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ABSTRACT

Human embryonic stem cells undergo adaptive changes
that can increase their growth capacity upon prolonged
culture in vitro. This is frequently associated with nonran-
dom karyotypic changes, commonly involving amplifica-
tion of genetic material from chromosomes 12, 17, and X.
A recent study suggested that the karyotypically abnormal
cells can be identified by their expression of CD30, which
confers resistance to apoptosis. We have now investigated

CD30 expression and apoptosis in karyotypically normal
and abnormal sublines of the human ES cell line, H7, but
our results were contrary to those previously observed. In
this cell line, CD30 expression did not segregate the nor-
mal and abnormal cells, and abnormal cells were not pro-
tected from apoptosis. These data suggest that culture
adaptation can occur through a variety of mechanisms.
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INTRODUCTION

Human embryonic stem cells (hESCs) are derived from the
inner cell mass of the blastocyst stage embryo and have pluri-
potent potential [1]. The possibilities these cells afford in re-
generative medicine has generated much excitement, but any
therapeutic benefits will require controlled hESC maintenance
for extended periods in vitro. During growth in culture, how-
ever, hESCs have been shown to acquire genetic changes that
can increase their growth capacity, a process we have
described as ‘‘culture adaptation’’ [2–4]. The increased growth
capacity of the culture adapted hESCs must result from a
change in their basic behaviors, and understanding adaptation
may thus reveal genes important in self-renewal, differentia-
tion, and apoptosis. Changes in such cellular behaviors must
also occur during tumorigenesis, and similar karyotypic
changes have been observed in culture adapted hESCs and
embryonal carcinoma (EC) cells, their malignant counterparts,
and the stem cells of testicular germ cell tumors (TGCTs) [4].
Hence, identifying the abnormal stem cells and understanding
their growth advantages may have important implications for
both stem cell and cancer research.

A report suggested that CD30 is expressed on trans-
formed, karyotypically abnormal hESC but not on normal

hESC [5], providing a cell surface antigen indicative of
genetic change. CD30 is a member of the tumor necrosis fac-
tor (TNF) receptor superfamily, and is expressed on a limited
number of cell types which include EC cells [6, 7]. CD30
overexpression in Hodgkin–Reed-Sternberg cells has been
shown to activate transcription factor nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-jB) [8, 9],
which can promote cell survival through the upregulation of
antiapoptotic genes or downregulation of proapoptotic genes
[10]. Protection of abnormal cells against apoptosis could pro-
vide them with a relative growth advantage over their normal
counterparts, allowing them to overtake a culture. Indeed,
Herszfeld et al. [5] demonstrated that in a mosaic population
of normal and abnormal hESCs, CD30 expression correlated
with decreased apoptosis, providing the selection necessary
for the karyotypically abnormal CD30-positive hESCs to
dominate. Similarly, a more recent study has also shown
decreased cell death in karyotypically abnormal hESC [11],
suggesting a possible conservation in the mechanism for cul-
ture adaptation.

In Sheffield, two karyotypically abnormal sublines of H7
have developed over prolonged culture [2, 3], and we investi-
gated whether CD30 expression and apoptotic protection were
associated with genetic abnormality in these cell lines. We report
that CD30 expression and increased cell survival do not always
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correlate with genetic aberration, demonstrating that hESCs can
adapt to their culture conditions in a variety of ways.

MATERIALS AND METHODS

Cell Culture

The H7 hESC line was obtained from Dr. James Thomson,
University of Wisconsin, and was maintained and passaged as
previously described on mitomycin C-inactivated mouse
embryo fibroblasts, in knock-out Dulbecco’s modified Eagle’s
medium (Invitrogen, Carlsbad, CA, http://www.invitrogen.
com), supplemented with 10% Serum Replacement (Invitro-
gen) and 4 ng/ml basic fibroblast growth factor [1, 2]. Cells
were harvested for passaging by scraping after brief incuba-
tion with a solution of 1% collagenase type IV (Invitrogen) in
basal medium. Sublines of H7 (H7.s6, H7.s9, and H7.s14)
were established in Sheffield. NTERA2 and 2102Ep cells
were maintained and passaged as previously described [12,
13]. The NTERA2-mCherry line was created using the
pCAG-mCherry vector (Invitrogen), with transfection and
clone selection methodology as previously described [14].

Cytogenetic Analyses of hESC

The karyotypic analysis was performed using standard G-
banding techniques. Cells cultured in a T25 flask were treated
with 0.1 lg/ml Colcemid (Invitrogen) for up to 4 hours, fol-
lowed by dissociation with trypsin/versene. The cells were
pelleted via centrifugation, resuspended in prewarmed 0.0375
M KCl hypotonic solution, and incubated for 10 minutes. Fol-
lowing a further centrifugation step, cells were resuspended in
fixative (methanol:acetic acid 3:1). Metaphase spreads were
prepared on glass microscope slides and G-banded by brief
exposure to trypsin and stained with 4:1 Gurr’s/Leishmann’s.
Between 20 and 30 metaphase spreads were karyotyped each
time the cells were analyzed.

Cells were analyzed for trisomy 17 by fluorescent in situ
hybridization (FISH) following flow cytometric sorting based
on CD30 expression. Collected cells were fixed on glass
microscope slides as described previously. Studies were per-
formed using the Qbiogene (Kreatech Biotechnology B.V,
Amsterdam, The Netherlands) dual color iso17q probes spe-
cific for the genes p53 at 17p13 and myeloperoxidase at
17q23. All hybridizations were performed following the man-
ufacturers instructions. Slides were analyzed on a fluorescent
microscope with appropriate filters and software (Cytovision
3.6; Applied Imaging Corporation, San Jose, CA). The signal
pattern in 300 interphase cells was examined for each
preparation.

Analyses of Apoptotic Response

Assessment of Apoptosis by Annexin V Binding. Cells were
cultured to 60%–70% confluency, and treated with either
TNF-a (0-400 ng/ml, Sigma) for 24 hours, or Staurosporine
(0-1 lg Sigma) for 15 hours, to induce apoptosis. Attached
cells were collected following trypsinization, and floating
cells were collected from the growth media. The pooled cells
were assayed for apoptosis by Annexin V binding. Briefly,
the cells were washed once with Dulbecco’s phosphate buf-
fered saline (PBS), once with Annexin V binding buffer (10
mM HEPES, 140 mM NaCl; 2.5 mM CaCl2, pH 7.4) and
then 105 cells incubated with 20 ll recombinant human
Annexin V: Fluorescein isothiocyanate (FITC) (Invitrogen)

for 20 minutes at room temperature. Propidium Iodide (PI) so-
lution (Sigma) was then added to the incubation mix at final
concentration of 0.01 mg/ml, before samples were analyzed
on the CyAnADP O2 (Dako, Glostrup, Denmark, http://
www.dako.com).

Assessment of Apoptosis by Caspase-3 Activation. Cells
were cultured to 60%–70% confluency, and the levels of cas-
pase-3 activation measured following staurosporine treatment.
Cells were collected as for the Annexin V assay, then washed
once with PBS before fixation with 4% paraformaldehyde
(PFA, 15 min at room temperature). Cells were permeabilized
using 0.3% Triton-X (10 min, analaR), washed once with
PBS, once with PBS supplemented with 5% fetal calf serum
(Fluorescence-activated cell sorting [FACS] buffer), and
then incubated with a rabbit polyclonal to active Caspase-3
(1:200, Abcam, Cambridge, U.K., http://www.abcam.com)
for 45 min at 4�C, with occasional shaking. Cells were
then washed three times with FACS buffer, before similar
incubation with an Alexa Flour-555 donkey anti-rabbit IgG
(HþL) (1:100; Invitrogen). Cells were again washed
three times with FACS buffer and analyzed on the CyAnADP
O2 (Dako).

Western Blotting for Caspase-8 Activation. The cells were
treated with TNF-a (400 ng/ml) as previously described and
caspase-8 cleavage was tested. Briefly, samples were lysed
using Chaps cell extract buffer (50 mM Pipes/HCl, 2 mM
EDTA, 0.1% Chaps, 20 lg/ml Leupeptin, 10 lg/ml Pepstatin
A, 10 lg/ml aprotonin, 5 mM dithiothreitol) followed by
resuspension, freezing, thawing (three times), and centrifuga-
tion at 1,400 rpm to pellet cell debris. SDS buffer was added
to the supernatants, which were then boiled and the protein
concentration determined using the Bio-Rad protein assay
(Bio-Rad, Hercules, CA, http://www.bio-rad.com), according
to manufacturers’ instruction. Samples were then diluted to
equal protein concentrations prior to running on an SDS-
PAGE gel. Proteins were electroblotted onto nitrocellulose
membranes with 0.45 lm pores, and the membranes were
blocked by incubation for 1 hour with blocking buffer (1�
tris buffered saline [TBS], 0.1% Tween-20, 5% [w/v] nonfat
dry milk). The membrane was washed three times with wash
buffer (1� TBS, 0.1% Tween-20), before incubation with
cleaved-caspase-8 primary antibody (cell signaling technol-
ogy, diluted in blocking buffer) overnight at 4�C with shak-
ing. Membranes were then washed again three times with
wash buffer, and incubated with horseradish peroxidase-conju-
gated secondary antibody (diluted in blocking buffer) for
1 hour at room temperature. Blots were developed with the
enhanced chemiluminescence detection system (ECL; Pierce
Chemical, Rockford, IL, http://www.piercenet.com).

Analyses of CD30 Expression

Flow Cytometry, Cell Sorting, and Immunoflourescence. Cells
were suspended in FACS buffer following trypsinization, and
107 cells taken for staining. Cells were incubated with anti-
CD30 primary antibody (mouse monoclonal anti-human
CD30, clone Ber-H2, 1:50, Dako) for 45 min at 4�C with
occasional shaking, and then washed three times with FACS
buffer. Following the final wash, the cells were resuspended
in FACS buffer, and incubated with either a FITC-conjugated
Goat anti-mouse secondary antibody (1:100; Caltag) or an
allophycocyanin-conjugated Goat anti-mouse secondary anti-
body (1:100; Molecular probes, Eugene, OR, http://probes.
invitrogen.com) for 45 min at 4�C with occasional shaking.
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Cells were washed three times with FACS buffer again, and
analyzed on either the CyAnADP O2 (Dako) flow cytometer
or the MoFlo (Dako). For a negative control, hESC were
stained with secondary antibody only, as described earlier.
For a positive control EC cell lines NTERA2 and 2102Ep,
known to express CD30, were analyzed as described above.
In addition, 106 NTERA2 cells, which constitutively
expressed the mCherry flourescent protein, were mixed with
106 H7.s6 and also H7.s14 cells, and the cells assayed as
described. For cytogenetic and clonogenic assays, the stained
cells were sorted according to CD30 expression. For the clon-
ogenic studies, CD30-positive and CD30-negative populations
were seeded at densities of 1000-6000 cells/well into 6-well
plates containing mitomycin C-inactivated mouse embryo
fibroblasts. For immunofluorescent analyses, colonies were
fixed 7-10 days postseeding using 4% PFA as previously
described, and stained using anti-TRA-1-60 primary antibody
(1 hour, 4�C; produced in-house) followed by FITC-conju-
gated secondary antibody (1 hour, 4�C; Caltag), and imaged
using the IN Cell Analyser 1,000 (Amersham Biosciences,
Piscataway, NJ, http://www.amersham.com). Secondary anti-
body only was used as negative control. Cell nuclei were
visualized using Hoescht 33,342 staining (10 lg/ml; Sigma).

For cloning efficiency, fixed colonies were visualized and
counted following staining with crystal violet (1 hour;
Sigma).

Apoptotic Analyses. Cells were treated with or without
0.025 lM Staurosporine (15-hour treatment) and harvested for
flow cytometric as described earlier. After staining the cells
for CD30 expression, as described, they were washed once
with Annexin binding buffer, and 105 cells taken and stained
with 20 ll recombinant human Annexin V: APC (Invitrogen),
using the procedure previously described.

RESULTS

Karyotyping of HESC Lines

The 3 hESC sublines used were denoted as H7.s14, H7.s6,
and H7.s9, and the ideograms demonstrating their karyotype
are shown in Figure 1. The H7.s14 cells maintained a normal
diploid 46, XX karyotype throughout the study, whereas the

Figure 1. Karyotypic of analyses of the H7 sublines. The ideograms show the karyotypes of the H7.s14, H7.s9, and H7.s6 lines at the passage
number stated.
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H7.s6 cells had already adapted to culture (47, XX, þ1,
der(6)t(6, 17)(q27;q1) [3] and also acquired an extra copy of
chromosome X through the course of the study (48, XXX,
þ1, der(6)t(6, 17)(q27;q1)). H7.s6 and H7.s14 were cultured
for 30-35 passages during this study. The H7.s9 line began
as a mosaic population containing diploid cells and also cells
trisomic for chromosome 17. By the time the cells had
undergone 45 passages, the abnormal, adapted cells had
overtaken the normal cells so the H7.s9 culture was entirely
47, XX þ17, and this karyotype was unchanged during a
further 30 passages. For the purpose of this study, when
hESC are termed ‘normal’, this refers only to their karyo-
typic status.

Analyses of Apoptotic Pathways

The extrinsic (death receptor dependant) and intrinsic (mito-
chondrial dependant) apoptotic pathways were studied in the
H7.s14 and H7.s6 cells, to determine any differences between
this normal/adapted pair. The addition of TNF-a should acti-
vate the extrinsic apoptotic pathway [15], yet the H7.s14 sub-
line seemed unresponsive to this compound, as assessed by
Annexin V binding. The H7.s6 subline however, showed sig-
nificant increases in apoptosis/necrosis when treated with 200
and 400 ng/ml TNF-a (Student’s t test p � .05, n � 3;
Fig. 2A, B). Activation of caspase-8 is downstream of

the death receptors, and cleavage of this enzyme was studied
by Western blotting (Fig. 2C). As expected, cleavage of cas-
pase-8 was only seen in the H7.s6 cells. To test the proposed
similarity between culture adapted hESC and EC cells,
caspase-8 cleavage was assayed in NTERA2 cells, which
also showed activation of this enzyme following TNF-a
treatment.

The intrinsic apoptotic pathway was interrogated by addi-
tion of staurosporine (0.05-1 lM) to the cells, which causes
rapid activation of this mitochrondrial pathway [16]. Cell
death was measured by Annexin V binding, and also caspase-
3 activation, in the H7.s6 and H7.s14 sublines. The activation
of caspase-3 was chosen as a secondary measure of apoptosis
since this has been recognized as the crucial executioner cas-
pase [17]. Both lines displayed significant increases in apopto-
sis when compared with the control treatment at concentra-
tions �0.025 lM (Student’s t test, p � .05, n � 3),
suggesting that the intrinsic pathway is active in these cells.
However, based on Annexin V binding and caspase-3 activa-
tion, no significant variation was seen in apoptotic response
between the normal and abnormal sublines across the range
of staurosporine concentrations tested (Student’s t test, p �
.05, n � 3; Fig. 3). The levels of hESC apoptosis/necrosis
indicated by Annexin V binding were typically higher than
the levels of apoptosis predicted by caspase-3 activation, most
particularly in the untreated cells (apoptosis/necrosis at

Figure 2. Analyses of the extrinsic apoptotic pathway in normal and culture adapted human embryonic stem cells. (A): Representative histo-
gram showing Annexin V binding in H7.s6 cells, with the apoptotic/necrotic population a sum of R2, R3, and R4. (B): Measurement of apopto-
sis/necrosis in normal H7.s14 and culture adapted H7.s6 cells following TNF-a treatment, as measured by Annexin V binding. (C): Western blot
for cleaved caspase-8 in H7.s14, H7.s6, and NTERA2 cells. Abbreviations: C, control treated; T, TNF-a treated (400 ng/ml); TNF-a, tumor
necrosis factor-alpha.
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�30% as measured by Annexin V binding, but apoptosis
only at �10% by caspase-3 activation), suggesting that
hESC death may occur through a pathway which can
bypass caspase-3.

Analyses of CD30 Expression in HES
and EC Cell Lines

Flow cytometric analyses showed that neither the H7.s14
nor the H7.s6 lines displayed the CD30 antigen (Fig. 4A),
despite the H7.s6 cells undergoing further karyotypic
change during the course of the study. As a positive control
CD30 expression was also tested on NTERA2 and 2102Ep
EC cells [7], which displayed obvious expression of CD30
(Fig. 4B). Further verification of the H7.s6 and H7.s14
staining results was provided by mixing equal numbers of
fluorescent NTERA2 cells (constitutively expressing an
mCherry construct) with cells from each H7 subline. Here,
CD30-positive staining was only observed in those cells
expressing mCherry (the NTERA2 cells), and not the hESC
(Fig. 4C).

The expression of CD30 was also tested in another sub-
line of H7 (H7.s9), initially at stages when the entire culture
was karyotypically abnormal (47, XX þ17), and a popula-
tion of CD30-positive cells (�30%) (Fig. 4A) was observed
in these cultures throughout the study. Fluorescent staining
for CD30 was also performed on earlier passage H7.s9,
while the culture was still mosaic, and this population also
contained �30% CD30-positive cells. The mosaic H7.s9
cells were sorted as CD30-positive or negative from two
consecutive passages and analyzed by FISH, in addition to a
sample of unstained cells. Analyses for trisomy at chromo-
some 17 revealed that abnormal cells could not be segre-
gated from normal cells based on CD30 expression (Fig. 5A,
B). As CD30 expression was relatively low, clonogenic
assays were performed to confirm that the CD30-positive
cells were true hESC, and could reform clonal colonies.
Here, colonies were observed 7-10 days post seeding in
which TRA-1-60 was expressed, suggesting the presence of
undifferentiated hESC (Fig. 5C). In addition, the cloning ef-
ficiency of both the CD30-positive and CD30-negative cells
was measured. Both populations exhibited clonogenic
capacity, yet the CD30-positive cells had a significantly
higher cloning efficiency (Student’s t test, p � .05, n � 3;
Fig. 5D).

CD30 Expression and Cell Survival

The mosaic expression of CD30 in the H7.s9 subline was
exploited to test whether the expression of this protein pro-
tected cells against apoptosis under normal culture conditions.
H7.s9 cells were dual stained for CD30 expression and
Annexin V binding, revealing spontaneous apoptosis/necrosis
in both the CD30-positive and negative populations (Fig. 6A).
The proportion of apoptotic/necrotic cells was not signifi-
cantly different between the CD30-positive and negative cells
(Student’s t test, p � .05, n � 3; Fig. 6B), revealing that
CD30 expression does not appear to protect against spontane-
ous apoptosis in this subline under our laboratory conditions.
In addition, comparing the levels of cell death in the untreated
H7.s9 to the untreated H7.s14 line (30.3% � 4.3% Annexin
V binding and 14.68% � 2.85% caspase-3 activation in
H7.s9) revealed no significant difference between this normal/
abnormal pair. To determine whether CD30 expression pro-
tected against induced apoptosis, H7.s9 cells were treated
with 0.025 lM staurosporine and CD30 expression and

Figure 3. Analyses of the intrinsic apoptotic pathway in normal and
culture adapted human embryonic stem cells (hESC). (A): Measure-
ment of apoptosis/necrosis in normal H7.s14 and culture adapted
H7.s6 cells following staurosporine treatment, as measured by
Annexin V binding. (B): Sample histogram showing caspase-3 activa-
tion in untreated hESC (no fill), and following treatment with 0.025
lM (dark gray, checked) and 1 lM (light gray, striped) staurosporine.
(C): Measurement of apoptosis in H7.s14 and H7.s6 cells following
staurosporine treatment, as measured by caspase-3 activation.
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Annexin V binding similarly measured. In the treated cells
levels of apoptosis were similar to those observed in the
H7.s14 and H7.s6 lines (40%–50%), and no CD30 expres-
sion was observed (data not shown). It seems likely that
the CD30-positive population has been preferentially
depleted, suggesting these cells are not protected from
death induced by staurosporine. However, it should be
noted that staurosporine is a highly unspecific protein ki-
nase inhibitor, and the deleterious impact it has on the
CD30-positive population may not relate solely to apoptotic
sensitivity.

DISCUSSION

In contrast to previous reports, our data have found that
CD30 expression does not definitively denote karyotypically
abnormal cells, and that its expression does not always
correlate with reduced cell death. Indeed, we have shown
that the adaptation of hESC to culture does not always
result from an increased capacity for survival, and in fact
some abnormal lines may be more sensitive to particular
apoptotic stimuli. These data suggest that culture adaptation
can occur through more than one pathway, and as such
there is likely to be variation between different culture
adapted lines.

CD30 was not expressed in either the normal H7.s14 sub-
line or the long established culture adapted H7.s6 subline, but
was observed on cells of a further abnormal subline (H7.s9).
Sorting of hESC cells based on CD30 expression was unable
to segregate normal and abnormal cells, demonstrating that in
this particular subline CD30 does not provide an indicator of

karyotypic change. Also, the apoptotic data from the H7.s9
line showed no correlation between CD30 expression and
increased cell survival. There was no obvious advantage for
the CD30-positive cells under normal culture conditions,
since the levels of CD30 expression not show a sustained
increase during the study, and never exceeded 50% of the
culture. On the other hand, the CD30-positive cells did show
an increased cloning efficiency (approximately sevenfold)
compared to the CD30-negative cells. However, growth con-
ditions during clonogenic assays are markedly different from
those during normal hESC culture, and it is possible that
CD30 might have a specific effect on the regrowth of singlet
cells. In this regard it notable that CD30 has recently been
reported as marker of undifferentiated cells [18], such that in
certain hESC lines it may act akin to, for example, SSEA3,
in recognizing a pluripotent, clonogenic population rather
than abnormal variants.

In addition to cell surface marker expression, this study
also focused on the apoptotic pathways of the H7.s14 and
H7.s6 cell lines. An increase in resistance to apoptosis in
the culture adapted H7.s6 cells would provide an elegant ex-
planation for their increased growth capacity, yet when the
extrinsic and intrinsic apoptotic pathways were stimulated in
both cell lines, no decrease in apoptosis/necrosis was
observed in the H7.s6 when compared with the normal
H7.s14 cells. In fact, when the extrinsic pathway is further
stimulated with high concentrations of TNF-a, the H7.s6
cells actually appear more prone to death through this path-
way. The activation of this death receptor pathway is also
observed in the EC NTERA2 cell line, and supports hESC
culture adaptation as a paradigm for TGCT development
[19]. The increased sensitivity to apoptosis in the H7.s6 and

Figure 4. CD30 expression on embryonal carcinoma, normal and culture adapted human embryonic stem cell (hESC) lines. (A): CD30
expression in the H7.s14, H7.s6, and H7.s9 hESC lines. The negative control (cells stained with secondary antibody only, vertical lines)
and cells stained for CD30 (diagonal lines) are represented in the histograms. (B): Sample histogram showing CD30 expression in the
NTERA2 embryonal carcinoma (EC) line, with control and stained cells depicted as in previous. (C): Sample histogram showing the CD30
binding profile in a mixed population of mCherry NTERA2 cells and H7.s6 cells, demonstrating expression of this antigen is only observed
in the fluorescent EC line.
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Figure 5. Fluorescent sorting of H7.s9 cells based on CD30 expression. (A): Cells sorted for cytogenetic and clonogenic analyses, with the
boxed areas representing the CD30 positive and negative fractions taken. (B): Number of normal and abnormal cells in the fractions analyzed,
assessed by fluorescent in situ hybridization. The data shown is from two separate assays, with data from the first assay in red, and the second
assay in green. (C): TRA-1-60 expression in hESC derived from CD30-positive H7.s9 cells: Hoescht only (Ca, Cc), FITC-conjugated secondary
antibody-only control and Hoescht (Cb), TRA-160 and Hoescht (Cd) (original magnification, �4). (D): Cloning efficiency of the CD30-positive
and CD30-negative populations, the CD30-positive population has a significantly higher cloning efficiency (Student’s t test, p � .05, n � 3).

Figure 6. Analyses of apoptosis in CD30-positive and CD30-negative cells. (A): Representative histogram showing dual staining of H7.s9
human embryonic stem cells (hESC) with AnnexinV:Cy5 and CD30:FITC. (B): Bar chart plotting the percentage of apoptotic/necrotic cells in
the CD30-positive and CD30-negative populations, revealing no significant difference (student’s t-test, p < .05, n � 3).
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NTERA2 cells may result from an escape from cell cycle
regulation, fitting a rapidly proliferating malignant pheno-
type. If culture adaptation is considered a model for germ
cell tumor development then one might expect to discover
the expression of CD30 in the abnormal hESC, as this
marker is present in almost all EC lines. However, the time
at which EC lines acquire CD30 expression is unknown, and
it may mark a late stage in tumor progression, whereas the
H7.s6 line may be more closely related to an earlier stage.
Indeed, the gross karyotypic abnormalities observed in EC
cells are not present in the H7.s6 cells, and the expression of
CD30 may relate to a genetic change this line will later
acquire.

Aside from the comparison between normal and abnormal
hESC lines, the data presented here may also offer insight
into hESC cell death. Annexin V binding was utilized as a
measure of apoptosis/necrosis, and caspase-3 activation as a
measure of apoptotic cell death, yet these 2 methodologies
gave differing results. The spontaneous apoptosis/necrosis pre-
dicted by Annexin V binding was in the region of 30% for all
cell lines, yet the proportion of caspase-3 activation observed
was closer to 10%. Although the levels of Annexin V binding
may appear high, they are similar to those reported in previ-
ous studies [20–22], and indeed up to 53% Annexin V bind-
ing has been observed in hESC cultures maintained by Pyle
et al. [23]. Considering the population doubling time of hESC
is commonly estimated as upwards of 30 hours [3, 23–25],
yet the cycle time of these cells may be as short as 15-16
hours [26], a sizeable fraction of the population must not sur-
vive the rigors of in vitro existence and it is unlikely that the
Annexin V binding assay is over-reporting cell death. As
such, it raises the possibility that hESC death is mediated
through a pathway independent of caspase-3, classically con-
sidering the central player in the apoptotic response. Nona-
poptotic cell death has been reported [27], as has a caspase-2-
dependent apoptotic program capable of bypassing caspase-3
[28], and it is tempting to speculate that such processes are

responsible for the cell death observed during routine culture
of hESC.

SUMMARY

This study reveals variations in behavior that can occur during
hESC culture adaptation. The differences observed in apopto-
tic sensitivity between our abnormal cell lines and those of
Herszfeld et al. [5] provide evidence that culture adaptation
can occur through multiple routes, and that these may be
related to different culture conditions and/or epi/genetic
changes. Some mutations may protect against apoptosis, yet
others may reflect changes in, for example, the propensity for
self-renewal. Hence, we propose culture adaptation as a
potentially multifaceted process, affording the opportunity to
study a number of cell behaviors key to hESC maintenance,
and also act as a paradigm for tumor development.
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