
Synthesizing MR Contrast and Resolution through a Patch 
Matching Technique

Snehashis Roy, Aaron Carass, and Jerry L. Prince
Image Analysis and Communications Laboratory, Electrical and Computer Engineering The 
Johns Hopkins University, Baltimore, MD 21218

Abstract

Tissue contrast and resolution of magnetic resonance neuroimaging data have strong impacts on 

the utility of the data in clinical and neuroscience tasks such as registration and segmentation. 

Lengthy acquisition times typically prevent routine acquisition of multiple MR tissue contrast 

images at high resolution, and the opportunity for detailed analysis using these data would seem to 

be irrevocably lost. This paper describes an example based approach using patch matching from a 

multiple resolution multiple contrast atlas in order to change an image's resolution as well as its 

MR tissue contrast from one pulse-sequence to that of another. The use of this approach to 

generate different tissue contrasts (T2/PD/FLAIR) from a single T1-weighted image is 

demonstrated on both phantom and real images.
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1. INTRODUCTION

A principal goal of the collaboration between the neuroscience and medical imaging 

communities is the accurate segmentation of brain structures, with a view towards offering 

insight about the normal and abnormal features of a brain. Several methods1, 2 have been 

proposed to find cortical and sub-cortical structures. These methods are intrinsically 

dependent on the tissue contrast and resolution of the acquired data. In this paper, we 

propose a method to alter both the tissue contrast and resolution of a magnetic resonance 

(MR) image, thereby permitting image analysis techniques that would otherwise be 

inappropriate or ineffective.

MR tissue contrast and image resolution provided by the application of specific pulse 

sequences in MR imaging fundamentally determine or limit the performance of tissue 

classification algorithms3. If several images with different tissue contrasts (e.g., T1-

weighted, T2-weighted, and PD-weighted) at high resolution can be obtained then optimal 

tissue classification solutions can be applied4, 5. But in many scenarios—e.g., routine 
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clinical imaging of patients—it is not feasible for cost and time reasons to obtain such a rich 

data set, thus losing the opportunity for detailed image analysis. In neuroimaging, it is 

important to be able to automatically delineate the cortical gray matter and to observe white 

matter lesions. Yet there are inevitable tradeoffs made in choosing pulse sequences that will 

provide good contrast between the gray matter (GM) and the surrounding white matter 

(WM) and cerebro-spinal fluid (CSF) as well as delineating lesions. In particular, the tissue 

contrast between GM and WM is typically larger in a magnetization prepared rapid gradient 

echo (MPRAGE) image than in a spoiled gradient (SPGR) acquisition. On the other hand, 

the tissue contrast between CSF and GM is larger in an SPGR image. As well, white matter 

lesions can best be seen as hyperintensities on fluid-attenuated inversion recovery (FLAIR) 

images or6 T2-weighted images rather than either of the (MPRAGE or SPGR) T1-weighted 

images mentioned above. All of these observations can be seen in Fig. 1, where equivalent 

brain sections are shown with different MR tissue contrasts.

Delineation of small brain structures and accurate localization of object boundaries is also 

dependent on the image resolution. In particular, poor resolution yields blurring of 

boundaries and loss of image contrast in small structures. The technique we develop in this 

paper is capable of both changing the tissue contrast and improving the resolution of an MR 

image. The resulting image (or images) can then be used to carry out a more detailed 

analysis than would otherwise be possible.

Image hallucination7, 8 is often used to generate a high-resolution image from its multiple 

low-resolution acquisitions. There are two major categories in image hallucination, 

Bayesian9-11 and example-based12-14. Bayesian approaches are often formulated as a 

constrained optimization problem where the imaging process is known and the high 

resolution image is often the maximum likelihood estimator of a cost function given one or 

more low resolution images. Example based hallucination techniques are learning 

algorithms that rely on training data from a training set or atlas15 consisting of one or more 

high resolution images. These methods are primarily patch based, where a patch in the low-

resolution image is matched to another patch in the training data. The similarity criteria are 

often chosen as image gradients, neighborhood information or textures16, 17.

In this paper, we extend the idea of atlas based hallucination by using patch matching to 

synthesize alternative contrast and high resolution MR images. We demonstrate the 

performance of the method using two applications. First, we synthesize different (T2/PD/

FLAIR) tissue contrasts from a single T1-weighted (T1w) image, keeping the resolution the 

same, thus enhancing the capability of image analysis techniques that require different tissue 

contrasts. The utility of synthesizing alternate contrast is shown by generating a T1w 

MPRAGE image from its T1w SPGR acquisition. Then we convert a low resolution (LR) 

SPGR image to a high resolution (HR) MPRAGE image which has superior GM-WM 

contrast. We show that the overall delineation of the inner surface improves by such 

conversion.
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2. METHODS

Consider two registered MR images fM1 and fM2 of the same subject having different tissue 

contrasts (i.e., generated by different pulse sequences). In our experiments, the tissue 

contrasts can be any two of the following: T1w, T2w, PDw, or FLAIR. The images are 

related by the imaging process , which depends on underlying T1 and T2 relaxation times 

and other imaging parameters such as the pulse repetition time and the flip angle. In 

mathematical terms,

(1)

where η is a random noise and Θ comprises the imaging parameters. Ideally, if  is known 

then fM2 can be directly estimated4. But for many studies Θ is not always known precisely 

and  is difficult to model accurately, and it is therefore impractical to try to reconstruct fM2 

from fM1 directly. Instead, our approach is to synthesize fM2 from fM1 using an atlas.

2.1 Atlas Construction

Define an atlas as N sets of triplets, , where 

are two tissue contrasts of the same subject having same resolution, and  is a high-

resolution image with tissue contrast M2. By assumption,  and  are registered to , 

∀n. Also assume that fM1 and  are made of 3D patches 

, centered at i ∈ Ωf, jn ∈ Ωgn, Jn ∈ ΩGn, respectively. 

Ωf, Ωgn and ΩGn are the image domains of  and . Therefore,  and 

 is a low-resolution M1 patch of its high-resolution M2 patch . Defining 

as a down-sampling operator, if jn ∈ Ωgn and Jn ∈ Ωgn are corresponding locations in 

and , respectively, then jn = (Jn).

2.2 Contrast Synthesis

Assume that all the images f and  are normalized in such a way that their WM peaks are 

the same. Using this definition of an atlas, a synthetic M2 image, having same resolution as 

fM1, can be generated by,

(2)

where ℱ is a non-local means operator18 and,

(3)

λ is a smoothing weight. ℛ makes sure that the patches  are chosen such that the 

boundaries between two neighboring patches in the synthesized f̂M2 remain smooth14. We 

use the following smoothness function,
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(4)

where Ni and Njn are neighborhoods of the ith and jnth voxel, respectively, with i ∈ Ωf, jn ∈ 

Ωgn, Ni ⊂ Ωf, Njn ⊂ Ωgn.

Instead of just taking any patch that maximizes Eqn. 3, an average of the “best matching 

patches” are used. The “best matching patches” Jn are defined to be those for which the 

errors from Eqn. 3 are the lowest p% obtained from all the patches. We choose p = 3 in our 

experiments.

Define Ωi,n as the set of all best matching patches for the patch fM1(i) obtained from Eqn. 3 

for nth pair of images . Clearly, Ωi,n ⊂ Ωgn. Using this definition, the non-local 

means filtered patch is obtained by,

(5)

where,

(6)

where β is a smoothing parameter on the NLM operator. In our experiments, β is chosen 

empirically, although it is possible to estimate it in a optimal way19.

Assuming M1 as T1w and M2 as T2w, the algorithm can be described for one atlas as :

• To synthesize ith patch f̂M1(i) in f̂M1, find the “best matching patches” 

 from  by searching the image domains Ωg
n to 

solve Eqn. 3 (1 in Fig. 2).

• Construct the ith patch in f̂M1 as a non-local weighted average of  as 

shown in Eqn. 5 (2 in Fig. 2).

2.3 Resolution Enhancement

We merge the learning based image hallucination idea12, 17 to our tissue contrast synthesis 

approach to synthesize different contrast as well as improve resolution. To synthesize a 

high-resolution M2 image F̂
M2 from a low-resolution M1 image fM1, Eqn. 2 is re-written as,

(7)

with

(8)

Roy et al. Page 4

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2010 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where n is obtained from Eqn. 3. −1 takes the low-resolution patch from Ωgn to the high-

resolution domain ΩGn. This approach is similar to the example based super-resolution 

algorithms12, 14, except that we are using patches from a different tissue contrast image 

.

3. RESULTS

3.1 Contrast Synthesis Validation on Brainweb

We use the Brainweb phantom20 to validate the contrast synthesis method. M1 is chosen as 

T1w (Fig. 3(d)), and its original T2w and PDw acquisitions shown in Fig. 3(e)-(f). For all 

our experiments, we choose N = 1. The atlas is another set of phantoms, consisting of one of 

each of T1w, T2w, and PDw acquisitions, as shown in Fig. 3(a)–(c). Because the image 

intensities are taken from a codebook, the mean square error between the original and the 

reconstructed image is not a meaningful measure of performance. Instead, we use 

normalized mutual information (NMI), a visual information fidelity metric21 (VIF), and a 

universal image quality index22 (UQI) to quantify similarity between the original and the 

synthetic images. The NMI between two images A and B is defined as 

 where H(A) is the entropy of the image A and H(A, B) is the 

joint entropy between A and B, with H(A, A) = H(A). We want low NMI values between the 

original and the synthetic images. Ideally, the synthetic image should give an accurate 

representation of the original image, which implies a small joint entropy between them.

The NMI between original T2 and synthetic T2 is 0.7464, while it is 0.7597 between the 

original PD and the synthetic one. VIF and UQI take two 2D images and return a number 

between 0 and 1. 1 is achieved only when the images are same or one is a scalar multiple of 

another. We plot UQI and VIF metrics in Fig. 3(i)-(j) for each slice of the 3D volumes 

between original and the synthetic T2 and PD. It is observed that the similarity is high on 

average.

3.2 Contrast Synthesis on Real Data

We use our algorithm to synthesize T2 and FLAIR images of a normal subject from its T1w 

SPGR acquisition for which we also have the actual T2 and FLAIR available for 

comparison. Fig. 4(a)-(c) show the T1, T2 and FLAIR images of another subject, which is 

used as the atlas. Fig. 4(g)-(h) show the synthetic T2 and FLAIR of the test subject in Fig. 

4(d)-(f). Fig. 4(f) shows that the atlas FLAIR has a better contrast in GM-WM boundary 

compared to the test FLAIR. This is reflected in the synthetic FLAIR also. This highlights 

the benefit of our method, where a new contrast is created from the atlas, instead of the 

contrast reconstruction from the test image.

The NMI between the original and the reconstructed T2 and FLAIR are 0.3697 and 0.3102, 

respectively. NMI, being a distribution dependent statistic, is sensitive to the actual 

distribution of the intensities rather than the contrast. The NMI numbers for the phantom 

validation are larger than those of the real data, because the Brainweb phantoms have widely 
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different histograms while keeping the same contrast, while the real data have similar 

histograms. The plot of UQI and VIF for each slice is also shown in Fig. 4(i)-(j).

The next experiment on real data consists of synthesizing an MPRAGE image from its 

SPGR acquisition of the same resolution, because MPRAGE images are of importance for 

their superior GM-WM contrast. The required atlas consists of a pair of SPGR and 

MPRAGE acquisitions of another subject. Fig. 5(a)-(b) shows the true SPGR and true 

MPRAGE acquisitions, with Fig. 5(c) being the same resolution synthetic MPRAGE image. 

The NMI between the original MPRAGE and the synthetic MPRAGE is 0.3254, while it is 

0.3341 between the original MPRAGE and the original SPGR.

3.3 Contrast Synthesis with Resolution Enhancement

We show that using both contrast synthesis and resolution enhancementment leads to 

improved delineation of cortical surfaces. We use M1 as SPGR and M2 as MPRAGE. 

MPRAGE images, having superior GM-WM contrast, are a better candidate for the 

delineation of the inner cortical surface compared to SPGR images. So in the absence of an 

MPRAGE image, we could synthesize one, thus enabling better delineation. Our data set 

contains a 1.875×1.875×3 mm low-resolution (LR) SPGR image fM1, its high resolution 

(HR) 0.9375×0.9375 1.5 mm true MPRAGE acquisition FM2 and true HR SPGR acquistion 

FM1, shown in Fig. 6(a)-(c), respectively. Using Eqn. 7, a HR MPRAGE image F̂
M2 is 

generated, shown in Fig. 6(d). The cortical inner surfaces are found using CRUISE23. For 

comparison, “the best available truth” or a “reference” standard of the inner surface is 

obtained from FM2, with which we compare the surface obtained from F̂
M2 and FM1. Fig. 

7(a) and (b) show how the lack of GM-WM contrast gives rise to a poor cortical inner 

surface reconstruction for FM1 when compared to the reference “true” reconstruction from 

FM2 and the reconstruction from our method, F̂
M2. Table 1 shows that the mean differences 

for four subjects between their inner surfaces as generated from F̂
M2 and FM1 as compared 

to FM2. The smaller differences show our super-resolution approach gives a marginal 

improvement in the delineation of the inner surface.

4. DISCUSSION AND CONCLUSION

The similarity criteria in Eqn 3 is chosen to be the L2 norm, the underlying assumption being 

the intensities of f and  differ by a Gaussian noise, or they follow a similar distribution. If 

the intensity distributions are different, then L2 norm fails to produce correct matches from 

Eqn. 3. Also, we used one atlas for our experiments, but we believe using more than one 

atlas helps in finding more accurate Jn. Involving more complex similarity criteria like 

gradient or texture into Eqn. 3 will also produce more accurate Jn. Some of the parameters, 

like λ in Eqn. 3 or β in Eqn. 6 are required to be estimated by cross-validation. Also, the 

smoothness of the image depends on the amount p% of “best matching patches” used, which 

also needs to be estimated by cross validation.

In summary, we proposed an atlas based image synthesis technique to generate different MR 

tissue contrasts from a single image acquisition. It is essentially a patch-matching algorithm 

where a template patch from a test image is matched onto a multi-modal multi-resolution 
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atlas and patches from the atlas are used to generate a synthetic alternate tissue contrast high 

resolution image. The contribution of this method is that new MR contrasts can be 

synthesized from the atlas, and unlike histogram matching, this method uses local contextual 

information to synthesize images. We have validated our method on Brainweb phantoms, 

and showed that T2, PD, and FLAIR images can be generated from a single T1w 

acquisition. We also demonstrated that a synthetic high-resolution MPRAGE image can be 

generated from its low-resolution SPGR acquisition, which leads to improved cortical 

segmentation. So far our experiments have been carried out on normal subjects. Future work 

includes reconstruction of alternate tissue contrasts like T2 and FLAIR on patients with 

lesions.
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Figure 1. 
(a) a T1w spoiled gradient recalled (SPGR) image, (b) T1w magnetization prepared rapid 

gradient echo (MPRAGE), (c) T2w, (d) PDw, (e) T1w fluid attenuated inversion recovery 

(FLAIR) acquisition of the same subject.
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Figure 2. 
Contrast synthesis algorithm flowchart : From the subject T1w image fT1 we take the ith 

patch fT1(i) and identify the “best matching patches” from the atlases g(n) as 

. The corresponding patches from the T2w images 

 are combined using a non-local means approach18 to generate the 

synthetic T2 patch f̂T2(i). The merging of all such patches generate the synthetic T2w image 

f̂T2.
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Figure 3. 
Brainweb Validation : (a) T1 Atlas, (b) T2 Atlas, (c) PD Atlas, (d) Test T1, (e) true test T2, 

(f) true test PD, (g) synthetic T2 from test T1, (g) synthetic PD from test T1, (i) Universal 

Image Quality Index21 between original and synthetic T2/PD, (j) Visual Information 

Fidelity22 between original and synthetic T2/PD. Normalized Mutual Information (NMI) 

between (e) and (g) is 0.7464 while NMI between (f ) and (h) is 0.7597.
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Figure 4. 
Contrast Synthesis on Real Data : (a) T1 Atlas, (b) T2 Atlas, (c) FLAIR Atlas, (d) Test T1, 

(e) true test T2, (f) true test FLAIR, (g) synthetic T2, (g) synthetic FLAIR, (i) Universal 

Image Quality Index21 between original and synthetic T2/FLAIR, (j) Visual Information 

Fidelity22 between original and synthetic T2/FLAIR for each slice of the volume. 

Normalized Mutual Information (NMI) between (e) and (g) is 0.7464 while NMI between 

(f) and (h) is 0.7597. The atlas FLAIR has a better contrast in GM-WM boundary compared 

to the subject FLAIR. As a consequence, the synthetic FLAIR has better GM-WM contrast 

than the subject. This highlights the benefits of our method. As the synthetic image 

intensities are taken from the atlas, a new contrast is “created”.
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Figure 5. 
Contrast Change, from SPGR to MPRAGE: (a) a T1w spoiled gradient recalled (SPGR) 

acquistion, (b) its true magentization prepared rapid gradient echo (MPRAGE) acquistion of 

same resolution, (c) a synthetic MPRAGE of same resolution as the SPGR. Normalized 

mutual information between them is 0.3254, while it is 0.3341 between the SPGR and the 

true MPRAGE.
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Figure 6. 
Contrast Synthesis with Resolution improvement: (a) test LR SPGR image fM1, (b) its HR 

SPGR acquisition FM1, (c) HR MPRAGE acquisition FM2, (d) our synthetic HR MPRAGE 

F̂
M2, The bottom row shows corresponding zoomed regions for each image in the top row.

Roy et al. Page 14

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2010 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
(a) Inner surface computed from high-resolution SPGR FM1 (blue) overlaid on FM1, (b) 

Inner surface computed from high-resolution MPRAGE FM2 (red), synthetic high-resolution 

MPRAGE F̂
M2 (green) overlaid on FM2.
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