue using virtual springs to
compute local deformations. In [14] Glozman and Shoham plan a needle path that avoids
obstacles in the work space and then at every time step they invert their virtual spring model
to obtain the translation and orientation of the needle base (the inputs) in order to drive the
needle back to the planned path in one step.

Webster et al. consider flexible bevel-tip needles that follow a curved path due to asymmetric
cutting forces at the needle tip [12]; they model this effect using a nonholonomic, kinematic
system, and the present work builds directly on this model. In both the rigid and flexible cases
described above, the inputs at the needle base are treated as inputs to a kinematic control system.
Among these needle insertion models, the one by Webster et al. seems to be the most amenable
to a systems-theoretic approach for control, and is the only such model that has been
experimentally validated for tip-steerable needles [12]. We build on this model and apply
observer-based feedback control to achieve a desired task. This enables us to articulate
analytical performance limits of our controller, such as the domain of attraction. Moreover,
our approach only requires the extraction of the needle tip position from images, rather than
the entire needle curve, thereby simplifying image segmentation.

Problem statement

Contribution

A flexible bevel-tip needle [12], [20] can be steered by rotation and insertion at the base of the
needle (outside the patient). As the needle is inserted, the asymmetry of the bevel creates a
moment at the needle tip, deflecting the needle and causing it to follow a circular arc. As the
needle base is rotated, the bevel tip is reoriented in space, so that subsequent insertion follows
an arc in a new plane.

As the needle is pushed through tissue, there is a small amount of tissue deformation and the
needle must be steered to avoid bones and other sensitive organs through which it cannot or
should not pass. To address this problem, Alterovitz et al. propose planning algorithms to
generate desired needle trajectories within a 2D plane [17], for the same type of needles used
inthe present study. The output of these 2D planners is a path that can be followed by alternating
between forward insertion (without rotation) of the needle into the tissue and 180° rotation
(without insertion) of the needle base. The planners assume that during the process the needle
stays in a known (hominal) 2D plane. However, our numerical tests indicate that small errors
of only a few degrees in needle tip orientation cause the needle to deviate rapidly from the
nominal 2D plane. The goal of this paper is to ensure that the needle tip is stabilized to the
desired 2D plane.

In the current work we design and demonstrate a nonlinear image-based observer—controller
pair to drive a flexible bevel-tip needle to a desired 2D plane. We base our plant model on the
nonholonomic kinematic model presented in [12]. We assume that the position (but not
orientation) of the needle tip can be measured in the operation room by a 3D imaging modality
such as biplane fluoroscopy or 3D ultrasound or by stereo cameras in the laboratory setting,

IEEE Trans Robot. Author manuscript; available in PMC 2010 April 28.
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and present an asymptotic observer for estimating needle orientation needed to achieve the
control task.

As detailed in [21], the controller presented in this paper operates in conjunction with the 2D
planners previously developed [17]. Whenever there is a 180° rotation, the controller is
employed to ensure that the needle stays close to the nominal plane, as required for the planning
algorithm to work effectively. We believe that this paper presents a crucial step towards
automated needle guidance in human tissue. Our controller also allows us to validate the
efficacy of the kinematic model described in [12].

Overview

We use the setup shown in Figure 1, which is similar to that described in [12], for image-guided
needle steering experiments. In the setup, transparent tissue phantoms made from plastisol,
which is a mixture of liquid PVC plastics and the plasticizer adipate (M-F Manufacturing Co.,
Inc., Fort Worth, TX) simulate human tissue. An overhead stereo pair of XCD-X710 firewire
cameras (Sony Corporation, Tokyo, Japan) capture images of the needle as it is inserted into
the phantom by a two-degree-of-freedom needle insertion device. The insertion device is
comprised of a stepper-motor-driven linear stage that drives the insertion degree of freedom
and a DC servo motor that axially rotates the needle shaft. The rotary stage is attached to the
base of the needle shaft, and as the linear stage drives the rotary stage forward, the needle
advances into the tissue. A telescoping support sheath around the needle shaft prevents the
needle from buckling outside of the tissue. The needle itself is a 0:7mm nitinol wire (Nitinol
Devices and Components, Fremont, CA), cut with an approximately 45° bevel tip, and pre-
bent by 10° at 9mm from the needle tip to enhance steerability.

The insertion and rotation speeds comprise two inputs to the kinematic model for bevel-tip
flexible needle steering developed by Webster et al. [12]. The model is a generalization of the
nonholonomic bicycle model, and neglects torsional compliance of the needle shaft. This
model, depicted in Figure 2, is reproduced here for reader convenience.

In the model, €1, £, determine the location of bicycle wheels with respect to the needle tip.
Parameter ¢ is the fixed front wheel angle relative to the rear wheel. Frame A is the inertial
world reference frame and frames B and C are attached to the two wheels of the bicycle. In
homogeneous coordinates, the rigid body transformation between frames A and B is given by
the rigid body transformation matrix

o= [ (f, ﬁ’ ] € SE(3), where R € SO(3) and p € R3.

(1)

We assume in this paper that the imaging system measures p, the 3D location of frame B. In
the non-generic case that £, = 0 (the unicycle model discussed in [12]), p coincides with the
needle tip.

Let v,0 € R3 denote, respectively, the linear and angular velocities of the needle tip written
relative to frame A, and let V = [v",0"]" € R6. Webster et al. use Lie-group theory to find a
“coordinate-free” differential kinematic model on the special Euclidean group, SE(3):

RPN
V=(g~'8) =Viu1+V,us, (2

where Vv and » denote the usual isomorphism between se(3) and R® (see Appendix), uj is the
insertion speed, u, is the rotation speed of the needle, and the control vector fields are given
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by V1 =10, 0, 1, k, 0, 0]T (which corresponds to insertion) and V5 = [0,...0, 1]T (which
corresponds to needle rotation). Here, « = tan ¢/£; is the curvature that the needle follows.
Insertion of the needle, uy, causes the needle to move in the body-frame z-axis direction, but
also to rotate (due to the bevel tip) about the body-frame x-axis. Rotation of the needle shaft,
Uy, causes pure rotation of the needle tip about the body-frame z-axis. Note that this model is
only valid for forward insertions of the needle into the tissue; during the removal of the needle
from the tissue, there are no cutting forces on the needle tip and hence the needle follows the
path (in reverse) it followed during the forward insertion into the tissue.

lll. Reduction And Control For Plane Tracking
A. Reduced-Order Plant Model

We use Z-Y-X fixed angles as generalized coordinates to parameterize R, the rotation matrix
between frames A and B. Let y be the roll of the needle, B be the pitch of the needle out of the
plane and a be the yaw of the needle in the plane. Let the position of the origin of frame B be
p =[xV, z]" € R3relative to the inertial frame A. We assume that an imaging system measures
the location of the origin of frame B. Note that by driving the origin of frame B to the y-z plane
the needle tip will also be stabilized to the y-z plane.

Using this notation, g =[x, y, z, o, B, v]" € % C R forms a (local) set of generalized coordinates
for the configuration of the needle tip. The coordinates are well defined on

U={q € R(’:w,y € Rmod 2n,8 € (—n/2,1/2)}. 3)

The body frame velocity is given by V = Jd, where

cospBcosy siny O
—cosBsiny cosy O
sin 8 0 1

i RT 03><3
J_[ 033 J»2

},JZZ=

The kinematic model (2) of the bevel tip flexible needle reduces to

o]

sin 8
—cos B sin @
cos @ cos B
kcosysecp

Ksiny
—kcosytanf

q=]71V1L11+JilV'_;M2=

-0 O O OO

(4)

Due to the introduction of generalized coordinates, there are singularities at p = +xn/2 that cause
detJ=cosp=0.

To stabilize the needle to the y-z plane, the states y, z, and a need not be controlled. Also, these
states do not affect the dynamics of the remaining states, x, B, and y. Let r = [rq, rp, r3]" =[x,
B, v]T denote the state vector of the “reduced” order system. Tracking the needle tip with an
imaging systems typically enable us to measure only the position of the needle and not its
orientation (without performing any differentiation), which in reduced coordinates is just the
distance from the y-z plane, namely x. We then reparameterize the reduced-order system in
terms of insertion distance, |, enabling the physician to control the insertion speed. With a slight
abuse of notation, we write 7~where we mean dr/dl, and interpret the insertion distance as
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“time” for convenience of exposition; this is equivalent to setting u; = 1 in (4). This system
can be represented as:

sin r;
r= K Sin ry

—KCOS r3 tan rp
w=[1 0 0]r=r|.

-0 O

(5)

Note that r = 0 corresponds to the desired equilibrium state of remaining within the y-z plane
to which we wish to stabilize the needle.

Using judiciously chosen generalized coordinates, we reduced the plant model to a third order
nonlinear system (5). This system can be feedback linearized (see, e.g. [22]) via a
transformation of state and input coordinates:
]T

s=[ry, sinry,kcosrpsinrz] , (6)

v=— k’sin r2+K COS 1 COS I3U. (7

The state equations in the feedback linearized form are:

]s. (8)

The system (A,B,C) is completely controllable and observable.

B. Observer-Based Feedback Control

Note that even though the change of coordinates from the nonlinear system (5) to the feedback
linearized system (8) is nonlinear, the first state—and, importantly, the output—is identical for
both systems. In other words the system is completely observable in both coordinate systems
based on the sensory measurement w = s1 = ry. Hence, simple control system design techniques
from linear system theory can be used to control this system. A full state Luenberger observer
with the following dynamics estimates all the states from the output:

5=A8+Bu+L(w — W)
w=Cs. (9)
The control input to the system is then given by full-state feedback, using the state estimate:
v=—-K3. (10)
Because the system is linear and time-invariant, the separability principle allows us to select
the observer gain matrix, L, and proportional gain matrix, K, independently as we do in our

experiments. Since there are only three states to estimate, and we expect to have reasonable
estimates of sensor noise, the observer can be quickly and effectively tuned using the Linear
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Quadratic Gaussian framework, leading to successful simulations and laboratory experiments
(Section 1V).

In the present framework, there are singularities at B = /2 due to the introduction of
generalized coordinates. In addition, the nonlinear transformation from r to s also introduces
singularities at y = +n/2. This limitation seems inescapable: global linearization is
mathematically impossible for dynamical systems on the space of rigid transformations.
Fortunately, our feedback linearization scheme works for all needle positions and orientations
except when the needle is orthogonal to the plane to which we are trying to stabilize. We believe
that this scenario is not of clinical significance; such large errors in orientation should be
addressed at the level of planning, not with low-level servo control. That said, it is important
for the above described controller never to take the system—or even the state estimate—to
these singularities.

Note that one theoretical difficulty arises because we must compute u from (7), which requires
exact knowledge of r. However, we do not know s nor r exactly, so we must use s to compute
an estimate of r by plugging s into the inverse of (6). This implies that the estimator dynamics
will have an input error. But locally near the goal, r = 0, and therefore v =~ xu. This allows us
to show local asymptotical stability through linearization of the system given by (8) and (9).
Fortunately, both simulations and experiments suggest that the domain of attraction is quite
large; analytically proving this remains work in progress. It is useful to find an invariant domain
thatavoids p = +n/2 and y = £n/2. In general, this is challenging because of the nonlinear change
of coordinates from u to v, and the lack of full state knowledge needed for that coordinate
transformation. However, if we assume that the error computing u is negligible, Lyapunov
stability analysis can be used to approximate this region; for details on this computation, see
[23].

V. Results

A. Numerical simulations

Extensive simulations were conducted in MATLAB to test our proposed controller. We used
a discrete-time implementation of the system and the controller-observer pair, to reflect our
physical implementation as closely as possible. The plant model was discretized assuming
constant insertion by 1mm of the needle into the tissue between samples. We assumed
measurement noise of up to £1mm with a uniform distribution; this seems clinically reasonable
given that 3D ultrasound imaging can be accurate to within 0:8mm [24], and is approximately
the same or slightly higher than the noise of our tracking system. The parameter value for the
model was taken to be 1/k = 12:2cm, which is the radius of curvature of the needle used in
laboratory trials.

In our simulations, we observed that if the entry point was too far away from the desired plane,
the estimator states (which are in the feedback-linearized coordinates) left the region in which
the inverse of the change of coordinates in (6) is well defined. To avoid such singularities, we
performed estimator saturation, namely if the estimator states left this region, they were
projected to the closest point in that region. For example, if [Sy, Sp, S3]T = [0, 1:5, 0]7, then it
is projected to [Sy, Sy, S3]" = [0, 1, 0]". Since we used state feedback control in the feedback-
linearized space, this pull-back affects only the magnitude of the input and not the sign of the
input. Our numerical tests suggested that this saturated nonlinear observer worked quite well,
although formal analysis of the saturation remains work in progress.

Two characteristic simulations are presented in Figure 3, with the same initial conditions. In
the first case, we tested the system without any feedback control, and it rapidly diverged from
the desired plane despite relatively small errors in roll, pitch and depth. In the second
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simulation, our observer-based controller drove the needle to the desired plane within about 5
cm of needle insertion.

We tested our controller over a uniform grid (10 x 10 x 10) of 1000 initial conditions of up to
+3mm error in depth from the plane, and up to £10° initial error in “pitch” (r,) and up to £30°
initial error in “roll” (r3). In all cases, we seeded the initial condition of the observer to s, =

S3=0°, and for the first state, S; = z; + noise of up to Imm. Each initial condition was simulated
10 times with noise, for a total of 10,000 simulations. Each insertion was to a length of 12cm.
We found that 98:56% of initial conditions converged to within £1mm (the sensor noise floor);
upon closer inspection of the remaining 144 runs in which the states did not converge to within
this tight tolerance in the finite needle insertion distance, we found that they did not diverge.

We tested the controller using an incorrect value of « (up to 20% error) and found that the
controller always converged, albeit slower than it would have if the correct « was given. Thus
the system appeared to be robust to parametric uncertainty; for an analytic proof we refer to
[25].

B. Experimental validation

Experiments were conducted on the needle steering device described in Section II. The tissue
used in the experiments was approximately 35mm thick, and it was sufficiently transparent for
visual tracking purposes. We captured the images of the needle inside the tissue using XVision
[26]. This tissue phantom had a refractive index of 1:3. Refraction was accounted for in our
calculations by assuming that tissue’s top surface was horizontal. The needle used for the
experiments had a radius of curvature of 12:2cm when inserted into the tissue. The needle
follows a circle of radius 1/x when it is inserted into the tissue without any rotation at the base,
so we collected needle-tip position data during pure insertion to estimate x using least-squares.
Following the observation of Webster et al. [6], we assume that this parameter does not change
as a function of insertion speed.

In the experiments the goal was to reach the y — z plane that was 3mm above from the initial
x-position. The pitch was approximately zero, but neither the pitch nor the roll of the needle
tip were precisely known. The needle was inserted into the tissue for 12cm, which is about the
radius of curvature of the needle inside the tissue. Nine trials were conducted on this
experimental setup with varying pitch and roll initial conditions. Figure 3 shows a comparison
of a typical trial with our simulation results, and Figure 4 summarizes all nine experimental
trials. In each of the trials, the needle tip converged to the desired plane within the noise levels
of the position measurement. As with the simulations, these experiments validate the efficacy
of our controller—observer pair and the experiments further support the nonholonomic model
for flexible bevel-tip needle insertion developed by Webster et al. [12]. It was interesting to
note, however, that while the physical and numerical results were qualitatively quite similar,
the physical system exhibited a consistently more sluggish response, which we suspect was
due to neglected torsional damping due to friction between the tissue and the needle shaft.

V. Discussion

We present a feedback controller that stabilizes a flexible tip-steerable needle to a desired 2D
plane. We show that considering a reduced 3-DOF system is sufficient to achieve this goal.
The task of driving the needle tip to a desired 2D plane only required us to keep track of three
of the six degrees of freedom of the needle tip, which greatly simplifies controller—observer
design. We recently generalized this idea of “task-induced” reduction for other tasks and
kinematic systems on Lie groups [25].

IEEE Trans Robot. Author manuscript; available in PMC 2010 April 28.
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In this paper, we assume that only the 3D position (but not orientation) of the needle tip can
be measured using an imaging system, and present a linear observer to recover the reduced-
order needle-tip state. Another approach may be to enhance our sensory measurement, for
example by measuring the pitch, ro, if needle shaft orientation can be segmented in both images
in a neighbhorhood of the needle tip. In this case, we can use a reduced-state Luenberger
observer (instead of the full state observer) to estimate only the roll, r3. Measuring the roll
itself may be more challenging due to very small size of the bevel-tip.

Irrespective of the measurement (either just position, or position and pitch), alternative
estimation schemes could be used. For example, in an Extended Kalman Filter (EKF) the
system is (approximately) linearized around the current state estimate to propagate covariance
and the Kalman gain matrices. In contrast our approach uses an exact change of coordinates
to obtain the controller and estimator with the trade-off being the use of state estimates to obtain
u fromv and, as discussed, exhibits local asymptotic stability. As with EKFs and other schemes
such as particle filters [27], we have no formal global characterization of the domain of
attraction for our observer—controller pair. However, our scheme is relatively simple and
performs well in practice.

An important next step is to evaluate the performance of this controller by conducting tests on
a variety of tissues (phantom, ex vivo, and animal cadaver) using ultrasound or fluoroscopy
imaging systems. Due to tissue inhomogeneity, implementing control on real tissue might
benefit from an adaptive version of our controller that would “learn” the model parameters
while stabilizing the needle to a 2D plane, or a scheme that is insensitive to variations in steering
curvature, as proposed in [23]. Our ultimate goal is to incorporate automatic needle steering
with pre- and intra-operative planning to greatly enhance the effectiveness of percutaneous
therapies.
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Special Euclidean Group, SE(3)

The special Euclidean Group in thee dimension, SE(3), is the group of rigid-body
transformations. It is the cross product of R3 and the space of rotation matrices, SO(3). SE(3)
can also be used to represent configuration of a rigid body, as we do in this work. The space
of skew-symmtric matrices in three dimensions, so(3), is the Lie algebra of SO(3). The “wedge/
hat” isomorphism R3 ~ so0(3) is defined by

w1
wy | &

w3

A. w3 0 -w

-y W 0

0 —w3 W
\%

where so0(3) is the Lie algebra of SO(3). The Lie algebra of SE(3) is denoted by se(3). In a
standard abuse of notation, we use the wedge/hat isomorphism R ~ se(3) to relate translational
v and angular e velocities to “twists” & € se(3) via
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For more detail, refer to [28].
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Support Sheath
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Fig 1.
The needle steering device inserts the needle into the tissue phantom while the needle tip
position is tracked using two overhead cameras.

IEEE Trans Robot. Author manuscript; available in PMC 2010 April 28.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Kallem and Cowan Page 12

Needle tip, n

Z

Fig 2.

Kinematic bicycle model: Frame A is the inertial world reference frame. Frames B and C are
attached to the two wheels of the bicycle. This figure is reproduced from [12] with permission
from the authors.
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Simulation:
Observer-Based Feedback
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Physical Experiment:

Observer-Based Feedback

0

4

8 12 0 4 8

Needle Insertion Distance (cm)

Comparison amongst a simulation with no feedback control (first column), a simulation with
feedback control (second column), and an experimental trial (third column). The first three
rows of plots show the three states (rq, Iy, r3), respectively. In the two simulations, the simulated
ground truth state is known (solid black line), whereas in the physical experiment, only its
estimate (solid teal line) is known. In the feedback control simulation and physical experiment,
the first state is measured at each time step (small black circles). The fourth row is the
cumulative rotational input given to the system. First column: Open-loop simulation with
initial conditions of r = [-3mm, 2°, 15°]. With no control, the needle tip diverges the needle
from the desired plane. Second column: Closed-loop simulation with the same initial
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conditions. Noise in the needle tip position is modeled as a random variable with a uniform
distribution between +0:5mm. With the feedback control, the needle converges to the desired
2D plane within the noise levels. Third column: One of the nine experimental trials, with
approximately the same initial conditions as the simulations (ground truth is not known). With
the feedback control, the needle tip converges to the desired 2D plane.
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Fig 4.

Nine experimental trials validate the controller. The mean value of rq of the nine trials is plotted
against the insertion distance of the needle into the tissue (solid magenta line; gray region
indicates mean + standard deviation). The specific trial shown in Figure 3 is reproduced here
(solid teal line). All trials control approach the desired 2D plane (r; = 0, dashed black line) and
stay within the noise levels of the position measurements of approximately 1mm.
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