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INTRODUCTION

Many Gram-positive bacteria form endospores in response to stress. Spores

are highly resistant to destructive agents such as heat, chemicals, and radia-

tion, and can persist in harsh environments for many years.1 Although highly

stable, spores can rapidly germinate when conditions become hospitable.2

The process of sporulation serves as a model for regulation in bacteria,3 and

is important to the pathogenesis of species such as Bacillus anthracis and

Clostridium botulinum.4

Bacterial spores have a layered structure which includes a protective pro-

tein coat. The coat must exclude harmful agents, while also allowing

nutrients to enter to trigger germination.2 It is a complex structure, contain-

ing at least 70 different proteins in Bacillus subtilis.1 The roles of many coat

proteins are poorly understood, but some are enzymes with known roles,5,6

or have sequence similarity to enzymes.1

YtaA (CotI) of B. subtilis is a member of a family of proteins specific to

the phylum Firmicutes, which are implicated in spore formation and often

form part of the spore coat.7–9 Apart from a brief mention of some mem-

bers in InterPro,10 it has not been reported that these proteins form a single

family, or that they are kinase homologues. We have therefore named this

family the bacterial spore kinases (BSKs), and have carried out a comprehen-

sive genomic and evolutionary analysis of the family, coupled to a combined

analysis of sequence conservation and the crystal structure of YtaA.

The BSKs constitute a new family within the CAK kinases.11 CAKs adopt

a protein kinase-like (PKL) fold, with distinctive CAK-specific structural ele-

ments.12 They usually phosphorylate small molecules, and are named for the

choline and aminoglycoside kinase members, which were the first structures

to be described.13,14 Although all CAKs share a similar fold, they span a

wide sequence and phylogenetic space.11 Beyond the value to our under-

standing of sporulation, the structure of YtaA provides new insights into the

evolution of the PKL superfamily. While similar to other CAKs, YtaA also
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ABSTRACT

Bacterial spore formation is a complex

process of fundamental relevance to

biology and human disease. The spore

coat structure is complex and poorly

understood, and the roles of many of

the protein components remain unclear.

We describe a new family of spore coat

proteins, the bacterial spore kinases

(BSKs), and the first crystal structure of

a BSK, YtaA (CotI) from Bacillus subti-

lis. BSKs are widely distributed in

spore-forming Bacillus and Clostridium

species, and have a dynamic evolution-

ary history. Sequence and structure

analyses indicate that the BSKs are

CAKs, a prevalent group of small mole-

cule kinases in bacteria that is distantly

related to the eukaryotic protein ki-

nases. YtaA has substantial structural

similarity to CAKs, but also displays

distinctive features that broaden our

understanding of the CAK group. Evo-

lutionary constraint analysis of the pro-

tein surfaces indicates that members of

the BSK family have distinct clade-con-

served patterns in the substrate binding

region, and probably bind and phos-

phorylate distinct targets. Several

classes of BSKs have apparently inde-

pendently lost catalytic activity to

become pseudokinases, indicating that

the family also has a major noncatalytic

function.
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displays distinctive changes, exemplifying the array of

innovations that have taken place in the PKL fold over

long evolutionary timescales.

MATERIALS AND METHODS

Crystallization

YtaA was crystallized using the nanodroplet vapor dif-

fusion method15 with standard JCSG crystallization pro-

tocols.16 Screening for diffraction was carried out using

the Stanford Automated Mounting system17 at the Stan-

ford Synchrotron Radiation Laboratory (SSRL, Menlo

Park, CA). The crystallization reagent that produced the

YtaA crystal used for structure determination consisted

of 2.23M ammonium sulfate, 0.1M citric acid pH 5.57.

Ethylene glycol was added as a cryoprotectant to a final

concentration of 15% (v/v). The YtaA crystal was indexed

in hexagonal space group P6422 (Table I).18,19

Data collection, structure solution,
and refinement

Multiple-wavelength anomalous diffraction (MAD)

data were collected at the SSRL on beamline BL11-1 at

wavelengths corresponding to the high-energy remote,

(k1), inflection (k2), and peak (k3) of a selenium MAD

experiment. The datasets were collected at 100 K with a

MarMosaic 325-mm CCD detector using Blu-Ice.17 The

MAD data were integrated and reduced using

MOSFLM20 and then scaled with the program SCALA.18

The selenium substructure solution and phasing were

performed with SHELXD21 and SOLVE,22 and auto-

matic model building was performed with iterative

RESOLVE.23 Model completion and refinement were

performed with Coot24 and REFMAC 5.225 using the

remote (k1) dataset. Data and refinement statistics for

YtaA are summarized in Table I.

Validation and deposition

Analysis of the stereochemical quality of the model

was accomplished using AutoDepInputTool,26 MolPro-

bity,27 SFcheck 4.0,18 and WHATIF 5.0.28 Atomic coor-

dinates and experimental structure factors of YtaA have

been deposited in the PDB29 under the code 2Q83.

Structure analysis

Coordinates for structures other than YtaA were col-

lected from the PDB29 as follows: homoserine kinase 2

(HSK2, PDB ID: 2PPQ), choline kinase (ChoK, PDB ID:

1CKP), aminoglycoside phosphotransferase (APH, PDB

ID: 1L8T), and protein kinase A (PKA, PDB ID: 1CDK).

MolProbity27 was used to add optimized hydrogen

atoms; all suggested Asn/Gln/His flips were also accepted.

Structural alignments were made with DaliLite.30

Table I
Summary of Crystal Parameters, Data Collection, and Refinement Statistics for YtaA (PDB ID: 2Q83)

Space group P6422
Unit cell parameters a 5 b 5 173.00, c 5 192.57 �
Data collection k1 MAD-Se k2 MAD-Se k3 MAD-Se

Wavelength (�) 0.9116 0.9792 0.9791
Resolution range (�) 29.96–2.50 29.96–2.50 29.99–2.71
Number of observations 639,503 631,260 511,467
Number of unique reflections 59,155 59,113 46,847
Completeness (%) 99.9 (100.0)a 99.9 (100.0) 99.9 (100.0)
Mean I/r(I) 17.0 (3.0)a 17.2 (2.5) 14.2 (1.9)
Rsym on I (%) 12.6 (86.4)a 12.5 (86.9) 16.9 (1.398)
Highest resolution shell (�) 2.56–2.50 2.56–2.50 2.78–2.71

Model and refinement statistics
Resolution range (�) 29.96–2.50 Dataset used in refinement k1 MADSe
Number of reflections (total) 59,108b Cutoff criteria |F| > 0
Number of reflections (test) 2988 Rcryst 0.198
Completeness (% total) 100.0 Rfree 0.210

Stereochemical parameters
Restraints (RMS observed)
Bond length (�) 0.012
Bond angle (8) 1.66
Average isotropic B-value (�2) 40.7
ESU based on Rfree value (�) 0.169

Protein residues/atoms 332/5615
Water molecules 185

aHighest resolution shell.
bTypically, the number of unique reflections used in refinement is slightly less than the total number that were integrated and scaled. Reflections are excluded due to sys-

tematic absences, negative intensities, and rounding errors in the resolution limits and cell parameters.

ESU, estimated overall coordinate error18,19; Rsym, S|Ii – <Ii>|/S|Ii|, where Ii is the scaled intensity of the ith measurement and <Ii> is the mean intensity for that

reflection; Rcryst, S| |Fobs| – |Fcalc| |/S|Fobs|, where Fcalc and Fobs are the calculated and observed structure factor amplitudes, respectively; Rfree, as for Rcryst, but for 4.9%

of the total reflections chosen at random and omitted from refinement.
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Sequence analysis

Sequence homologs of YtaA were gathered using

BLAST and HMM searches of the NCBI peptide non-

redundant database31 and the IMG microbial genome

database.32 Chromosomal clustering and operon struc-

ture was verified using IMG. Sequences from the BSK

family were aligned with MUSCLE33 followed by manual

curation, using the YtaA structure to determine appropri-

ate gap locations. A nonredundant alignment was made

by removing sequences from strain variants. A represen-

tative alignment of HSK2 sequences was made from

sequences in Kannan et al.,11 filtered to retain sequences

with <80% identity with cd-hit,34 followed by alignment

with MUSCLE. The BSK and HSK2 alignments were

merged by profile–profile alignment in ClustalX,35 and

then manually edited to maximize agreement with the

DaliLite alignment of YtaA and HSK2 structures (Sup-

porting Information Figure S1). Sequence motif logos

were made with the WebLogo server.36 Evolutionary

constraints were mapped to the YtaA structure using the

ConSurf server,37 using appropriate sections of the align-

ment as input. Conservation scores were calculated with

the default Bayesian method, and positions that scored

within the top 3 conservation bins in ConSurf were

reported as conserved.

Phylogenetic analysis

The BSK/HSK2 family alignment was edited to remove

sparsely populated (uninformative) columns and partial

sequences (Supporting Information Figure S2). The

alignment was evaluated with PHYML38 using the fol-

lowing settings: LG substitution model, four substitution

categories, estimated gamma shape parameter, optimiza-

tion of topology/branch length/substitution rate parame-

ters, (the slower but more accurate) SPR tree topology

search method, and 100 bootstraps (Supporting Informa-

tion Figure S3). Taxonomy is from Bergey’s classification,

based primarily on 16s rRNA.39

Raw data availability

All supporting information is available (in its original

file formats) at http://kinase.com/microbial/bsk.

RESULTS AND DISCUSSION

BSK: A new family of spore-associated
kinases

We gathered over 220 homologous sequences from

public databases that form a distinct new family (BSK)

within the CAK kinases. Homologs were from the phy-

lum Firmicutes, mostly within spore-forming species in

the orders Bacillales and Clostridiales and largely absent

from nonsporulating species (Supporting Information

Tables S1 and S2). Multiple BSKs exist in many species,

with four predominant within the Bacillales, while in

Clostridiales six distinct BSKs are found in Clostridiaceae

and one in Lachnospiraceae (See Fig. 1).

Four BSKs are found in B. subtilis and many other

Bacillaceae: YutH and YsxE are present in almost all

spore-forming species, whereas YtaA and CotS are more

restricted. All four are experimentally implicated in spor-

ulation. CotS and ytaA share a common promoter,

controlled by the spore-specific factors rK and

GerE7-9,40,41 and both are packaged into the spore coat

in a CotE-dependent manner.42 CotS is not detectable in

vegetative cells,8 indicating that its role is spore-specific.

YutH and YsxE are also packaged into the coat,42,43 and

ysxE shares an operon with the spore coat protein

SpoVID44; both are regulated by the spore-specific rE.9

CotS mutants produce morphologically normal spores.7,8

Mutants lacking yutH or ysxE also produce spores that

are morphologically normal, but more sensitive to lyso-

zyme, hypochlorite, and predation,45 indicating that

BSKs are evolutionarily important for spore survival in

natural environments.

Six distinct BSKs (bacterial spore kinase Clostridiales,

BSKC1–BSKC6) are found in members of the spore-

forming genus Clostridium within the family Clostridia-

ceae I (the genus Clostridium is paraphyletic, with

some members in other families within Clostridiales39).

Expression profiling in Clostridium acetobutylicum shows

that BSKC4 is selectively expressed during sporulation.46

Reanalysis of these data suggests that BSKC3 and BSKC5

may also be induced during sporulation, with BSKC3

having the stronger pattern. Accordingly, we find

plausible conserved rE binding sites in the BSKC4

and BSKC3 promoters, a weakly conserved site in the

BSKC5 promoter, and no site in the single operon con-

taining BSKC1, 2, and 6 (data not shown). This suggests

that the expanded family in Clostridium may have

diverged into spore-associated and nonspore-associated

functions.

Most sporulating species within Clostridiales and Bacil-

lales have BSKs and vice versa, but there are exceptions.

A single gene, BSKC7, is present in the Lachnospiraceae,

in both spore formers and nonspore formers (Supporting

Information Table S1). Conversely, Clostridium difficile

(family Peptostreptococcaceae39) forms spores but has no

BSKs.

Sequence similarity between BSKs is low (highest pair-

wise identity is �30%), making phylogenetic reconstruc-

tion difficult, with low-bootstrap values at many basal

branches (Supporting Information Figure S3). However,

when coupled to known species relationships, our results

suggest that the most parsimonious evolutionary scenario

requires independent expansions in Bacillales and Clostri-

diales (see Fig. 1).

In addition to the highly represented BSKs, several di-

vergent members are found in some species (Supporting

E.D. Scheeff et al.
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Information Table S1). Most notable are four homologs

seen within Heliobacterium modesticaldum (bacterial

spore kinase Heliobacterium, BSKH1-4), an unusual pho-

totrophic member of a distinct family in Clostridiales.47

Similarity is weak between the BSKHs and the BSKCs,

suggesting that the BSKHs represent an independent

Figure 1
Conserved motifs in BSKs, arranged by proposed phylogeny. Logos show the relative conservation at selected positions within each of the major

family members, with HSK2 as an outgroup. Key residue numbers in YtaA are labeled on top, and consensus CAK motifs and structural elements

are labeled on the bottom (o 5 any hydrophobic residue; x 5 any residue; lowercase 5 partially conserved). Skull and crossbones indicate

predicted pseudokinases; some CotS orthologs may also be pseudokinases. Structural residues such as H148 and D269 are highly conserved, whereas
catalytic residues are lost in pseudokinases and many other positions are conserved but distinct between classes. The hydrophobic linker and

putative substrate binding motifs are structural motifs that are discontinuous in the primary sequence, and are shown with the intervening

sequence removed. The tree is a schematic, inferred from phylogenetic analysis (Supporting Information Figure S3) and species taxonomy

(Supporting Information Table S1). The major taxonomic ranges of each BSK are shown on the right.
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expansion in H. modesticaldum that may be related to

the shared sporulating phenotype (Supporting Informa-

tion Figure S3).

Several sporulating species in Clostridiales may form

a bridge between this order and Bacillales. Clostridium

thermocellum contains YtaA, CotS, and BSKC4. Symbio-

bacterium thermophilum and Desulfotomaculum acetoxi-

dans have no BSKCs, but have YtaA (D. acetoxidans

also has CotS) (Supporting Information Table S1).

Although horizontal transfer cannot be ruled out, C.

thermocellum could represent an ancestral state, from

which expansion in ytaA could produce the Bacillales

genes, and expansion in BSKC4 could produce Clostri-

diales genes.

Several BSKs are predicted to be
catalytically inactive

The sequence motifs required for enzymatic activity in

PKL kinases have been extensively explored and mapped

to the structure of PKA,11 the prototype of PKL ki-

nases.48 Although the CAK family displays considerable

plasticity in these motifs relative to other PKL families, a

few key residues have remained nearly invariant, most

notably D239YtaA (D166PKA), which coordinates the tar-

get substrate hydroxyl group in substrate-bound struc-

tures,49,50 and is believed to be required for catalytic

activity.51

Five BSKs have lost D239YtaA, along with other motifs

generally required for enzymatic function, and we predict

that they are pseudokinases.52 Assuming that their com-

mon ancestor was active, our evolutionary model indi-

cates that BSKs lost catalytic activity independently in

Bacillales and Clostridiales, and possibly in Lachnospira-

ceae (see Fig. 1). This pattern suggests a common nonen-

zymatic function for BSKs, coupled to a sometimes dis-

pensable role as a kinase.

These five pseudokinase BSKs have a variety of inacti-

vating mutations, in addition to the loss of D239YtaA (see

Fig. 1). Three eukaryotic protein kinase (ePK) pseudoki-

nase structures have recently been published.53–55 All

show a selective loss of catalytic residues, coupled with

retention of residues required for folding, resulting in

structures that are highly similar to their catalytically

active relatives. A similar pattern is seen in the BSK pseu-

dokinases, though the sequence changes that occur on

inactivation are even more extreme. For example, despite

the poor overall sequence similarity between BSKs,

H148YtaA (H158PKA) and D269YtaA (D220PKA), which form

hydrogen bonds to stabilize the fold of the C-terminal

lobe,12 are conserved in almost all BSK pseudokinases,

indicating that this interaction is critical for a family-wide

function. However, H237YtaA (H164PKA) which forms

hydrogen bond interactions that directly stabilize the ge-

ometry of the active site,12 is only partially conserved in

YutH and lost completely in BSKC6. In fact, BSKC6 has

lost the entire N-terminal lobe of the kinase domain (see

discussion of structure later), similar to some viral PKL ki-

nases,11 and the KIND domain in metazoans.56 This

change appears to be relatively recent: There are BSK6-like

proteins (BSKC6L) with intact N-terminal lobes in Caldi-

cellulosiruptor saccharolyticus and Anaerocellum thermophi-

lum (Supporting Information Tables S1 and S3). BSKC6L

appears to be the ancestral form of BSK6, though it still

lacks residues required for enzymatic activity.

The remaining members of the BSK family display

substantial selective conservation of known CAK catalytic

motifs (though some aspects of the YtaA active site are

unusual, see discussion later). This pattern strongly sug-

gests that these proteins will be active kinase enzymes

(see Fig. 1). However, no BSK has been experimentally

assayed for catalytic activity, and we therefore define

these members only as putatively active BSKs.

Interestingly, while CotS is a putatively active BSK, it

may also be a pseudokinase in some species. Although it

conserves D239YtaA, it frequently loses the DxD motif

(Dxe across all CAKs, first position is D257YtaA) and

N244YtaA (see Fig. 1). These motifs are not universally

required for PKL kinase activity, but they are almost

completely conserved in putatively active BSKs. CotS also

sometimes loses H237YtaA. Remarkably, three species out-

side the Bacillaceae (including C. thermocellum) have a

CotS that retains all active site residues (Supporting In-

formation Tables S1 and S3). Thus, as with BSKC6, we

can directly observe an apparent ongoing process of loss

of functionality within CotS through the examination of

current genome sequences.

YtaA and cotS form a conserved
chromosomal cluster with genes involved
in nucleotide sugar metabolism

YtaA and cotS form a conserved chromosomal cluster

with a pair of related glycosyl transferases (cotSA and

Table II
Genes in the Chromosomal Cluster Containing cotS and ytaA, with their COG Assignments57

Gene symbol COG Name Reaction

ytdA COG1210 UDP-glucose pyrophosphorylase Glucose-1-phosphate 1 UTP ? UDP-glucose
ytcA COG1004 UDP-glucose 6-dehydrogenase UDP-glucose 1 NAD ? UDP-glucuronate 1 NADH
ytcB COG0451 UDP-glucose epimerase Interconverts UDP-glucose and UDP-galactose
cotSA, ytcC COG0438 Spore-associated glycosyl transferase Transfers NDP-sugars to protein or small molecule acceptors
cotS, ytaA COG2344 BSK Kinase (CotS may be inactive)

E.D. Scheeff et al.
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ytcC; 47% sequence ID) and a set of enzymes involved in

nucleotide sugar metabolism (ytcA-B and ytdA; Table II,

Fig. 2). While the order and operon membership of these

genes varies between species, their conserved tight clus-

tering and predicted coregulation suggests functional

interactions. Indeed, both CotSA and YtcC are found in

the spore41 and CotSA requires CotS to be assembled

into the spore,58 suggesting that they might be binding

partners.

This linkage is further supported by coordinated gene

loss in several species. No genome has a ytaA/cotS with-

out this class of glycosyl transferase, or a glycosyl trans-

ferase without ytaA or cotS (Supporting Information

Table S1). Our phylogenetic model suggests that there

have been multiple coordinated losses of these genes,

sometimes linked to losses of the ytc and ytd genes. Four

of the 17 sequenced strains of B. thuringiensis have a

chromosomal cluster containing both BSKs and both gly-

cosyl transferases, ytcB and ytdA. The other 13 strains

lack all six genes. Similarly, of six Geobacillus species, one

(WCH70) lacks both BSKs and both glycosyl transferases,

whereas another (Y412MC10) has lost one of each and

both have also lost some of the ytc/ytd genes. Two of

eight B. cereus species have both BSKs and both glycosyl

transferases, and the rest lack both.

A BSK-glycosyl transferase link is also seen in most

Clostridium species, where BSKCs 2, 6, and 1 are clus-

tered in a single operon and BSKC4 is nearby (see Fig.

2). This operon is flanked by two glycosyl transferases

which are distantly related to cotSA and ytcC. By con-

trast, the conserved linkage of BSKC7 in the mostly non-

sporulating Lachnospiraceae is to unrelated genes.

The crystal structure of YtaA indicates
that BSKs are CAK kinases with
unusual features

The crystal structure of YtaA, at 2.5 Å resolution

(Table I), has an overall similarity to previously deter-

mined CAK structures. YtaA contains the PKL bilobed

fold, with a smaller, mostly b-stranded N-terminal lobe,

and a larger, mostly a-helical C-terminal lobe (see Fig.

3).12 The electron density indicated that a molecule con-

taining an adenosine moiety was bound in the interlobe

cleft, where the adenosine moieties of ATP/ADP are

found in other PKL structures. This molecule was present

due to copurification with YtaA; it was not provided in

the crystallization conditions (see ‘‘Materials and Meth-

ods’’ section). There was no electron density beyond the

ribose of the adenosine moiety, and the ribose was par-

tially disordered (Supporting Information Figure S4).

Thus, it was unknown if the expected phosphate groups

were genuinely absent or simply disordered. We therefore

modeled the ligand as adenosine. In addition, the phos-

Figure 2
Conservation patterns near the ytaA/cotS loci. Despite considerable rearrangements, the ytaA/cotS genes are consistently colocated and coregulated

with glycosyl transferases (ytcC and cotSA) and frequently with nucleotide sugar metabolizing genes (ytdA and ytcA-B). Genes are color-coded by

orthology; gray represents genes neither conserved in the cluster nor spore-associated. Gene lengths are not to scale.
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phate-binding loop between Q52 and A57 had poor elec-

tron density, and could not be reliably modeled. This

loop normally interacts with the phosphates of the ATP

and is assumed to be disordered. The N-terminus of the

protein, G1-E21, was also not resolved in the electron

density maps.

Despite its overall similarity, YtaA is not closely related

to any previously characterized CAK structures. The closest

similarity is to homoserine kinase 2 (HSK2), an enzyme

involved in threonine biosynthesis59 (Table III). Here, we

compare the structure of YtaA to those of choline kinase

(ChoK)61 and aminoglycoside phosphotransferase

(APH),50 prototypical CAKs with well-characterized struc-

tures that also have a bound adenosine-derived cofactor,

enabling comparison of the ATP binding sites. Of these

two structures, YtaA is moderately more similar to ChoK

(Table III). We also compare YtaA to a representative ePK,

PKA.62 A substantial structural core, which encompasses

the essential residues for ATP binding and phosphotrans-

fer, is shared between ePKs and CAKs (see Fig. 4). We

name shared structural elements by ePK conventions,63

and use an ‘‘i’’ suffix to label elements unique to CAKs.

YtaA retains two CAK-specific structural elements in

the C-terminal lobe12,64 (see Fig. 4). First, a1i-a2i is a

large helical insertion [blue in Fig. 4(B–D)] after aE,

which spatially replaces the ePK-specific activation seg-

ment65 [blue in Fig. 4(A)]. YtaA adds a new helix to the

end of this insertion [a2bi, red in Fig. 4(D)]. Second,

distinctive helices at the C-terminus join with the inser-

tion to form a putative substrate binding site [a3i–a5i,

yellow in Fig. 4(B–D)]. In YtaA, the number and posi-

tion of these helices is more similar to that seen in ChoK

than APH. The observed structural similarity in the C-

terminal lobe of YtaA and the other CAKs suggests that

YtaA uses this region to bind small molecule substrates,

as was previously shown for ChoK61 and APH.50 While

all three CAKs retain these distinctive elements, the

structural similarity is lowest in these areas, with differ-

ent number and placement of elements. It is likely that

these differences at least partially reflect changes in the

substrate specificity of the three enzymes.

YtaA binds adenosine in a distinctive manner

The YtaA structure reveals a distinctive ATP binding

pocket that is broadly similar to other CAKs, but has key

elements that help to define BSKs as a distinct family. In

some aspects, the YtaA pocket is more like that of ChoK,

but in others it is more like the APH pocket.

In CAKs, the adenine ring of ATP usually interacts

with another aromatic ring from the N-terminal lobe,

but the specific interactions and the orientation of the

ATP are different in each structure (see Fig. 5). This pat-

tern is in contrast to ePKs, which have a stereotypical

ATP binding mechanism: The primary hydrophobic

interaction from the N-terminal lobe to the adenine ring

of ATP is almost always via V57PKA in b2 and A70PKA in

b3.63 In ChoK and YtaA, the interacting ring comes

Figure 3
Crystal structure of YtaA, colored by secondary structure. CAK-specific

elements are labeled with an underline.

Table III
Superposition of YtaA with Representative Structures from a Search with the Dali Server60

Structure Classification PDB ID: chain Dali Z-score RMSD (�) Aligned positions %ID

Homoserine kinase 2 CAK 2PPQ:A 23.5 3.2 287 16
Choline/ethanolamine kinase CAK 3DXQ:A 18.9 3.9 265 13
YihE CAK 1ZYL:A 18.4 4.1 273 14
Choline kinase a-2 (ChoK) CAK 1CKP:A 15.6 3.9 259 14
Methylthioribose kinase (MTRK) CAK 2PUN:A 15.1 4.0 260 12
Aminoglycoside phosphotransferase (APH) CAK 1L8T:A 13.1 5.1 219 12
RIO1 Rio 1ZTH:C 9.9 3.6 168 15
Protein kinase A (PKA) ePK 1CDK:A 7.7 3.4 162 14

Structures with IDs in italics were used in analysis and comparisons with YtaA.

E.D. Scheeff et al.
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from the interlobe linker (W123YtaA and F208ChoK).

Although this side chain emanates from the same back-

bone location, in YtaA aromatic p-p stacking is observed,

while in ChoK the rings interact in a perpendicular man-

ner. As a result, in ChoK the face of the adenine ring

also packs against L144ChoK in b3 (see Fig. 5). In APH,

the interacting ring instead comes from Y42APH in b3

(corresponding to L144ChoK and A70PKA), and stacks

atop the adenine ring in a similar fashion to W123 in

YtaA (see Fig. 5).66 In all three structures (as in PKA),

the adenine ring also forms H-bonds to the protein back-

bone in the linker region. The changes in the interaction

patterns produce substantial changes in the positioning

and orientation of the adenosine moiety (see Fig. 5).

Residues forming the ATP binding pocket from the C-

terminal lobe also vary between CAKs. ChoK forms a

primary interaction from L313ChoK in b7 and the ATP

ribose also hydrogen bonds with the protein backbone in

the linker region. YtaA instead forms the hydrophobic

interaction with I256YtaA from b8, and the ribose moiety

forms no hydrogen bonds with the protein. APH uses

both hydrophobic sites (F197APH from b7 and I207APH

from b8). While the ribose of ATP still forms a hydrogen

bond, it is to the backbone upstream from b7 (see Fig. 5).

Consideration of these three CAKs demonstrates that

the ATP binding pockets are quite variable within the

CAK family. It is possible, particularly in the case of

YtaA, that the ATP molecule could shift position and ori-

Figure 4
Overview comparison of YtaA with other CAKs and PKA. Common secondary structure elements shared by all structures are shown in gray, and

labeled in the PKA structure. Distinctive structural elements specific to the CAKs are shown in blue and yellow, with the analogous (but structurally
distinct) regions of the PKA structure shown in identical colors. The unique helix in YtaA, a2bi, is shown in red. The CAK-specific elements are

labeled on all three CAK structures in underline. A: PKA; B: APH; C: ChoK; and D: YtaA.
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entation depending on the activation state of the enzyme

and the binding of substrate.61 Only adenosine could be

reliably modeled in the YtaA structure, and the ribose

moiety is rotated into a position incompatible with

proper placement of the phosphate groups for substrate

phosphorylation (though the ribose appears partially dis-

ordered, see earlier). However, the two primary adeno-

sine interacting residues, W123YtaA and I256YtaA, are con-

served in most putatively active BSKs, suggesting the

observed interactions are both relevant and indicative of

a family-wide pattern.

The YtaA active site indicates it is likely to
be a functional enzyme

PKL kinases share a tightly integrated active site where

the ATP phosphates are coordinated and positioned for

optimal phosphotransfer. In ePKs, the K72PKA-E91PKA

ion pair links b3 and aC, while also providing a positive

charge (K72) to interact with the negatively charged ATP

phosphates. APH retains a similar K44APH-E60APH ion

pair, which fulfills a similar role in the APH structure

Figure 5
Comparison of the adenosine binding pocket in YtaA and other CAKs.

Structures are presented in identical orientation, based on structural

alignment and superposition with DaliLite.30 This presentation

highlights changes in location and orientation of the adenosine

molecule in each structure. Key adenosine-interacting residues in each

structure are shown (side chains are omitted for residues that

contribute only backbone atoms). H-bonds are shown as dotted lines
and metal atoms as blue spheres. Portions of the structures are omitted

to improve clarity. A: APH; B: ChoK; and C: YtaA.
Figure 6
Comparison of active sites of APH and YtaA. Structures are presented

in identical orientation, based on structural alignment and

superposition with DaliLite.30 Conventions are as in Figure 5, except

that metal atoms are shown as transparent spheres. A: APH and B:

YtaA.
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(see Fig. 6). ChoK replaces the Lys residue with

R146ChoK, a common substitution in CAKs.11

In contrast to other CAKs, YtaA retains the Lys

(K72YtaA), but completely lacks the Glu partner, replacing

it with S84YtaA (see Fig. 1), which does not form an anal-

ogous interaction. The missing Glu may be functionally

replaced by D259YtaA in the Dxe motif (DLD in YtaA, Fig.

6). The side-chain carboxyl groups of D259YtaA and

E60APH occupy the same spatial location (see Fig. 6), indi-

cating that this sort of compensation is plausible. Further,

D259 is often conserved as an acidic residue in CAKs11

and is highly conserved in most BSKs (see Fig. 1).

The remaining active site residues, which are required

for metal binding and catalysis, are conserved in YtaA (as

in APH and ChoK), indicating that this protein is very

likely to be catalytically active. The three key residues

D239YtaA (D166PKA), N244YtaA (N171PKA), and D257YtaA

(D184PKA), are in approximately standard conformations

for a PKL kinase (see Fig. 6).

Putatively active BSKs have a distinctive
and highly conserved linker motif

Sequence comparison between putatively active and

inactive BSKs reveals a highly conserved, mostly hydro-

phobic structural linker motif including F83YtaA, Y90YtaA,

S151YtaA, and Y154YtaA, which is strongly associated with

likely enzymatic activity (Fig. 1, hydrophobic linker sec-

tion), though the motif does not directly interact with

the active site (see Fig. 7). These conserved residues form

a network of hydrophobic and H-bond interactions that

link together aE, aC, b6, and the loop linking aE and

a1i, which forms a convoluted structure along the

‘‘back’’ of the enzyme, opposite the active site (see

Fig. 7). This motif effectively connects key portions of

the two lobes. It also links to the hydrogen bond network

that stabilizes the catalytic region of many PKL kinases

(mentioned earlier) through an H-bond to H148YtaA.

Given the strong correlation with conservation of cata-

lytic motifs, and its linkage to known highly conserved

residues, we propose that this motif is likely to stabilize

the protein for proper enzymatic function.

The motif is also present, though not fully conserved,

in HSK2 (see Fig. 1), but not other CAKs, further dem-

onstrating the relatively close relationship between these

two families. Interestingly, it is also present in CotS, sug-

gesting that this enzyme may indeed be active, despite

unusual sequence changes in some species.

Conservation patterns in the putative BSK
substrate binding site indicate a variety of
distinct substrates

Previous structures of CAKs bound to substrate have

defined a substrate binding region incorporating residues

from a1i–a2i, the catalytic loop, aF, and a4i–a5i.50,61

Evolutionary constraint analysis of the entire BSK family

with ConSurf37 reveals a conserved surface region in this

Figure 7
The hydrophobic linker motif conserved only in putatively active BSKs.

A: Cutaway view of motif residue interactions. The YtaA structure is in

approximately the same orientation as in Figure 4, with secondary

structure elements identically colored. Motif residues are rendered with

a yellow space-filling shell. H148, a residue highly conserved in almost

all PKL kinases,11 is shown with a space-filling shell in white.

Unconserved residues interacting with the motif are in ball-and-stick

view. B: Logo of motif, showing selective conservation only in

putatively active BSKs. The motif is discontinuous in sequence, and

shown with intervening sequence removed.

Table IV
The Conserved Putative Substrate Pocket of the BSK Family, Mapped

to YtaA. Listed Positions Display Overall Conservation in the Family

YtaA residue
Secondary

structure element

R176 a1i
Q179 a1i
Q238a Catalytic loop
R268a aFa

R271a aFa

K272a aFa

M273 aF
I275 aF
P276 aF
Y318 a4i
E319 a4i
Y321 a4i
D322 a4i
R325 a4i

aHighly conserved specifically in YtaA.
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same location, defining the putative substrate binding

site for BSKs (Table IV). This site forms a bowl-shaped

pocket with a complex surface (see Fig. 8). Remarkably,

the electron density maps for the YtaA structure show

additional density for an unknown ligand in this region.

However, it is unlikely that this ligand could be the bio-

logical substrate of YtaA: it is distant from the key active

site residue D239YtaA (D166PKA), which directly coordi-

nates the substrate hydroxyl group.49

Although the substrate binding region is generally con-

served throughout the BSKs, each group of orthologs in

the family displays distinct subsets of highly conserved

residues within the pocket (Fig. 1, putative substrate

binding section). YtaA has four highly conserved resi-

dues, of which three are basic (Table IV), forming a

patch directly adjacent to D239 (blue in Fig. 8). CotS has

weaker conservation in this patch, but adds an additional

region of higher conservation. Remarkably, YutH retains

a highly conserved site, despite its catalytic inactivity,

indicating that it is very likely to still bind a pseudosub-

strate. By contrast, the YsxE binding site is very poorly

conserved, and probably does not bind a ligand. This

general pattern is repeated in Clostridiales, with BSKC6

having a particularly poorly conserved site, further

emphasizing its rapid evolutionary degradation. This pat-

tern strongly suggests that each protein in the family has

distinct substrate binding properties. The equivalent resi-

dues in HSK2 also differ substantially, (see Fig. 1), indi-

cating that BSKs are unlikely to be homoserine kinases.

CONCLUSIONS

The BSKs are a new family of bacterial kinases with

distinctive structural features and an unusual subcellular

location, with most members packaged into the bacterial

spore coat. Although the precise functions of BSKs are

unknown, our integrated genomic, phylogenetic, and

structural approach has highlighted several attributes of

the family.

The dynamic evolutionary pattern seen in BSKs sug-

gests that they provide multiple specific functional

enhancements to different species, rather than acting as

core structural elements of the coat. This notion is sup-

ported by the absence of BSKs from some sporulating

species, such as C. difficile, and the mild phenotypes of

BSK mutants.7,8,45 Further diversity comes from fre-

quent apparent loss of catalytic activity, suggesting that

BSKs have a common, and perhaps predominant, nonen-

zymatic function. The diverse sequence conservation pat-

terns in the putative substrate binding site also suggest

distinct functions, and indicate that some BSK pseudoki-

nases could function through binding pseudosubstrates.

The tight association between some BSKs and glycosyl

transferases and predicted nucleotide sugar metabolizing

enzymes suggests that they may bind or phosphorylate

one of these reactants, correlating with the aminoglyco-

side substrates of the related APHs. Given the relevance

of spore formation to bacterial pathogenesis, and the

demonstrated drugability of PKL kinases,67,68 we believe

further experimental characterization of this family is

warranted.

The structure of YtaA also illuminates the remarkable

innovations that have occurred in the active site of CAK

kinases. Although the ePK family is very diverse, the

mode of ATP binding and the conservation of active site

residues is almost identical across the entire family, with

only a few narrow exceptions.69,70 In contrast, CAKs of-

ten display substantial changes to the residues in the ATP

binding pocket and catalytic region.11 Our comparison

of YtaA with the structures of other CAKs reveals the

substantial degree of structural variability coincident with

these sequence changes. Consideration of the broader

PKL superfamily has revealed a wide range of structural

changes in substrate binding regions,12 and the CAKs

now demonstrate that such changes can even propagate

into the active sites. The variability in CAK active sites

may be due to the wide variety of molecules that they

must phosphorylate: each CAK may be enzymatically

Figure 8
Predicted substrate binding region of the BSK family, mapped onto the

YtaA surface. The orange and blue surface show the region generally

conserved throughout the family. The blue region is specifically highly

conserved in YtaA (Table IV). The key active site residue D239YtaA is

shown with a red space-filling shell. The unknown ligand in the YtaA
structure (green) and the adenosine are shown in ball-and-stick.
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optimized for its specific substrate.71 In contrast, while

the ePKs display a broad range of peptide motif specific-

ity,72 the ultimate catalytic target of these enzymes is

much more restricted: the hydroxyl groups of serine,

threonine, and tyrosine residues. Thus, as with YtaA, new

structures of CAKs should continue to provide insights

into the true catalytic plasticity of the PKL fold.
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