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Therapeutic vaccination against idiotype is a promising strategy for immunotherapy of B-cell malignancies. We have previously
shown that CDR3-based DNA immunization can induce immune response against lymphoma and explored this strategy to
provide protection in a murine B-cell lymphoma model. Here we performed vaccination employing as immunogen a naked
DNA fusion product. The DNA vaccine was generated following fusion of a sequence derived from tetanus toxin fragment
C to the V4CDR34g9_116 epitope. Induction of tumor-specific immunity as well as ability to inhibit growth of the aggressive
38C13 lymphoma and to prolong survival of vaccinated mice has been tested. We determined that DNA fusion vaccine induced
immune response, elicited a strong protective antitumor immunity, and ensured almost complete long-term tumor-free survival
of vaccinated mice. Our results show that CDR3-based DNA fusion vaccines hold promise for vaccination against lymphoma.

1. Introduction

Lymphomas represent the fifth most common malignancies.
Each year, approximately 55000 new cases are diagnosed
with non-Hodgkin’s lymphomas (NHLs) in the United
States [1]. Despite current therapeutic strategies including
chemotherapy, transplantation, and passive immunother-
apy with monoclonal antibodies, many lymphoma patients
remain incurable. The recent years have witnessed the
development of a variety of promising immunotherapies
for treating patients with B-cell NHLs. Vaccine strategies
targeting NHLs have largely focused on using the idio-
type (Id) of the tumor immunoglobulin (Ig) individually
expressed on the surface of malignant B cells as tumor-
specific antigen (Ag). After decades of work, some clear
evidence of clinical efficacy in phase I/II trials using Id
protein vaccines has accumulated, despite results from phase

III trials seem disappointing [2, 3]. Furthermore, streamlined
production of these patient-specific vaccines is required for
eventual clinical application.

Several strategies are being developed to improve these
results and include optimization of antigen delivery and
presentation as well as enhancement of antitumor T cell
function.

DNA vaccines have emerged as a novel lymphoma
vaccine formulation for antigen-specific immunotherapy
[4]. Such a method is an attractive and effective approach
for active therapeutic vaccination since it does not require
the production and isolation of a purified protein for
each patient, a process that is expensive, laborious, and
time-consuming. The protein is endogenously produced
and secreted, which may result in more efficient antigen
presentation in both classes I and II major histocompatibility
complex (MHC) pathways resulting in enhanced anti-Id
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immune responses. In addition to their safety, stability, ease
of production, DNA vaccines are highly flexible, allowing
coexpression of several types of antigens and immunological
proteins [5]. Furthermore, the performance of DNA vaccines
may be improved by in vivo electroporation (EP) as a safe
and efficient method of in vivo delivery resulting in greatly
enhanced DNA uptake, protein expression levels, and degree
of local inflammation [6]. DNA vaccination has been applied
to therapy of experimental murine lymphomas (for reviews,
see Hurvitz and Timmerman [7] and Neelapu et al. [8]).
DNA vaccines that express either the tumor-derived Id or the
tumor variable (V) regions in a single-chain Fv conformation
(scFv) have been constructed. However, due to the weak
immunogenicity in most cases, their effectiveness depend
on carrier proteins or adjuvant proteins linked to the Id
structures [9—14].

Idiotypic antigenic determinants lying mainly within the
complementary-determining regions (CDRs) 3 have been
considered a “hot spot” of particular interest for construction
of subunit vaccines [15-18]. Vaccines including only this
minimal antigenic domain were proved to induce antibody
response [19, 20].

We demonstrated that DNA immunization of out-
bred mice with different patient-derived ViyCDR3 peptides
elicited antibodies able to recognize native antigens on
individual patient’s tumor cells [20]. Recently, our group has
shown the tumor protective effects recruited by CDR3-based
DNA vaccines in a poorly immunogenic, highly aggressive
murine B-cell lymphoma model. A DNA vaccine containing
a VuCDR3 epitope of the 38C13 B-cell lymphoma [21],
administered in combination with the Vi CDR3-encoding
plasmid, provided tumor protection and long-term tumor-
free survival in 60% of syngeneic mice [22]. In the current
study to enhance the potency of this vaccination platform,
we used the DNA fusion vaccine design encoding tumor
Ags linked to pathogen-derived sequences, aimed to provide
CD4* T cell help. Engagement of CD4* T helper (Tu)
cells has been shown to play a major role in linking
and coordinating innate and adaptive immune responses
[4, 23]. Many attempts to incorporate exogenous helper
antigens into DNA vaccine design to break tolerance to
self (tumor) antigens and to improve efficacy by helper T
cells have been described [24-28]. Fusion protein of tetanus
toxin fragment C (TTFrC) first domain to human CEA-
derived peptide provided activating signals required for DNA
vaccines against weak Ags [25].

Based on such finding, we generated a DNA vaccine
consisting of a fusion between a sequence belonging to
TTFrC and the VHCDR3199-116 epitope already described
[22]. Here we present data on the antitumor efficacy of the
CDR3-based DNA fusion vaccine delivered by intramuscular
electroporation in a B-cell lymphoma model.

2. Materials and Methods

2.1. Cell Lines. 38C13, a carcinogen-induced B-cell lym-
phoma in the C3H/HeN murine strain, expresses an IgM/x
surface antigen, is MHC II' [21], and was cultured in
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RPMI 1640, 10% heat-inactivated FBS, 2 mM L-glutamine,
100 U/mL penicillin, 100 U/mL streptomycin, and 50 uM f3-
Mercaptoethanol. This culture medium is referred to as the
complete medium throughout this study. 38C13 cell line was
used for tumor challenge experiments.

2.2. Construction of DNA Vaccines. Tetanus toxin (TT)
fragment-encoding DNA was amplified by PCR from chro-
mosomal DNA of recombinant Streptococcus gordonii strain
GP1253 (kindly provided by Dr. Pozzi, University of Siena,
Italy) [29]. The primers (forward 5'-CCG CTC GAG TCA
ACA CCA ATT CCA TTT TC-3" and reverse 5’-CCC AAG
CTT TGT CCA TCC TTC ATC TGT-3"), containing the
restriction sites Xhol and HindllII (in bold), respectively, were
designed to amplify the sequence coding for amino acids
856-1313 of tetanus toxin gene (GenBank Accession No.
X04436). The TT fragment spans from aa 856 to aa 1313 (H-
chain) and included 9 amino acids of fragment B (aa 856—
864).

The amplified fragment was inserted in the cloning
vector pUC19, and the resulting recombinant plasmid was
named pUC-TTss6-1313. Sequencing of the cloned TT frag-
ment revealed three-point mutations (already present in the
TT-expressing recombinant S. gordonii strain), which lead
to three amino acids substitutions in the protein sequence:
N919D, N998D, and M1240V.

The plasmid pUC-TTgs6-1313 was used as template for
the amplification of the partial TT fragment sequence
(TTe33-1126)- The fusion vaccines pTTo33-1126-VaCDR3 and
PTTo33-1126-VLCDR3 were assembled by PCR amplification
using the TToss forward primer (5'-CTA GCT AGC GCC
ACC ATG GTT ATA GTG CAT AAA-3',Nhel site underlined)
in combination with either the TT;;26VHCDR3 reverse
primer (5-ATAGTTTAGCGGCCGCTTAAATGTAGTC-
AAAGTACCCTTCGTATGTATCATATCGTAAAG-3",NotI
site underlined) or the TTi;¢ VLCDR3 reverse primer
(5"-ATAGTTTAGCGGCCGCTTATCCAAACGTGTACAG-
ATTATCATACTGTAGACATGTATCATATCGTAAAG-
3’,Notl site underlined). The Vi CDR3 sequence specifies
the 8-mer H-2KX “anchor modified” YEGYFDYl 09116
epitope of the murine B-cell lymphoma 38C13 Id, while
the Vi sequence expressed the 1l-mer peptide starting
with the Cysteine88 (i.e., Cys104 in the IMGT unique
numbering [30]) and encompassing the CDR3 and the
conserved Phenylalanine and Glycine residues of framework
(FR)4 [22]. The reverse primer overlapped the TTos33-1126
carboxyl region and contained an overhang encoding the
38C13 Id peptides, fusing it to TTo33-1126 C terminus. A DNA
fragment encoding the TTo33-1126 sequence alone was also
obtained by means of the TT¢33 forward primer together with
TTi16 reverse primer (5-ATAGTTTAGCGGCCGCTTA-
TGTATCATATCGTAAAG-3',Not1 site underlined). The
TTos3 forward primer also encoded the Kozak consensus
sequence and an ATG start codon.

The expression plasmid pRC110-NTS-IL-2 [22] was used
as recipient for cloning of the recombinant fragments under
the RSV promoter. The resulting PCR products were ligated
into pRC110-NTS-IL-2 as Nhel-NotI fragments.
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All constructs were sequenced, and plasmid DNA
was purified for vaccination using a QIAfilter Giga Kit
Endotoxin-free (Qiagen S.p.A., Italy).

2.3. Mice, DNA Vaccination, and Tumor Challenge Protocols.
Male C3H/HeN (H-2KX) mice, 8- to 9-week old, were
obtained from Charles River Italia S.p.A. (Calco, Italy) and
maintained in the Animal Facility at the “Sacro Cuore”
Catholic University of Rome, Italy. All animal experiments,
including anaesthetic procedures, were conducted in accor-
dance with protocols approved by the Italian Ministry of
Health. For protective experiments, on day 0 anesthetized
mice (ketamine-Domitor mixture; pTTVyCDR3 group, n =
7; pTT group, n=6) were vaccinated with a total of 50 ug
DNA plasmid in 150 mM phosphate saline buffer into
two sites of posterior muscle legs and received booster
injection 3 weeks later. Both vaccinations were followed
by electroporation with BTX ECM 830 Pulse Generator
(Harvard Apparatus, MA, USA) at 175 V/cm, 10 ms square-
wave pulses, 1Hz. Muscles were pretreated with bovine
hyaluronidase as reported elsewhere [31]. Unimmunized
(naive) mice (1 = 6) received a mock vaccination by injection
with phosphate saline buffer. Serum samples were collected
by tail bleeding 3 weeks after priming and 2 weeks after
boosting injections. All groups were challenged 2 weeks after
the booster vaccination by intraperitoneal injection of 2 x
10% 38C13 tumor cells.

In the therapeutic setting, on day 0 C3H/HeN mice
were challenged i.p. with a lethal dose of 38C13 (2 x 10?)
tumor cells. DNA electrotransfer was performed 4 days after
challenge and repeated 11 days later, with a total of 80 ug
DNA plasmids pTTVHCDR3/pTTVCDR3 or with 50 ug of
pTT (6 mice/experimental group). Unimmunized mice (n =
5) received a mock vaccination. EP settings were the same
used in the prophylactic experiments.

Clinical evidence of tumor and mouse survival were
monitored and compared between groups. Animals were
checked for visible abdominal tumors and tumor develop-
ment was monitored daily by abdominal palpation. Animals
were checked daily thereafter for mortality.

2.4. Peptide Synthesis. The native peptides NH,-DPNYY-
DGSYEGYFDYWAQGTTL-COOH (IgM 38C13Vy101-122)
and NH, -MHTAVYYCAKGAQGASLGKAYFFDCWGQG-
TQVTVSS-COOH (Vi CDR3-PA; [20]) were synthesized by
Primm (Primm S.r.l., Italy) and dissolved in the suggested
buffer prior to use.

2.5. Anti-Idiotype Antibody Detection by ELISA. ELISA plates
were coated with 50 ug/mL of Viigi-122 peptide or Vi
CDR3-PA as irrelevant peptide and incubated o.n. at 4°C.
Plates were quenched at r.t. for 2 hours with 3% BSA.
Mice sera, diluted 1 100 in PBS 1X/0,1% BSA/0,05%
Tween 20, were added and incubated for 2 hours at r.t.
Reactive antibodies were detected with sheep antimouse IgG
HRP-conjugated (1 : 5000 diluted, Amersham Biosciences,
Italy). Plates were then developed by adding ABTS sub-
strate (Sigma-Aldrich S.r.l., Italy). Absorbance was read at

405nm using ELISA microplate reader. All measurements
of antibody levels in individual animals were determined in
triplicate.

2.6. Ex Vivo Intracellular IFN-y Assay. Mice (3 ani-
mals/experimental group) were culled 1 week after booster
DNA injection and spleens were removed. Spleens were
perfused with 10mL RPMI 1640 culture medium, cell
suspension were passed through 100 ym nylon cell strainer
(BD Falcon, BD Biosciences Europe, Belgium) to remove
large cells aggregates, and then centrifuged at 1,000 rpm
for 10 minutes. Cells were resuspended in 1 mL medium,
counted, centrifuged a second time and then resuspended in
90% FBS/10%DMSO and cryopreserved until assessment.

To assess priming of CD8* T cells, splenocytes har-
vested from groups of immunized mice were processed
for detection on intracellular IFN-y. Cells (2 x 10°%/well)
were incubated for 5hours at 37°C in 24-well plates in
2mL complete medium supplemented with 2mM sodium
pyruvate, 1% nonessential amino acids (1% of 100x stock).
Splenocytes were stimulated with 100 yg/mL Vi191-122 in
the presence of 1uL/mL cell culture of Golgi Plug (BD
Biosciences Europe, Belgium). Following incubation, stim-
ulated cells were washed twice and Fc receptors were
blocked by incubation with rat antimouse CD16/CD32
(Fc Block; BD Biosciences Pharmingen, CA, USA) for
30 minutes. Samples were processed to label surface CD8
(PerCP antimouse CD8a—clone 53-6.7) and subsequently
fixed and permeabilized. Cells were stained with Alexa
Fluor 488 antimouse IFN-y (clone XMG1.2) for intracellular
labelling and analyzed by FACSCalibur using Cell Quest
Pro software (BD, CA, USA). Data collection was gated on
live spleen lymphocytes by forward and side angle scatter,
utilised to exclude dead cells, debris, nonlymphoid cell, and
cell aggregates. Values indicated in the FACS plots refer
to double positive cells (CD8" IFN-y*) as percentage of
total lymphocytes population. Statistical markers were set
using unlabelled cells as reference. Typically, less then 0.08%
positive cells were detected beyond the statistical marker in
the above negative controls. Fluorochromes-conjugated Abs
were purchased from Biolegend, CA, USA.

2.7. Statistical Analysis. Data from ELISA assay were anal-
ysed by unpaired, two-tailed t-test. Survival analyses were
performed using the Kaplan-Meier method and the log-rank
test. Tumor-bearing animal proportions and intracellular
cytokine staining proportions were compared by X? analysis
(MedCalc Software, Mariakerke, Belgium).

3. Results

3.1. DNA Vaccines and Experimental Design. In this study a
DNA fusion vaccine containing pathogen-derived sequence
as an immunoenhancer element was generated. The H-2KX
MHC class I binding motif-guided “Epitope prediction”
(SYFPEITHI database, http://www.syfpeithi.de [32]) was
applied to a TT fragment that spans from aa 856 to aa 1313
(GenBank Acc. no. X04436). An amino acids region was
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FiGure 1: DNA fusion vaccine schematic structure (a). Experimen-
tal design of protective (b) and immune responses (c) studies is
showed. C3H/HeN mice were immunized twice at 3-week intervals
by intramuscular injection followed by electroporation. Unim-
munized (naive) mice received a mock vaccination by injection
with phosphate saline buffer. Two weeks after boosting mice were
injected i.p. with 2 x 10% 38C13 cells.

selected (TTFrCoss_1126) which overlaps some of CD4" T-
cell epitopes (the TTos7_967 epitope, the TT1os4—1099 €pitope,
TT10s8-1077 epitope) present on the microbial toxin sequence
[33-35]. Furthermore, this TTFrC portion should lack of
potentially competing epitopes as regards VuCDR3199-116
epitope, avoiding phenomenon of immunodominance [36].

To construct the DNA vaccine, the amplified fragment
TT933-1126 VHCDR3109-116Was generated after PCR reactions,
as described in Section 2. This fragment was cloned into
pRCI10-NTS backbone vector [22], and the recombi-
nant plasmid designed as pTTVyCDR3, as reported in
Figure 1(a). Additionally our plasmid encodes murine IL-
2 as cytokine adjuvant. Likewise, the recombinant plas-
mid pTTViCDR3 was obtained by cloning the amplified
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TABLE 1: Reactivity of mouse sera against a CDR3 control
(irrelevant) peptide as assessed by ELISA.

Mice groups Vaccine formulation Absorbance (nm)! P?4 versus B
A pTTVuCDR3 0.159 = 0.161 NS
B pIT 0.049 + 0.208

' Control values belonging to unimmunized mice were subtracted.
2 Unpaired, two-tailed t-test.
NS: not significant.

fragment TTo33-1126VLCDR3gs_9g in the same backbone
vector. A plasmid encoding the TTo33-1126 sequence alone in
the same backbone vector was also obtained and named pTT.

Plasmid DNA vaccination was performed using the
RSV promoter driving TTo33-1126 ViHCDR3199-116 €xpression
plasmid (pTTVHCDR3), while pTT was used as control
vaccine. Naive mice received a mock vaccination by injection
with phosphate saline buffer. Our DNA vaccination pro-
tocol consists of two DNA injections both associated with
electroporation [22]. Experimental design of protective and
immunological studies is showed in Figures 1(b) and 1(c),
respectively.

3.2. Antibody Response Analysis. The levels of antibody
response specific to DNA fusion vaccine were evaluated
in mice following intramuscular immunization. Humoral
immune response elicited after pTTVyCDR3 or pTT immu-
nizations was assayed by ELISA for Vy peptide (Djo1—Li22)
reactive antibodies.

We wondered whether the immunization regimen might
influence the immune outcome. Individual blood samples
were collected from mice (pTTVyCDR3 group, n = 7; control
groups, n=6) 3 weeks after DNA priming and 2 weeks
after boosting injections. The response profile for each
vaccine group has been depicted in Figure 2. ELISA test
failed to detect antibody titers when performed with mice
sera collected after priming as well as analyses of individual
sera within the pTTVyCDR3 group revealed no noticeable
differences compared to unimmunized and pTT control
groups (Figure 2(a)).

Two weeks after boosting, mice immunized with
pTTVHCDR3 DNA vaccine showed sera positive for
antibodies directed against the Vy peptide (Djo1—Li22)
(Figure 2(b)). Compared with pTT control vaccine and
unimmunized groups, the pTTVyCDR3 vaccine group
antibody level was statistically significant (P = .0045 and
P =.0014, resp.).

The lack of antibody response after priming suggests that
boosting is critical for antibody induction. Our data essen-
tially confirmed that immunization schedule was critical for
this Ag system [37].

Reactivity of mouse sera against a CDR3 irrelevant pep-
tide (Vg CDR3-PA [22]) generated no significant response
(Table 1).

3.3. Induction of IFN-y Producing CD8* T Cells by Fusion
DNA Vaccine. To investigate whether our vaccination strat-
egy could induce positive CD8" T cell responses to ViyCDR3
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FIGURE 2: Immune responses elicited after pTTVyCDR3 and pTT immunizations. Humoral immunity was assayed by ELISA for mice sera
Vu peptide (Djg1-L-122) reactive antibodies 3 weeks after priming (a) and 2 weeks after boosting. (b) Unimmunized mice represent the
control group. Each marker indicates a value from a single mouse; group means are represented by a horizontal bar. Experimental groups
(pTTVuCDR3 group, n = 7; control groups, n = 6) were compared by unpaired, two-tailed ¢-test. (c) The frequency of IFN-y-positive CD8*
T cells was assessed ex vivo by intracellular cytokine staining. Splenic lymphocytes were harvested 1 week after booster injection, stimulated
with Vi peptide (Dyg1-L-122), and assayed for IFN-y production on gated T lymphocytes. Representative flow cytometric plots from pooled
mice (3 animals/experimental groups) splenocytes are shown. Numbers in FACS plots refer to CD8* IFN-y* cells as a percentage of the
total T cells population. (d) Data were pooled from two identical independent experiments to indicate the mean percentage of CD8* T cells
producing IFN-y in response to Vi peptide. An X? test for the comparison of the two proportions, expressed as a percentage, was performed.

Error bars: SEM. (*)denotes a statistically significant value (P <.0001).

epitope, C3H/HeN mice (n = 3) were vaccinated with the
same DNA dose and regimen. Splenic lymphocytes were
harvested 1 week after booster injection and processed for
their ability to induce Vi peptide (D191—Li22) positive IFN-
y-producing T cells responses. Flow cytometry analyses in
Figure 2 showed the percentage of CD8" T cells producing
IFN-y. Splenocytes isolated from pTTVHCDR3 vaccinated
mice generated a significantly higher frequency of IFN-y-
positive CD8" T cell precursors compared to mice vaccinated
with the pTT control vaccine (P < .0001). A graphical
representation of the number of Vi peptide(D1o1—Li22)-

positive CD8* T cells is depicted in Figures 2(c) and 2(d).
Thus, our data suggest that vaccination with pTTVyCDR3
induces priming of CD8* T lymphocytes.

3.4. Prophylactic and Therapeutic Experiments. To address
the protective tumor immunity of pTTVyCDR3 DNA vac-
cine, we performed prophylactic vaccination experiments.
The details of the immunization protocol and the tumor
challenge are described in Figure 1(b). The immunization
regimen was previously developed for another CDR3-based
vaccine formulation and proved to be efficacious [22].
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FIGURE 3: In vivo antitumor effects generated by immunization
with pTTVHCDR3 vaccine. (a) Tumor resistance. ) denotes a
statistically significant value (P < .001) by X? analysis when
comparing the pTTVyCDR3 group (n=7) to all other groups
(n=6). (b) Representative long-term tumor-free survival. Survival
analyses were performed using the Kaplan-Meier method and the
log-rank test (P = .0027).

Two weeks after the last DNA electrotransfer, animals
(pTTVuCDR3 group, n = 7; control groups, n = 6)
were challenged intraperitoneally (i.p.) with a lethal dose of
38C13 tumor B-cells. The development of i.p. lymphoma
was monitored for each mouse and the protective efficacy
of fusion vaccine was evaluated in terms of survival of mice
over the next 120 days. Immunization with the pTTVyCDR3
DNA significantly impacted tumor growth and ensured long-
term tumor-free survival of about 85% of treated mice (P =
.0027) (Figures 3(a) and 3(b)). Cohorts vaccinated with
the pTT control vaccine or phosphate buffer showed poor
lymphoma resistance, with all mice showing median survival
time of 19 days.

The potent prophylactic antitumor effect prompted us to
assess the therapeutic vaccination against established 38C13
tumor. Therefore, based on our previous data [22] and
recent findings (manuscript in preparation), we evaluated
the combined effect of VECDR3 and Vi, CDR3 peptides fused
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to TTos3-1126 FrC portion in a therapeutic setting. Four
days after challenging C3H/HeN mice (6 mice/experimental
group) with a tumorigenic dose of 38C13 cells, DNA
electrotransfer with pTTVHCDR3/pTTVCDR3 or with pTT
was performed and repeated 11 days later. Even though the
timing of tumor onset was similar for the plasmids injected
mice and the control mice, at days 18-22 postchallenge
all untreated and pTT control mice succumbed. DNA
vaccination with pTTVyCDR3/pTTVLCDR3 resulted in a
trend toward a prolongation of life span through day 35
posttumor challenge, although the delay in death rate was
not statically significant (Table 2).

4. Discussion

We have previously developed a DNA-based vaccine contain-
ing the 8-mer H-2KX “anchor modified” YEGYFDYI9-116
epitope of VuCDR3 sequence of the murine 38C13 B-cell
lymphoma. The VyCDR3 epitope has been shown to be
protective in combination with the VLCDR3 peptide in a
murine tumor protection experiment [22].

In the current study, we aim to gain insights into the
enhancement of the effectiveness of the ViyCDR3-based
DNA vaccine in terms of specific immune responses and
tumor protection in mice.

Induction of potent immune responses against self-
tumor antigens is not an easy task. Fusion of the antigen with
foreign universal Ty epitopes (such as tetanus toxoid epi-
topes) has been shown to brake the tolerance to self-antigen
and render a weak tumor antigen more immunogenic.

Engagement of CD4* Ty cells has been shown to play a
major role in linking and coordinating innate and adaptive
immune responses [4, 23].

Thus, a DNA fusion vaccine was generated follow-
ing fusion of a sequence derived from TTFrC to the
VuCDR3,g9-116 epitope to help immune responses against
the tumor antigen. Vaccine efficacy was assayed in a highly
aggressive and weakly immunogenic murine model of B-cell
lymphoma.

We demonstrated that the fusion DNA vaccine
pTTVHCDR3 was able to induce detectable levels of
antibodies against the peptide encompassing the VyCDR3
sequence. Humoral immune response could not be achieved
by first plasmid electrotransfer suggesting that boosting is
critical for antibody induction for this antigen system.

Furthermore, plasmid-driven TTVHCDR3 immuniza-
tion resulted in the induction of significantly higher fre-
quency of IFN-y-producing CD8* T cell precursors as
compared to control group.

Prophylactic vaccination with pTTVCDR3 DNA vac-
cine through the intramuscular route in combination
with electroporation strongly affected the onset of highly
aggressive 38C13 B-cell lymphoma. Inhibition of lymphoma
growth led to significant and long-lasting protection from
tumor in syngeneic mice with about 85% surviving, com-
pared to naive animals or those given the pTT control
vaccine. This study demonstrates that fusion of exogenous
protein to tumor-specific epitope converted an ineffective
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TaBLE 2: Therapeutic vaccination induces life span prolongation.

Survival %

Log-rank P-values versus

Mice group Vaccine formulation (n./tot) Group C Group B
Day 15 Day 22 Day 28

A pTTVuCDR3/pTTV CDR3 100 20 20 0.083 0.115
(6/6) (3/6) (3/6)

B pTT 100 0 0.408 —
(6/6) (0/6)

C Unimmunized 80 0 — —
(4/5) (0/5)

vaccine, namely, pVy [22], into one with considerable
activity.

The potent prophylactic antitumor effect prompted us to
assess the tumor immunity in a therapeutic setting, which is
more clinically relevant. Preliminary data obtained by using
this DNA platform strategy provide proof of principle for
the treatment of already established tumor in our model.
Further enhancement of the potency of CDR3-based DNA
vaccines is necessary in a therapeutic scenario; experiments
testing new combinations of other crucial cytokines are
under evaluation.

Attempts to identify the mechanism of Id-induced
antitumor immunity to malignant B-cells have yielded
variable results. Despite results from early clinical trials
with Id vaccines suggest that both humoral and cellular
immune responses may be independently associated with
tumor regression and improved progression-free survival
[38-42], the relative importance of the antibody and cell
mediated immune response is still uncertain. Experiments
are currently ongoing to explore the relative role of cel-
lular versus humoral immunity for vaccine efficacy in our
system.

The functional insertion of microbial sequence within
the DNA vaccine was aimed to stimulate CD4" T cell help
that is critical for inducing and maintaining an effective CTL
response [23, 43]. Deeper analyses are needed to explore the
role, if any, of ViyCDR3 peptide-specific CD8" T cells precur-
sors in the generation of immune responses via CD4" T cell-
mediated mechanisms. The involvement of CD4" T helper
lymphocytes at the effector phase of anti-tumor responses
is coherent with Ty cell-dependent “DCs licensing” [44]
required for optimal vaccine efficacy, in the absence of MHC
class I molecules expression by tumor cells [28, 45]. Licensed
DCs presenting peptides from both TTFrC portion and
tumor antigen can be able to activate the large repertoire of
anti-TTFrC CD4"* T cells. Hence, by ligand-receptor pairs
interactions, “DCs licensing” mechanism supports priming
and boosting of the weak tumor-derived peptides response
[4].

Lastly, employing electrotransfer for the delivery of a
DNA vaccine should improve the availability of the antigen,
since EP increases and prolongs protein expression level and

also results in recruitments of infiltrating inflammatory cells
to the administration site [6].

5. Conclusions

This study demonstrates that fusion of exogenous protein to
tumor-specific epitope converted an ineffective vaccine into
one with considerable activity. Immune responses recruited
by CDR3-based DNA fusion vaccine involve anti-Id antibody
production and suggest the possible contribution of CD8" T
lymphocytes.

A vaccination protocol consisting of a naked DNA
priming and boosting is attractive by virtue of ease and
less time-consuming production. Furthermore, safety is also
achieved since adverse immune response can be avoided (i.e.,
immunity generated against some viral vectors).

The CDR3-based DNA fusion vaccines strategy may
prove to be a highly useful approach against B-cell lym-
phoma. Optimal integration of active immunization ap-
proaches into standard therapies suggests DNA vaccina-
tion as an effective treatment to eradicate minimal resid-
ual diseases during clinical remission following standard
chemotherapy in lymphoma patients.
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