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The cancer-preventive activity of vitamin E has been studied.
Whereas some epidemiological studies have suggested a protective
effect of vitamin E against cancer formation, many large-scale
intervention studies with a-tocopherol (usually large doses)
have not demonstrated a cancer-preventive effect. Studies on
a-tocopherol in animal models also have not demonstrated
robust cancer prevention effects. One possible explanation for
the lack of demonstrable cancer-preventive effects is that high
doses of a-tocopherol decrease the blood and tissue levels of
d-tocopherols. It has been suggested that g-tocopherol, due to
its strong anti-inflammatory and other activities, may be the more
effective form of vitamin E in cancer prevention. Our recent re-
sults have demonstrated that a g-tocopherol-rich mixture of
tocopherols inhibits colon, prostate, mammary and lung tumor-
igenesis in animal models, suggesting that this mixture may have
a high potential for applications in the prevention of human
cancer. In this review, we discuss biochemical properties of to-
copherols, results of possible cancer-preventive effects in hu-
mans and animal models and possible mechanisms involved in
the inhibition of carcinogenesis. Based on this information, we
propose that a g-tocopherol-rich mixture of tocopherols is a very
promising cancer-preventive agent and warrants extensive fu-
ture research.

Introduction

Vitamin E consists of a group of eight structurally related compounds:
a-, b-, c- and d-tocopherols (a-, b-, c- and d-T) and a-, b-, c- and
d-tocotrienols (a-, b-, c- and d-TT). All four tocopherols consist of
a chromanol ring and a 16-carbon side chain, but they differ in the
number and position of the methyl group on the ring (Figure 1). For
example, a-T is tri-methylated (at the 5-, 7- and 8-positions of the
chromanol ring), whereas c-T is dimethylated (at the 7- and 8-posi-
tions). Tocotrienols have the same substitution pattern of methyl
groups on the chromanol ring (for a-, b-, c- and d-form) as tocopher-
ols, but they have an unsaturated 16-carbon side chain with double
bonds at the 3#, 7#, and 11# positions (1,2).

Tocopherols cannot be synthesized in humans and animals; there-
fore, they need to be obtained from dietary sources. c-T and a-T are
the major dietary tocopherols present in the human diet. c-T is the

most consumed tocopherol, estimated to be consumed several times
more than a-T (3). Tocopherols are plentiful in vegetable oils, such as
oils from soybean, corn, sesame and cottonseeds, as well as nuts (4,5).
Tocotrienols are present in trace amounts in oils derived from rice
bran, barley, wheat germ and rye and are not consumed in large
quantities in North America. Tocotrienols, however, are plentiful in
palm oil (up to 800 mg/kg), mainly consisting of c-TT and a-TT, and
are consumed mostly in East-South Asia (6).
a-T has been traditionally recognized as ‘the’ vitamin E because of

its superior activity in the classical fertility-restoration assay and its
higher blood levels over other tocopherols and tocotrienols. For these
reasons, most of the studies on vitamin E have focused on a-T; the
distinct biological activities of other vitamin E molecules have not
been studied to the same extent. Lately, it has been recognized that
other tocopherols, such as c-T and d-T, as well as tocotrienols, have
novel biological activities (7–9). As discussed in several reviews (7–9),
c-T has stronger anti-nitrative and anti-inflammatory activities than a-T
and may be more effective in the prevention of cancer, as well as
cardiovascular and neurodegenerative diseases. As will be discussed
later, our recent results in animal models on the inhibition of colon,
prostate and mammary carcinogenesis by a c-T-rich mixture of toco-
pherols (c-TmT, containing 59.3% c-T, 25.4% d-T, 13.5% a-T and
1.6% b-T) are very exciting (10–14). This review discusses our
current understanding of the cancer-preventive and other activities of
tocopherols and tocotrienols.

Absorption and metabolism of tocopherols

Dietary tocopherols are absorbed from the intestinal mucosa as the
free phenolic form since esters are hydrolyzed by the pancreatic es-
terases prior to absorption. Tocopherols are incorporated into the
chylomicrons and transported to the liver via the lymphatic system.
Diet fat promotes transfer of vitamin E into the lymphatic system. The
uptake of tocopherols into the liver is probably non-specific, but the
transfer of tocopherols in the liver to very low-density lipoproteins is
mediated by a specific a-T transfer protein (15,16). a-T transfer pro-
tein in the liver selectively transfers a-T to very low-density lipopro-
teins; a-T is, therefore, preferentially secreted into the circulation and
transferred to non-hepatic tissues (2). Due to their low affinity for a-T
transfer protein, hepatic c-T and d-T are less efficiently transferred to
very low-density lipoproteins. Therefore, smaller portions of c-T and
d-T are found in the blood and tissues, and most of them are excreted
in the feces.

The major route of tocopherol metabolism is through side-chain
degradation, initiated with hydroxylation of the x-methyl group
by cytochromes P450 4F or 3A and followed by five cycles of
b-oxidation to cut off two-carbon units from the main chain in each
cycle (1,17). A larger percentage of c-T and d-T than a-T is degraded
through this pathway (18). The short side-chain metabolites, c- and
d-carboxyethyl hydroxychroman (CEHC) (19,20), as well as lower
levels of c-carboxymethylbutyl hydroxychroman (21) were excreted
in the urine in conjugated forms as glucuronides and sulfates. Metab-
olites of side-chain degradation of different chain lengths have been
observed upon incubation of tocopherols and tocotrienols with HepG2
liver cancer cells (22). These metabolites have recently been char-
acterized in mouse and human fecal and urine samples (Y.Zhao,
M.J.Lee, C.Cheung, J.Ju, Y.K.Chen, B.Liu and C.S.Yang, submit-
ted). These metabolites were secreted together with intact tocopher-
ols and other lipids from the liver via bile into the intestine and
excreted in the feces. These urinary metabolites may reflect dietary
exposure of c- and d-T, vitamin E nutritional status and disease
states, such as inflammation, or smoking that could affect tocopherol
metabolism.

Abbreviations: a-, b-, c- and d-T, a-, b-, c- and d-tocopherol; a-, b-, c- and
d-TT, a-, b-, c- and d-tocotrienol; AOM, azoxymethane; CEHC, carboxyethyl
hydroxychroman; CI, confidence interval; DSS, dextran sulfate sodium;
c-TmT, c-T-rich mixture of tocopherols; PPAR-c, peroxisome proliferator-
activated receptor-c; RR, relative risk; a-TP, a-tocopheryl phosphate.
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Anti-oxidative activities: trapping of reactive oxygen and
nitrogen species

Vitamin E serves as antioxidants by preventing propagation of free
radical reactions (2). Some in vitro studies have shown the superiority
of a-T as an antioxidant over other tocopherols. Others, however, have
found that antioxidant activities of c-T are similar to or even greater
than those of a-T (23). In addition to this direct antioxidant activity,
tocopherols and their metabolites may serve as indirect antioxidants
by activating NF-E2-related factor-2-related antioxidant enzymes.
c-Tocopheryl quinone, the terminal oxidation product of c-T, has been
shown to be more effective than a-tocopheryl quinone at increasing
the transcription of activating transcription factor 4, a co-activator of
NF-E2-related factor-2, as well as the levels of glutathione, a cellular
antioxidant (24). It is worth noting that c-tocopheryl quinone has been
shown to induce endoplasmic reticulum stress, cytotoxicity and mu-
tagenesis, whereas a-tocopheryl quinone has not (25,26).

Since results of in vitro studies are probably dependent on the assay
systems used, it is important to determine antioxidant activities of
vitamin E in vivo. F2-isoprostanes, isomers of prostaglandin F2, have
been suggested as a reliable marker of in vivo free radical generation
and oxidative lipid damage (27,28). 8-Isoprostane, an F2-isoprostane,
is implicated as a causative mediator of pulmonary oxygen toxicity
(29), and its level is elevated in heavy smokers (30). Recently, we
observed that the plasma 8-isoprostane levels were increased during
colon carcinogenesis in azoxymethane (AOM)-treated/dextran sulfate
sodium (DSS)-treated mice. Dietary administration of c-TmT resulted
in significantly decreased plasma 8-isoprostane levels as well as re-
duced colon tumor formation (11). These results suggest that the in-
creased oxidative stress during colon tumorigenesis was inhibited by
c-TmT.
c-T may be nitrated at the five-carbon position to form 5-nitro-c-T

and is more effective than a-T at trapping reactive nitrogen species
(31–35). 5-Nitro-c-T is increased in the blood immediately after in-
duction of acute inflammation in rats (36). Cooney et al. (32,33) have
shown that c-T, but not a-T, reduces nitrogen dioxide to nitric oxide in
non-polar environments and forms 5-nitro-c-T in more polar solvents.
Nitrogen dioxide is a reactive free radical; if not reduced, it reacts
with unsaturated fatty acid moieties to yield nitrite esters capable of
nitrosating amines. Nitrogen dioxide can induce single-strand DNA
breaks in V79 cells, and the reaction is optimally inhibited by c-T in
comparison with other lipid soluble antioxidants (37). Peroxynitrite-
induced lipid peroxidation in liposomes is inhibited by both c-T and
a-T (31,38). Nitrotyrosine is a biomarker of NO-mediated protein
modification and is commonly used to detect NO-mediated cellular
damage. We observed that, in colon homogenates of AOM-treated/
DSS-treated mice, the nitrotyrosine levels were much lower in the
c-TmT-treated group than in the control group, suggesting that the
c-TmT treatment reduces nitrosative stress (11).

Studies on tocopherols and human cancers

We have reviewed .70 publications on case–control, cohort and in-
tervention studies examining the relationships between tocopherols
and cancer risk at the four most common organ sites. The results are
summarized in Table I and detailed information is provided in Sup-
plementary Tables 1–4 (available at Carcinogenesis Online). In this
section, we will first describe observational epidemiological studies
on these four types of cancers and then the intervention studies, as
they usually examined cancer risk at multiple organ sites.

Case–control and cohort studies

Colorectal cancer. Since 1992, there have been two case–control
studies (39,40) and six cohort studies (41–46) on the relationship
between dietary intake or blood levels of tocopherols and risk of co-
lorectal cancer (Table I, Supplementary Table 1 is available at
Carcinogenesis Online). Of the two case–control studies reported,
one found an inverse association between supplementary vitamin E
intake and colorectal cancer risk (39), but the other did not find a pro-
tective effect of dietary or supplementary vitamin E against colorectal
cancer (40). This study, however, found a significant inverse associ-
ation between the plasma a-T:c-T ratio and large adenoma (�1 cm)
occurrence; the odds ratio for the highest versus lowest quintile was
0.36 with a 95% confidence interval (CI) of 0.14–0.95 (P 5 0.02)
(40). The authors suggested that the plasma a-T:c-T ratio is a more
sensitive indicator of tocopherol intake and a better predictor for
cancer risk than plasma a-T levels, but the molecular basis is unclear.
Nevertheless, an early meta-analysis of five prospective, nested case–
control studies including 289 cases of colorectal cancer and 1267
matched controls showed that high plasma levels of a-T were associ-
ated with a modest decrease in the incidence of colorectal cancer
(odds ratio: 0.6; 95% CI: 0.4–1.0) (44).

Of the six cohort studies, two studies showed an inverse association
between vitamin E intake and colorectal cancer risk (45,46). For
example, the Iowa Women’s Health Study (45) showed that a high
intake of vitamin E was associated with a low risk of colon cancer
(P for trend , 0.0001). This study also found that the protective effect
was stronger in subjects under the age of 65 years than in subjects over
the age of 65 (relative risk (RR): 0.16 for those 55–59 years old; 0.37
for those 60–64 years old and 0.93 for those 65–69 years old).

Lung cancer. There have been four case–control studies (47–50) and
three cohort studies (51–53) on the relationship between dietary or
blood levels of tocopherols and risk of lung cancer since 1986 (Table
I, Supplementary Table 2 is available at Carcinogenesis Online). Of
the four case–control studies, three studies found lower serum a-T
levels in lung cancer patients than those in matched controls (48–50).
Two of these three studies found no difference in serum c-T levels
between lung cancer patients and the control subjects (48,49). Of the

Fig. 1. Chemical structure of tocopherols and tocotrienols.

J.Ju et al.

534

Supplementary Tables 1
Supplementary Tables 1
Supplementary Table 8
Supplementary Table 8


three cohort studies, two studies found a significant inverse associa-
tion between dietary intake of vitamin E and risk of lung cancer
(51,52). In both of these studies, the protective effects were found
in current smokers, suggesting a preventive effect of dietary vitamin E
against insult from cigarette smoking.

Prostate cancer. There have been 14 case–control studies (49,54–66)
and 9 cohort studies (53,67–74) on the relationship between dietary or
blood levels of tocopherols and risk of prostate cancer since 1988
(Table I, Supplementary Table 3 is available at Carcinogenesis
Online). Of the 14 case–control studies, seven showed an inverse
association between dietary or blood levels of tocopherols and risk
of prostate cancer (49,55,56,58,59,61,65). In two nested case–control
studies (CLUE I and CLUE II), serum levels of c-T, but not a-T, were
significantly inversely associated with prostate cancer risk (56,75). In
CLUE I, serum levels of c-T were significantly lower in subjects who
developed prostate cancers than control subjects (P 5 0.02), but no
dose–response trend was observed. A strong inverse association be-
tween c-T and prostate cancer risk was observed in CLUE II
(P 5 0.0001) (56). Out of the nine cohort studies, six studies examined
the association between dietary or supplementary vitamin E intake and
prostate cancer risk, and all the studies did not find any significant
association. In the National Institutes of Health-American Associa-
tion of Retired Persons Diet and Health Study, dietary c-T and d-T
were found to be significantly related to a reduced risk of advanced
prostate cancer (RR: 0.68; 95% CI: 0.56–0.84 for c-T and RR: 0.8;
95% CI: 0.67–0.96 for d-T), but supplemental vitamin E (a-T) intake
beyond dietary sources was not related to prostate cancer risk (67).

Breast cancer. There have been 15 case–control studies since 1992
(Table I, Supplementary Table 4 is available at Carcinogenesis
Online). Of the eight case–control studies examining an association
between vitamin E intake and breast cancer risk (76–83), six studies
found a significant inverse association (76–80,82). Out of the seven
case–control studies examining an association between serum a-T and
c-T levels and breast cancer risk, only one study found a significant
inverse association with both a-T and c-T levels (84). The other six
studies did not show such an association (85–90). All the nine re-
ported cohort studies found no association between vitamin E intake
and breast cancer risk (91–99).

Collectively, the results from human case–control and cohort stud-
ies are inconsistent. Some studies showed a clear inverse association
between tocopherol intake and cancer risk, whereas others showed no
such association.

Intervention studies

The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study was
initially designed to investigate the prevention of lung cancer in male
smokers with a daily supplement of 50 mg of all-racemic-a-tocopheryl
acetate and 20 mg of b-carotene in a two-by-two design (100). The a-T
supplementation for 5–8 years did not produce a significant effect on
the incidence of lung cancer (100). It lowered the incidence of

colorectal cancer, but the result was not statistically significant (101).
Additional studies found no significant association between colorectal
cancer risk and dietary vitamin E, dietary a-T, dietary c-T or serum a-T
levels (42). During the 6-year post-trial period, no post-intervention
effect of the supplement on colon cancer risk was found (102).

The Alpha-Tocopherol, Beta-Carotene Cancer Prevention study
showed that a-T supplementation (50 mg daily for 5–8 years) was
significantly associated with the reduced incidence of prostate cancer
and that higher serum a-T was associated with a reduced risk of
prostate cancer (RR, 0.80; 95% CI: 0.66–0.96 for highest versus low-
est quintile; P trend 5 0.03) (68,102,103). These results encouraged
the launching of the Selenium and Vitamin E Cancer Prevention Trial,
a clinical trial to determine if one or both of these substances can help
prevent prostate cancer when taken as dietary supplements. The re-
cently published results indicated that selenium (200 lg/d from
L-selenomethionine) and vitamin E (400 IU/d of all rac-a-tocopheryl
acetate), taken alone or together for an average of 5 years, did not
prevent prostate cancer (104). However, the a-T supplementation
caused a 50% decrease in median plasma c-T levels (104).

In the Women’s Health Study with 39 876 healthy US women aged
45 years or older, the administration of 600 IU of natural-source
vitamin E (a-T) on alternate days did not significantly affect the in-
cidence of colon, lung or total cancers (105). In the recently published
results from the Physicians’ Health Study II Randomized Control
Trial, supplementation with vitamin E (400-IU synthetic a-T every
other day) or vitamin C (500 mg synthetic ascorbic acid) to physicians
for 8 years did not reduce the risk of prostate cancer or all other
cancers (106). The results of these large, long-term trials with high
doses of a-T are disappointing. There are at least two interpretations
of the results: (i) supplementation of a nutrient to a population that is
already adequate in this nutrient may not produce any beneficial ef-
fects and (ii) supplementation of a large quantity of a-T decreases the
blood and tissue levels of c-T and d-T, which have been suggested
to have unique cancer-preventive activities (7–9,23,107,108). Based on
our results from animal models, we believe that a mixture of tocopher-
ols may produce more beneficial effects than individual tocopherols.

Inhibition of tumorigenesis in animal models by tocopherols

Most of the animal studies that have been conducted used a-T and its
synthetic analogs. Table II summarizes the results of 32 studies pub-
lished since 1980. More detailed information is provided in Supple-
mentary Tables 5–8 (available at Carcinogenesis Online). The
following is a summary of studies on four common organ sites of
carcinogenesis.

Colon tumorigenesis

There have been a total of 12 studies on the effect of tocopherols on
colon tumorigenesis and aberrant crypt foci formation (Table II,
Supplementary Table 5 is available at Carcinogenesis Online). Ten
studies were on a-T and its synthetic analogs; only one showed

Table I. Number of studies on the risk of human cancers and the dietary
intake or blood levels of total tocopherols

Case–control
studies

Cohort
studies

Intervention
studies

Risk
reduction

No
association
in risk

Risk
reduction

No
association
in risk

Risk
reduction

No
association
in risk

Colon 1 1 2 4 0 4
Lung 3 1 2 1 0 4
Prostate 7 7 3 6 1 3
Breast 7 8 0 9 0 0

Results based on a review of studies published since 1986.

Table II. Number of animal studies showing protective or no protective
effects of tocopherols on tumor formation in different organs

Site a-Tocopherol or its analogs Other tocopherols

Protective
effect

No protective
effect

Protective
effect

No protective
effect

Colon 1 9 2a 0
Lung (1)b 0 0 0
Prostate 2 (1) 1 (2) 1a 0
Mammary gland 4 (5) 1 (0) 2a 0

Results based on a review of studies published since 1980. The number of
xenograft studies is in parentheses.
aStudy with c-tocopherol-enriched mixed tocopherols.
bStudy for the effect on metastasis to the lung.
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a protective effect (109). Eight studies showed no effect (110–117)
and one showed an enhancement effect (118). On the other hand,
c-TmT, at 0.1% in the AIN76A diet, was demonstrated to inhibit
AOM-induced colon aberrant crypt foci in rats (10). Recently, we also
demonstrated that dietary c-TmT treatment (0.3 and 0.17% in
AIN93M diet) significantly inhibited inflammation and colon carci-
nogenesis in AOM-treated/DSS-treated mice (11). The inhibition
was associated with the apoptosis-inducing, anti-inflammatory, anti-
oxidative and reactive nitrogen species-trapping activities of tocopher-
ols; c-T and d-T were present in higher concentrations than a-T in the
colon and may play key roles in the inhibition of carcinogenesis (11).

Prostate tumorigenesis and transplanted prostate cancer cells

Of a total of six studies on a-T and its synthetic analogs on prostate
cancer (Table II, Supplementary Table 6 is available at Carcinogenesis
Online), three studies were on the effect on prostate carcinogenesis in
rats and mice (119–121), and the other three studies were on their
effects on the growth of human prostate cancer cells in nude mice
(122–124); the results are inconsistent. One study found that treatment
with a-tocopheryl succinate resulted in a significant reduction of pros-
tate cancer incidence in a transgenic mouse model, but the diet used
also contained other agents (800 IU of a-tocopheryl succinate, 200 lg
of seleno-DL-methionine and 50 mg of lycopene). Our recent studies
demonstrated that administration of 0.1% of c-TmT in the diet of
TRAMP mice significantly inhibited the development of palpable pros-
tate tumors and prostate intraepithelial neoplasia. The treatment also
upregulated NF-E2-related factor-2 and related detoxifying and anti-
oxidative enzymes (12). As discussed previously, the induction of anti-
oxidant enzymes may be due to the action of c-tocopheryl quinone (24).

Mammary tumorigenesis

Of five studies ona-Tand mammary tumorigenesis, four studies showed
a protective effect (113,125–127) but one study showed no effect (128)
(Table II, Supplementary Table 7 is available at Carcinogenesis
Online). Recently, we demonstrated that dietary administration of
c-TmT (0.1% in the AIN76A diet) significantly inhibited N-methyl-
N-nitrosourea-induced mammary tumorigenesis in rats (13). We found
that mammary tumor growth and tumor multiplicity, as well as a pro-
liferation marker, proliferating cell nuclear antigen, were markedly
decreased by administration of c-TmT. In a subsequent study with
c-TmT, administration of 0.1, 0.3 or 0.5% c-TmT dose dependently
suppressed mammary tumor development and growth. Tumor multi-
plicity was also significantly reduced by all three different doses of
c-TmT. The inhibition of mammary tumorigenesis was associated with
increased expression of p21, p27, cleaved caspase-3 and peroxisome
proliferator-activated receptor (PPAR)-c, whereas Akt and the estro-
gen-dependent signaling pathways in mammary tumors were signifi-
cantly decreased by c-TmT treatment (14).

Lung cancer

There is only one publication on tocopherol and lung cancer reporting
that supplementation with a-T failed to inhibit lung metastasis of
intravenously inoculated murine colon adenocarcinoma cells in
BALB/C mice (129) (Table II, Supplementary Table 8 is available
at Carcinogenesis Online). Using c-TmT at 0.3% in the AIN93M diet,
we recently observed growth inhibition of CL-13 murine lung cancer
cells growing syngeneically in A/J mice (130). We also demonstrated
that dietary c-TmT (0.3%) inhibited growth of H1299 human lung
cells in xenografts in nude mice as well as inhibited lung tumorigen-
esis in A/J mice induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-
butanone or 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone plus
benzo[a]pyrene (G.Lu, H.Xiao, G.Li, Y.K.Chen, J.Hao, S.Loy and
C.S.Yang, submitted). The strongest inhibitory effect was observed
with c-TmT treatment starting at the beginning of the carcinogenesis
experiment.

Overall, results on the effect of a-T on animal carcinogenesis are
inconsistent, with most studies showing no inhibition (e.g. in colon
tumorigenesis) and some showing inhibition (e.g. in mammary tumor-

igenesis). On the other hand, recent studies with c-TmT have consis-
tently shown inhibitory effects against tumorigenesis in the colon,
mammary gland, prostate and lung. Therefore, c-TmT appears to be
a promising agent for future investigation.

Possible cancer prevention mechanisms

Many studies have been conducted on the biological activities of
tocopherols. The cancer prevention activity of tocopherols may be
due to the following activities or a combination of these activities.
The most commonly recognized are the anti-oxidative activities of
tocopherols. The quenching of reactive nitrogen species by c-T
and d-T, as well as the inhibitory activities of their metabolites against
COX-2, make c-T and d-T stronger anti-inflammatory and anti-
carcinogenic agents than a-T. c-T and d-T are also more effective at
modulating the activities of certain receptors, signal transduction
pathways and metabolic pathways that may contribute to the higher
cancer-preventive activity of c-T and d-T. Some of the studies are
described below.

Anti-oxidative activities and trapping of reactive nitrogen species

As was discussed in Anti-oxidative Activities: Trapping of Reactive
Oxygen and Nitrogen Species, the anti-oxidative action is a common
feature of all the forms of tocopherols, whereas c-T and d-T can
effectively trap reactive nitrogen species. These activities have been
demonstrated in our studies with c-TmT in the AOM-induced/DSS-
induced colon carcinogenesis model (11) and probably exist in other
carcinogenesis systems.

Inhibition of COX-2 and anti-inflammatory activities

c-T was shown to be more effective than a-T at inhibiting cycloox-
ygenase activity (131) and formation of pro-inflammatory eicosanoids
(131–133). c-T reduced prostaglandin E2 synthesis in both lipopoly-
saccharide-stimulated RAW264.7 macrophages and IL-1b-treated
A549 human epithelial cells with an the concentration that causes
50% inhibition of 7.5 and 4 lM, respectively (131). The major me-
tabolite of c-T, c-CEHC, also exhibited an inhibitory effect, with an
the concentration that causes 50% inhibition of �30 lM in these cells.
However, a-T, at 50 lM, only slightly reduced prostaglandin E2 for-
mation in macrophages but had no effect in epithelial cells. The in-
hibitory effects of c-T and c-CEHC were due to the inhibition of
COX-2 activity, rather than the protein expression or substrate avail-
ability. The inhibitory potency of c-T and c-CEHC was diminished by
an increase in arachidonic acid concentration, suggesting that they
compete with arachidonic acid at the active site of COX-2. Recent
studies showed that long-chain carboxychromanol metabolites of vi-
tamin E inhibited COX-2 more potently than shorter side-chain me-
tabolites, whereas the sulfated carboxychromanols were ineffective
(134). The long-chain metabolites in conditioned medium from c-T,
and even more so from d-T, were more effective than conditioned
medium from a-T, possibly because a-T was metabolized to long-
chain metabolites to a lesser extent (135,136).

Some studies suggest that mixtures of tocopherols are superior to
a single tocopherol at inhibiting inflammation. In subjects with met-
abolic syndrome (n 5 20 per group), supplementation with a combi-
nation of c-T and a-T each at 800 mg/day for 6 weeks resulted in more
pronounced decreases in C-reactive protein, tumor necrosis factor-a
and nitrotyrosine levels than supplementation with c-T or a-T (800
mg/day) individually (137). We recently demonstrated that adminis-
tration of c-TmT to AOM-treated/DSS-treated mice reduced the colon
inflammation index to 52% of the control and decreased levels of
prostaglandin E2 and LTB4 in the colon and plasma (11).

Modulation of nuclear receptors

PPAR-c, which belongs to the nuclear receptor family, is known to be
important for inhibition of cell proliferation and induction of apopto-
sis in breast cancer. Upregulation of PPAR-c may be one of the
mechanisms for anti-carcinogenic action. Two studies have shown
that c-T is more effective than a-T at modulating the expression of
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PPAR-c (138,139). Campbell et al. (138) showed that treatment of
SW 480 colon cancer cells with a-T and c-T (5–10 lM) increased the
messenger RNA and protein levels of PPAR-c, with a more pro-
nounced effect produced by treatment with c-T. De Pascale et al.
(139) showed that all four natural tocopherols, a-T, b-T, c-T and
d-T, increased transcriptional activity of PPAR-c in NCTC 2544 hu-
man keratinocytes cell line, and c-T displayed the strongest activity.
Treatment with a-T, b-T, c-T and d-T also increased protein levels of
PPAR-c and transglutaminase-1, a downstream protein of PPAR-c
involved in terminal keratinocytes differentiation. Recently, we found
that c-TmT, c-T and d-T activated PPAR-c transcription in estrogen
receptor-positive breast cancer cell lines, MCF-7 and T47D cells; d-T
was more active than c-T, whereas a-T was not active (14).

Pregnane X receptor is a nuclear receptor that recognizes xeno-
biotics, and it mediates the induction of genes involved in oxidation,
conjugation and transportation of xenobiotics. In HepG2 cells, the
transfected human pregnane X receptor was most strongly activated
by a- and c-TT followed by d-, a- and c-T. These results suggest
a potential effect of individual forms of vitamin E on the metabolism
of certain drugs and environmental chemicals (140). Prolonged treat-
ment with a-T may induce CYP3A and enhance the side-chain deg-
radation of tocopherols; this may lead to the lowering of blood levels
of c-T (2, 9, 104).

Mechanisms for inhibition of cell growth and induction of apoptosis in
cell culture

c-T has been shown to be more effective than a-T at inhibiting growth
of colon, breast, prostate and lung cancer cells in culture (141–145).
c-T decreased the number of cells in S phase more effectively than
a-T in human colon and prostate cells in culture by decreasing protein
levels of cyclin D1 and cyclin E (key regulators of the G1–S transi-
tion) as well as p27kip1, p21cip1 and p16ink4a (142). Treatment of
human glioma cells with c-T and a-T inhibited cell growth, partially
by increasing protein levels of integrin a5 and b1 (146). Overexpres-
sion of integrin a5 and b1 has been reported to inhibit cell cycle
progression.
c-T has also been shown to be effective at inducing apoptosis in

cancer cells (141,144). c-T (10–50 lM) or its combination with d-T
induced apoptosis in androgen-sensitive prostate LNCaP (but not in
androgen-resistant PC-3 cells) by the induction of cytochrome c
release, activation of caspase-9 and caspase-3, cleavage of poly-
ADP-ribose polymerase and involvement of caspase-independent
pathways (143). c-T treatment also caused significant accumulation
of dihydroceramide and dihydrosphingosine, and specific inhibitors of
key enzymes of de novo synthesis of sphingolipids significantly pro-
tected cells from c-T-induced apoptotic pathway (144). The study
suggests that c-T induced apoptosis by interrupting the de novo sphin-
golipid pathway in a prostate cancer cell line. Lyons et al. (147),
however, reported that a-T (�30 lM), but not c-T, inhibited sterol-
induced apoptosis in human monocytic U937 cells.

Our study with c-TmT, as well as individual isoforms of tocopher-
ols (10–100 lM concentration), demonstrated a dose-dependent in-
hibition of the estrogen-induced cell proliferation of the estrogen
receptor-positive breast cancer cell line, MCF-7. a-T did not signif-
icantly inhibit the growth of estrogen receptor-positive human breast
cancer cell line, MCF-7, whereas c-T, and more strikingly d-T,
inhibited estrogen-induced cell proliferation in a dose-dependent
manner (14).

Other possible mechanisms of action

a-T has been shown to exert anti-proliferative activity independent of
its traditional antioxidant activity. a-T activated protein phosphatase
2A resulting in dephosphorylation and decreased protein kinase C
activity (148,149). Additionally, a-T inhibited expression of the
CD36 scavenger receptor which is a receptor involved in uptake of
oxidized low-density lipoprotein and atherosclerosis progression
(150). Short-term dietary supplementation with high doses of vitamin
E was shown to increase T helper 1 cytokine production in patients

with advanced colorectal cancer (151). In this study, supplementation of
vitamin E (750 mg/day) for 2 weeks resulted in increased CD4:CD8
ratios and enhanced capacity of T cells for producing the T helper 1
cytokines interleukin 2 and interferon-c.
a-Tocopheryl phosphate (a-TP) has recently been studied because

of its potentially stronger anti-proliferative activity than that of a-T
and its presence in food and animal tissues (152). a-TP was more
effective than a-T at inhibiting cell proliferation (153). A mixture of
a-TP and di-a-TP suppressed cell proliferation and CD36 levels in
aortic smooth muscle and monocytic leukemia cells at a concentration
lower than the effective concentration of a-T. It was reported that
a-TP induced apoptosis in the osteosarcoma cell line MG-63 (154),
whereas it was demonstrated to have cardioprotective and anti-
apoptotic activity through the Akt survival pathway in a rat model
of myocardial infarction (155). Although the physiological functions
of the phosphorylated forms of tocopherol still remain to be estab-
lished, the cancer-preventive activities of c-TP and d-TP are worth
investigating. Since tocopherols are known to be embedded in lipid
bilayers of cell membranes, it is interesting to consider that the phos-
phorylated form (tocopheryl phosphate) may be able to move to the
cytosol and possibly the nucleus to trigger different biochemical
reactions.

Studies on tocotrienols and cancer in humans, animals and cells

Tocotrienols, the vitamin E isomers with unsaturated side chains, have
been shown to display stronger anticancer activities in vitro than
tocopherols with c- and d-TT exhibiting more anticancer activities
than a-TT (156–160). This subject has been reviewed recently
(161). Although TTs possess antioxidant activity (162–164), the an-
ticancer activity of TTs may be independent from its antioxidant
activity because some redox-silent TT derivatives still exhibit anti-
carcinogenic properties (165,166). For example, treatment of human
lung adenocarcinoma cells with a redox-silent analog of a-TT led to
accumulation of cells in the G1 phase of the cell cycle followed by
apoptosis (165). This same redox-silent analog inhibited chemoresist-
ant mesothelioma cell growth (167).

Recent results suggest that TTs affect many signaling pathways in
cancer cells, including NF-kB-mediated pathways, phophatidylinosi-
tol-2 kinase/phosphoinositide-dependent/Akt, Raf/Erk and c-jun
N-terminal kinase-related pathways (168–172). TTs also mediate
many cellular processes including the reduction of DNA damage
(173), activation of apoptosis (174), induction of cell cycle arrest
(175), stabilization of the proteasome (176), and downregulation of
telomerase activity (177). TT-induced apoptosis was observed in many
different cancer cell lines (178–181), and usually involved proteins
related to mitochondrial stress, such as alteration of Bcl-family pro-
teins and caspases (182,183). However, the caspase activation induced
by TTs may also involve mechanisms independent of death receptor
and mitochondrial stress (174,184). In addition to apoptosis, c- and
d-TTs also induced autophagy through a mitochondrial permeability
transition pore opening-dependent, but caspase-independent, mecha-
nism, suggesting the involvement of autophagy in TT-mediated cell
death (185).

Other important anticancer properties of TTs are their anti-angiogenic
activity and their ability to inhibit cancer invasion and metastasis. The
anti-angiogenic effect of d-TT is attributable to the regulation of
phophatidylinositol-2 kinase/phosphoinositide-dependent kinase/Akt
signaling and hypoxia-induced VEGF secretion as well as to the
induction of a stress response in endothelial cells, partly associated
with reactive oxygen species generated by d-TT (186,187). c-TT
inhibited cancer cell invasion through downregulation of matrix
metalloproteinase-2 and -9 and upregulation of tissue inhibitor of
metalloproteinase-1 and -2 (188). c-TT treatment also led to the sup-
pression of mesenchymal markers and the restoration of epithelial
markers, which are associated with inhibition of cell invasion (189).

The inhibition of tumor formation and growth has been studied in
several mouse and rat models. In carcinogenesis models, oral admin-
istration of a 0.05% TT mixture in drinking water significantly
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suppressed spontaneous liver carcinogenesis in male C3H/He mice
and glycerol-induced lung tumor promotion in 4NQO-initiated ddY
mice (175). Other studies demonstrated that TTs inhibited the sever-
ity of cell damage in hepatocarcinogenesis (190,191). However, it
was also reported that TTs did not have a significant effect on chem-
ically induced rat mammary tumor latency and multiplicity (128). In
a xenograft tumor model with B16 melanoma cells, c-TT suppressed
tumor growth and extended survival time of the host C57BL mice
(159). Dietary c-TT and d-TT significantly delayed tumor growth in
C3H/HeN mice implanted with murine hepatoma MH134 cells
(192). The anticancer effect of TTs in animal studies requires further
exploration.

Concluding remarks

The association of low vitamin E status with increased cancer risk as
described above and observed in other human epidemiological studies
(193–197) suggests the importance of these anti-oxidative nutrients in
modulating cancer incidence. However, the results of most of the
animal and human studies with a-T supplementation, as reviewed
above, have not yielded supportive evidence. It is possible that toco-
pherols may reduce cancer risk when supplemented in populations
with low vitamin E status. When given to humans and animals with
adequate vitamin E nutrition, the cancer-preventive effects of toco-
pherols could be due to actions other than the anti-oxidative activity of
a-T. In this aspect, as reviewed above, the most abundant c-T is
superior to a-T in the trapping of reactive nitrogen species, inhibition
of COX-2 activity, activation of PPAR-c and suppression of inflam-
mation. d-T, which is more abundant than a-T in some oils, also has
some of these activities. We propose that a mixture of tocopherols, at
ratios similar to those in our diet, could be a better cancer chemo-
preventive agent. This idea is supported by our recent results demon-
strating that c-TmT inhibited colon, mammary, prostate and lung
carcinogenesis in rodent models as well as inhibiting growth of lung
and prostate cancer xenograft tumors (10–14).

It has been suggested that c-T is the major cancer-preventive form
of vitamin E (8,107,198). However, the cancer-preventive activity of
pure c-T or d-T still remains to be demonstrated. It is known that high
levels of a-T intake can decrease the blood and tissue levels of c-T.
Whether high levels of dietary c-T or d-T can also decrease the blood
and tissue levels of a-T remains to be investigated. It would be in-
teresting to determine the contributions of each of the major forms of
tocopherols (a-, c- and d-T) to cancer prevention and the possible
interactions among these tocopherols as well as the mechanisms in-
volved. In practical application, c-TmT is probably the most promis-
ing agent to use. c-TmT, a by-product in the refining of soybean oil,
contains c-T, a-T, d-T and b-T in ratios approximate to those in di-
etary vegetable oils. Because it is readily available and inexpensive,
c-TmT and similar tocopherol preparations have a high potential for
practical application and deserve further investigation in animal mod-
els and human trials.

In future epidemiological studies, more attention should be paid to
dietary intake, blood and tissue levels of all major forms of tocopher-
ols, as well as their ratios. Since c-T and d-T are more readily side-
chain degraded, urinary levels of c- and d-CEHC may be explored as
possible markers for the consumption of c-T and d-T and physiolog-
ical conditions that affect their metabolism. Well-designed human
intervention trials with c-TmT may yield more definitive information
on the cancer-preventive activities of tocopherols.
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Supplementary Tables 1–8 can be found at http://carcin.oxfordjournals
.org/
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