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Abstract
Lesion detection and localization is an important task in emission computed tomography.
Detection and localization performance with signal location uncertainty may be summarized by a
scalar figure of merit, the area under the Localization Receiver Operating Characteristic (LROC)
curve, ALROC. We consider model observers to compute ALROC for two-dimensional maximum a
posteriori (MAP) reconstructions. Model observers may be used to rapidly prototype studies that
use human observers. We address the case background-known-exactly (BKE) and signal known
except for location. Our ALROC calculation makes use of theoretical expressions for the mean and
covariance of the reconstruction and, unlike conventional methods that also use model observers,
does not require computation of a large number of sample reconstructions. We validate the results
of the procedure by comparison to ALROC obtained using a gold-standard Monte Carlo method
employing a large set of reconstructed noise samples. Under reasonable simulation conditions, our
theoretical calculation is about one to two orders of magnitude faster than the conventional Monte
Carlo method.

1. INTRODUCTION
Image Quality in a PET or SPECT reconstruction is measured by how well the
reconstruction supports a task, such as lesion detection. A figure of merit (FOM)
summarizing detection task performance could be used to optimize the parameters of a
reconstruction algorithm. Such FOM’s can be obtained via human observer studies, e.g.
Receiver Operating Characterisitic (ROC) studies, but these are time consuming and quickly
become impractical if many reconstruction parameters are to be optimized. One can
substitute a model observer chosen to emulate human performance (Barrett et al 1993), and
apply this observer to a test set of sample reconstructions. Even in this case, the
computational requirements of generating a sufficient number of sample reconstructions can
be daunting. A third alternative is to develop theoretical formulae to rapidly compute the
desired FOM’s. In this paper, we focus on the third alternative.

The key to using theoretical methods is to have available rapidly computable expressions for
the reconstruction covariance and mean. For linear reconstructions such as Filtered
Backprojection (FBP), these are easy to compute, and expressions have also been developed
for general iterative (Qi 2003), Maximum Likelihood - Expection Maximization (ML-EM)
(Barrett et al 1994) and Bayesian MAP reconstructions (Fessler 1996), (Wang and Gindi
1997), (Qi and Leahy 1999), (Qi and Leahy 2000), (Xing et al 2001), (Xing et al 2003), and
(Stayman and Fessler 2004). Previous work has used these theoretical expressions to
calculate FOM’s for the case of SKE/BKE (signal known exactly/background known
exactly) detection tasks. Such SKE/BKE FOM’s have been developed for the Hotelling and
non-prewhitening observers (Qi and Huesman 2001) as applied to FBP and MAP
reconstructions, and for the Channelized Hotelling Observer (CHO) as applied to MAP
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reconstructions (Xing et al 2003,Fessler and Yendiki 2002). In (Bonetto et al 2000,Yendiki
and Fessler 2004b), theoretical tools for FOM calculation in a SKE/BKS (background
known statistically) task with a limited form of background variability were also introduced.
In Qi (2004), the model was extended to include forms of signal and background variability,
but not signal location variability. However, the tasks mentioned above did not include a
search task where the signal location was unknown. Since human performance is affected by
a search task, it is desirable to include signal location variability in our theoretical
computations of an appropriate FOM.

In our work, we are given a reconstruction method, a model observer, a fixed two-
dimensional (2D) background and a signal known except for location. Under this context,
we show how to rapidly compute the relevant FOM, ALROC, or area under the LROC curve.
In (Gifford et al 2002, Gifford et al 2003b), model observers for the LROC task were
proposed. Their performance was compared, using sample methods, to that of human
observers. Here, our aim is to incorporate the LROC model observers of (Gifford et al 2002,
Gifford et al 2003b) into our theoretical methods. In any task-based performance evaluation,
we need to limit our attention to a few promising strategies and appropriate ranges for the
various parameters of interest before sample methods or human observer studies are
employed. Our computational techniques would allow such prototyping to be rapidly
performed.

We have previously (Khurd and Gindi 2005) presented a method for rapid computation of
ALROC. However, as described later, this method made certain approximations. In this paper,
we remove some of the restrictive assumptions in Khurd and Gindi (2005). Initial work on
our new theoretical method was presented in Khurd and Gindi (2004). A similar method was
proposed independently and simultaneously in Qi and Huesman (2004), and in section 4, we
discuss differences between the two methods. A related problem was addressed by Yendiki
and Fessler (2004a) and is also discussed in section 4.

2. Methods
2.1. The ROC and LROC curves

We consider model observers that compute a scalar observer response λ when applied to the
reconstruction. The response λ is compared to a decision threshold τ and signal present/
absent is decided based on λ ≷ τ. Let “+” or “−” designate a signal present or absent in the
reconstruction. We define λ|+ as the response for signal present and λ|− for signal absent.
The ROC curve is generated as a plot of the true-positive (TP) rate vs. the false positive (FP)
rate, where these are defined as PTP (τ) = Pr(λ|+ > τ) and PFP (τ) = Pr(λ|− > τ). The area
under the resulting curve, AROC, is a widely accepted measure of detectability, but does not
measure an observer’s ability to correctly localize a signal.

The LROC curve is more subtle. Again we consider the signal present/absent case, but for
signal present, the signal may appear with probability Pr(loc) at a location loc from a set Ω
of NΩ locations in the 2D image. We assume that the signal is compact. We define the
observer response λloc to be the local observer response at location loc, and given the set of
local observer responses, we take λ = maxloc λloc. This form of a “max detector” for λ has
been commonly used for detection tasks (Swensson 1996, Gifford et al 2002) with location
uncertainty. Define λloc|(+, loc′) as the local observer response at loc when the signal is
centered at loc′. It follows then that λ|− = maxloc∈Ω λloc|− and that λ|(+, loc′) = maxloc∈Ω
λloc|(+, loc′). The abscissa of the LROC curve, the false-positive rate PFP (τ) = Pr(λ|− > τ), is
defined as before. The ordinate of the LROC curve, PCL(τ), is the probability of correct
detection and localization. There is a notion of search tolerance T involved in deciding
whether correct localization has occurred. We decide that the signal has been correctly
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localized if λ|(+, loc′) > τ and if the location at which the maximum occurs is within a radius
T around the true signal location loc′.

With these definitions, the LROC curve is defined as a plot of PCL(τ) vs. PFP (τ). The ROC
curve plots PTP (τ) vs. PFP (τ). Figure 1 shows examples of both curves. The quantity PCL =
PCL(τ = −∞) is the probability of correct localization given that the observer always decides
“signal-present” when the image indeed contains a signal. The area under the LROC curve,
ALROC, is an important FOM for the detection task with signal location uncertainty. In this
paper, we focus on the computation of ALROC because it jointly measures detection and
localization performance. We note that PCL and AROC can also be easily calculated using our
proposed methods.

2.2. Object and Reconstructions: Definitions
Consider an N-dim lexicographically ordered object vector f, a (fixed) N-dim background
vector b and an N-dim signal vector sloc centered at loc. Thus f has components fn, n = 1, ···,
N as do b and sloc. Note that sloc is known except for location. We model image formation
by a simple Poisson model g ~ Poisson(ℋf), where ℋ is the system matrix whose element
ℋmn is proportional to the probability of receiving a count in detector bin m that emanates
from pixel n, and g is the data vector (sinogram) whose elements are gm, m = 1, ···, M. (The
Poisson model is easily extended to include randoms, for PET, and scatter, for PET and
SPECT, by the inclusion of an affine term, and this expansion can be easily included in the
ensuing analysis.) For a signal-present object, we may append subscripts to write f+,loc = b +
sloc and for a signal-absent object, f− = b.

We append a caret superscript to quantities to denote their reconstructions (e.g. f ̂− = b ̂ is the
reconstruction of the background). We shall use the symbol f ̂ as a notational convenience to
denote either b ̂, ŝloc or  as needed. We denote the reconstruction covariance by the N ×
N matrix Kf ̂. We also append a bar superscript or use <···> to indicate quantities averaged
over data noise, so that . We assume that  is well estimated by a noiseless
reconstruction (Fessler 1996). For small signals, it is also a reasonable approximation to
assume that

(1)

We define

(2)

We note that we have made a slight departure from our notational conventions in our
definition in equation (2), in that  does not denote the direct noiseless reconstruction of
sloc. The form of equation (2) accounts for object-dependent resolution (Fessler and Rogers
1996) in nonlinear MAP reconstruction.

2.3. Affine Observer Model
Following (Gifford et al 2002, Gifford et al 2003b), we take the form of our local model

observer as an affine model observer . Note that this has the form of a
template applied to a background-subtracted reconstruction. The familiar inner-product form
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wTf ̂ is a widely used model observer in SKE tasks. The need for background subtraction
becomes evident if we consider a signal present in a cold region of the object. The max
detector will yield a much higher response in a hot region of the object (where there is no
signal) unless some form of background subtraction is included.

We now consider four common local observers. Each of the template expressions in
equations (3)–(6) makes use of equation (2). The local non-prewhitening (NPW) observer
(Barrett et al 1993) corresponds to:

(3)

The local Hotelling (HO) observer (Barrett et al 1993) corresponds to:

(4)

Psychophysical studies (Myers and Barrett 1987) indicate that the the human visual system
processes the retinal image by a feature reduction step in which the image (here f ̂) is
operated on by a series of bandpass channels tk to form NC features. Define Tloc as a N × Nc
matrix of the channels. The sub-script loc indicates that the channels have been centered at
loc. Channelized versions (Gifford et al 2003b) of the local NPW and HO observers,
denoted by CNPW and CHO, are then given by:

(5)

(6)

We note that in (Gifford et al 2002, Gifford et al 2003b), good correlation with human
performance was found for the CNPW and CHO observers. We now make further
definitions so that we may write observer responses in a compact form. Denote the vector of
all local observer responses λloc′, loc′ = 1, ···, NΩ by Λ. Define Λ|− as the response vector
when there is no signal present and Λ|(+, loc) as the response vector when the signal is
present at loc. From the previous definition of λ|− and λ|(+, loc), we may write λ|− = max Λ|
− and λ|(+, loc) = max Λ|(+, loc). We define the N × NΩmatrix W to be one whose locth

column comprises the local observer templates wloc. Then from the definitions of Λ, Λ|−, Λ|
(+, loc), we obtain:

(7)

(8)

(9)
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2.4. Monte Carlo Computation of ALROC
In section 1, we mentioned that ALROC could be computed using a Monte Carlo (MC)
method that employs a large set of sample reconstructions. We describe this method in detail
since it will aid in explaining our new theoretical method in section 2.5 and also, we will use
it in section 3 for validation studies. The MC method comprises five steps: Step 1: We begin
by generating Nsamp noisy sinograms from a signal-absent object and Nsamp,loc ∝ Pr(loc)
noisy sinograms from an object with the signal present at location loc. The numbers of
samples Nsamp and Nsamp,loc are chosen so that the sample error in the MC-estimated ALROC
is small enough for validation purposes. Step 2: Reconstructions are then performed on each
sinogram. Thus, we compute a total of Nsamp + Σloc Nsamp,loc reconstructions. Step 3:
Compute observer templates using equations (3)–(6). Further details on template calculation
are given in section 3. Step 4: The observer response vector Λ is computed for each
reconstruction. Step 5: The max detector then results in Nsamp values of λ|− and Nsamp,loc
values of λ|(+, loc) ∀ loc ∈ Ω. If the reported location, i.e. location at which the maximum λ|
(+, loc) occurs, leads to an incorrect localization, it is discarded. In order to plot the LROC
curve, we determine a set of NT thresholds from the range of values of λ|(+, loc) and λ|−. For
each threshold τ, the probability of correct localization PCL(τ) and the false-positive rate PFP
(τ) is determined by computing the fraction of observer responses that exceed the threshold,
and the LROC curve is plotted. Note that in computing PCL(τ), one divides the number of
correctly localized λ|+’s that exceed τ by the total number of λ|+’s (including the discarded
incorrectly localized λ|+’s). Then ALROC is obtained by simple trapezoidal integration of the
LROC curve.

2.5. Theoretical Method for ALROC computation
Our basic assumption is that Λ has a multivariate Gaussian (normal) distribution, i.e. Λ ~ 
(Λ̄, KΛ) under both the signal-absent and signal-present hypotheses. Here, Λ̄ is the mean of
Λ and KΛ is its NΩ × NΩ covariance matrix. This assumption will hold if f ̂ itself has a
multivariate Gaussian distribution, and may hold approximately even if f ̂ is not normal. For
linear reconstructions such as filtered backprojection, f ̂ is approximately multivariate normal
on account of the Central Limit Theorem (CLT) as discussed in section 15.2.6 of Barrett and
Myers (2003). The ML-EM reconstruction has an approximately multivariate log-normal
distribution (Barrett et al 1994), but under a wide range of conditions, this may be
approximated as a multivariate Gaussian distribution (Wilson 1994, Soares et al 2000).
Other algorithms such as penalized weighted-least-squares reconstructions can be shown to
lead to an f ̂ that is normal. Imposition of a positivity constraint results in a skewed (non-
normal) distribution for extremely low values of f̂n’s. However, if all the signals are located
in a region where the background values are not too low, this skewness (and non-normality)
of the distribution of f ̂ will not affect our normality assumption for Λ significantly. Note
also, that the components of Λ, i.e. the local observer responses λloc, are themselves
approximately normally distributed again on account of the CLT (Abbey 1998). In section 3,
we show that use of normality assumptions leads to good agreement with MC results.

We now calculate Λ̄, KΛ for the signal-absent and signal-present cases. We denote these as
Λ̄|−, KΛ|−, Λ̄|(+, loc) and KΛ|(+,loc). It is easily seen that

(10)

where 0 is a vector of NΩ 0’s. Similarly,
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(11)

since . Note that the mean vector in equation
(11) can have non-zero contributions in the neighborhood of loc. The covariance of Λ can be
easily seen to be KΛ = WTKf ̂W. The covariances KΛ|− and KΛ|(+,loc) are hence given by:

(12)

(13)

For the remainder of the paper, we shall use the approximation from equation (1), Kb ̂ =
Kf ̂+,loc, and use the symbol Kf ̂ to indicate either quantity. Hence, we may write:

(14)

We shall henceforth use the symbol KΛ to denote both KΛ|− and KΛ|(+,loc).

Given these assumptions, we can replace the MC generation of Λ’s in section 2.4 by
sampling from the multivariate normal distributions for Λ|− and Λ|(+, loc). To do this, we
decompose KΛ = DDT by the Cholesky factorization (Golub and Van Loan 1989). To
generate samples of Λ|−, we obtain samples from (0, I), where I is the NΩ × NΩ identity
matrix and then multiply each sample by D. As in section 2.4, we generate NsampT such
samples for the signal-absent case. (Here, we have used suffix T in sampT to indicate that
the number of samples generated in this theoretical procedure could differ from the number
of samples generated in the MC procedure.) To generate signal-present samples of Λ|(+,
loc), we simply add Λ̄|(+, loc) to samples of Λ|−. As in section 2.4, we generate NsampT,loc ∝
Pr(loc) such samples. Armed with these samples, we simply follow the remaining MC
procedure (Step 5) in section 2.4. We have avoided the laborious reconstructions needed by
Step 2 of the MC method in section 2.4. The central rationale for our theory method is thus
achieved.

To summarize, we can list the three main steps involved in the theory computation. These
three steps may be compared to the five steps of the MC method in section 2.4. The three
steps are: Step 1: Compute Λ̄|−, KΛ|−, Λ̄|(+, loc) and KΛ|(+,loc) using equations (10), (11)
and (14). Step 2: Use the quantities from Step 1 to generate multivariate Gaussian samples
of Λ|− and Λ|(+, loc). Step 3: Using these samples, follow Step 5 of the MC procedure to
obtain ALROC.

2.6. Application of Theory to MAP reconstruction

Our theory so far will apply to any scenario in which  and Kf ̂ can be rapidly calculated.
Specifically, for the theory in section 2.5, we need  and Kf ̂ in equations (11), (14) and
furthermore, in the expressions for wloc in equations (3)–(6). However, we have yet to
specify a particular reconstruction algorithm. We are interested in MAP reconstructions
given by f ̂ = arg maxf ≥0 ΨL(g|f)−βΨP(f), where ΨL is a Poisson log-likelihood and ΨP is a
smoothing regularizer (a prior) with weight β. We will assume a quadratic regularizer, given
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by: . The term (n) is a local neighborhood about
n. The weights are symmetrical wnn′ = wn′n and positive. For a 2D problem, the
neighborhood (n) could comprise the eight nearest neighbors of n. The neighborhood
structure is invariant with position (except for edge effects), so that ℛ is an (approximate)
doubly block-circulant matrix (Wang and Gindi 1997). The weight β > 0 controls a crucial
resolution-noise trade-off that could affect ALROC. In section 3, we study the behavior of
ALROC vs. β for the observers in equations (3)–(6).

For this class of reconstruction algorithms, it turns out (Fessler 1996) that Kf ̂ is
approximated by:

(15)

where ℱ denotes the Fisher information matrix, given by . Here, we take
ḡ to be the mean sinogram for a signal-absent object with ḡm = [ℋb]m. The other quantity
we need is , which may be approximated using an expression for the local impulse
response (Fessler and Rogers 1996). The object-dependent local impulse response due to ei,
a point source at location i, is given by . Then for the small, compact
signal sloc, our approximation of equation (2) is given by:

(16)

The N × N matrices ℱ and ℛ are formidably large and calculation of the inverses in
equations (15) and (16) appears intractable. However, in some cases (Qi and Leahy 1999, Qi
and Leahy 2000), we can use Fourier diagonalization to obtain efficient expressions for
equations (15) and (16). We shall focus on the simple case of a 2D space-invariant imaging
system with only geometrical effects. This is discussed in Qi and Leahy (1999), although
such expressions have also been developed for space-variant imaging systems in PET (Qi
and Leahy 2000) and SPECT (Xing et al 2003, Stayman and Fessler 2004). In particular,
these developments for space-variant imaging systems would allow one to incorporate more
complex imaging models (e.g. non-uniform attenuation in SPECT) into accurate expressions
for Kf ̂ and . For our space-invariant system, ℋTℋ, like ℛ, is also doubly block circulant
and is Fourier diagonalizable. In this case, it can be shown (Qi and Leahy 1999) that
equation (16) can be approximated as:

(17)

Here,  denotes a 2D Discrete Fourier Transform (DFT) matrix. The vector ζ comprises the
eigenvalues of ℋTℋ and the vector η comprises the eigenvalues of ℛ. The quantity κ is

calculated according to the formula: . (Technically, we need κn, n ∈ Ω, but the
full backprojection will add negligible additional computation.) For a detailed discussion of
the quantities κ, ζ and η, the interested reader is referred to (Qi and Leahy 1999, Qi and
Leahy 2000, Xing et al 2003). It turns out (Qi and Leahy 1999) that equation (15) may be
similarly approximated as:
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(18)

The approximation in equation (18) is one that applies locally at location loc, that is, the

approximation is accurate only when computing matrix-vector products of the form ,
where aloc is a compact vector centered at loc. Now, we may use equations (17) and (18) to
re-write the expressions for the observer templates in equations (3)–(6). Here, we give the
expression for equation (6), though the others follow similarly:

(19)

Here,  is a matrix obtained by taking the DFT of each channel (column vector) in T and the
superscript H denotes the conjugate transpose.

It appears that we have all the necessary expression to plug into equations (11) and (14) to

compute ALROC via sampling. However, [KΛ]ij involves two locations i and j and  holds
only at one location loc. Hence, we use the following averaging scheme:

(20)

Thus, in order to evaluate ALROC for MAP reconstruction for a given local observer template

wloc, we first substitute the appropriate Fourier expressions for wloc,  and  into
equations (11) and (20), generate samples from the multivariate normal distributions for Λ|−
and Λ|(+, loc) ∀ loc ∈ Ω and use these samples to compute ALROC following Step 5 of the
MC procedure in section 2.4, but without the need for sample reconstructions as in Step 2 of
the MC procedure.

3. Results
In this section, we validate our theory results using MC methods. Our fixed background b
(figures 2a, 2c) was a two-dimensional 64 × 64 elliptical phantom with two circles, scaled to
produce 300K counts over 64 angles. The simple piecewise-constant nature of the phantom
adequately serves our validation purposes. This is because the model observer has the exact
knowledge of the background, and the subtraction step in equation (7) compensates for the
form of the background. Indeed, in Khurd and Gindi (2005), we used a phantom whose
spatial profile was Gaussian. The signal, 5 pixels in the shape of a cross was placed on one
of Nloc = 81 possible signal locations. The array of locations constituted a square grid with a
3-pixel separation. Figure 3 shows the grid of signal locations superimposed on the
background along with the cross-shaped signal at one particular grid point. The search grid
Ω was a square array of 27 × 27 pixels that included all the pixels in the grid of signal
locations and their neighbors. Figures 2b, 2d show the signal placed on the background.
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Note that the signal appears on a sub-sampled (9 × 9) grid of the larger (27 × 27) search grid
Ω. Our general rationale in choosing such grids is that (a) the search grid Ω should constitute
a reasonable fraction of the non-zero reconstructed image (or else there is no challenging
search problem.) (b) the signal grid can be a sub-sampled version of the search grid,
corresponding to a particular form of Pr(loc). The type of sub-sampling in (b) does not affect
our validation results for ALROC, adequately emulates conditions for a corresponding human
observer study, and facilitates MC validation by allowing several sample reconstructions per
signal location. We note that this form of sub-sampling does not reduce the computation of
the theory method, which depends on NΩ only, but does reduce MC computation time
slightly.

SPECT sinograms were generated with an analytical projector modelling geometrical effects
and by addition of Poisson noise to the noiseless sinogram. Depth-dependent detector
response, and attenuation and scatter effects were not modelled in the analytical projector.
Iterative MAP reconstructions using the same analytical projector (and its corresponding
backprojector) were done for β = 0.01, 0.1, 1.0 and 10.0 and for a signal contrast of 0.4.
Here, signal contrast was defined as (amplitude of s)/(maximum of b). Figure 4 shows
anecdotal signal-present reconstructions at each β. We used a positivity-constrained
regularized ordered-subset convergent MAP algorithm (Hsiao et al 2002) for the
reconstruction. Note that we chose a low contrast (0.4) such that the signals are difficult to
see in figure 4. This choice is discussed further below.

The MC procedure in section 2.4 was followed. At each β, Nsamp = 500 signal-absent
reconstructions were done and Nsamp,loc = 20 signal-present reconstructions were done at
each of the 81 locations. Thus, for each of the 4 values of β, 2120 reconstructions were done.
We used the observer templates for all 4 observers in equations (3)–(6). We used NT = 1000
thresholds in determining the LROC curve. For the channelized observers, we used four
dyadic channels (Abbey 1998, Myers and Barrett 1987) with square profiles and a starting
cutoff frequency of 0.0441 cycles per pixel. We note that even in this MC validation, we
computed observer templates using analytical formulae as in equation (19). In a
conventional MC test, one would use sample reconstructions to compute the templates.
Since our MC validations were intended to test the approximations of the theory, we wanted
to use the same templates for theory and MC, thus avoiding unwanted additional sample
error in the template estimation. This strategy incidentally leads to a speedup for the MC
methods.

Error bars on the MC estimates of ALROC for each observer and each β were obtained by the
following procedure: using the bootstrap (Zoubir and Boashash 1998), 2000 re-sampled sets
of 500 values for λ|− and 1620 values of λ|+ along with the reported location were obtained.
For each set, the values of ALROC were obtained using the MC procedure described earlier.
We then determined 95% confidence intervals from histograms of these 2000 values.

In the theory computations, we followed the steps described in section 2.5. We generated
NsampT = 500 samples of Λ|− and NsampT,loc = 500 samples of Λ|(+, loc) ∀ loc. We once
again used NT = 1000 thresholds in obtaining the LROC curve.

We coded the MC and theory calculations in C using a gcc compiler, and ran the programs
on a Pentium IV 2.0 GHz, 2GB RAM Linux desktop. The reconstructions were carried to a
high number (50) of iterations to ensure effective convergence to the MAP solution. Under
these conditions, the MC method took a total of 5.5 hrs., almost all of which was devoted to
the reconstructions. The theory method took 90 sec., leading to a speedup by a factor of
about 200. In using a MC method to calculate ALROC and not purely as a validation tool, one
could tolerate a small error by terminating at about 10 iterations, in which case the theory
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speedup is about 40. This speed advantage should hold for 128× 128 images with
proportionally larger NΩ.

We note that the theory speed is handicapped by the exhaustive calculations in equation (20)

wherein the terms  are computed for i far from j even though these terms have
negligible contributions. We are investigating further speedup strategies.

Figure 5 shows ALROC vs. β for each of the four observers. The MC and theory curves match
closely indicating that the theory is quite accurate. Here, we used a search tolerance of 1.5
pixels, i.e. localization was deemed correct if any one of the 9 pixels in the 3 × 3 square
centered at the true location were reported. We may note that the observers that include
some form of pre-whitening are relatively less sensitive to β, the amount of regularization, in
the reconstruction.

In figure 6, we have explored the effect of the search tolerance on the CNPW and CHO
observers. (We note that the curves in figure 6 match their Monte Carlo (MC) validations
closely, so the MC curves are suppressed here for clarity.) As expected, ALROC increases
with search tolerance. Note that the increase in the values of ALROC when the search
tolerance is increased from 0.0 pixels to 1.0 pixels is much greater than when the search
tolerance is increased from 1.0 to 10.0 pixels. This indicates that the reported location is
frequently one of the four neighbors of the true location. However, this property may be
characteristic of our simple simulations and may not be observed in more realistic SPECT
simulations (Gifford et al 2002). The spatial resolution of SPECT reconstruction using more
realistic simulations is typically worse than in our simplified simulations. As a result, ALROC
would grow more gradually as search tolerance increases. We may observe that the shape of
the ALROC vs. β curve depends on the search tolerance for the CNPW observer, but the shape
is fairly invariant to the search tolerance for the CHO observer. Similar results were
observed for the non-channelized versions of these observers.

One might question whether the more easily performed SKEV task (Barrett et al 1995,
Eckstein et al 2003, Eckstein and Abbey 2001) (signal known exactly but variable) in which
the signal location is varied, but the observer is given knowledge of the location, might
replace the LROC task for image quality studies. The top curves in figure 6 show a SKEV
result. This curve was generated by applying the CNPW and CHO observers at each signal
location and calculating the AROC corresponding to an SKE/BKE problem. The AROC’s were
then averaged over location to obtain the curve. At high search tolerance, the ALROC result is
similar to the SKEV AROC curve. Thus depending on an acceptable search tolerance, a user
might elect to perform the easier SKEV task. Note that in figure 4, the signals at 0.4 contrast
are difficult to see. However, for the SKEV case, where the observer was given knowledge
of signal location, detection using model observers was nearly perfect with AROC near unity.
We were forced to lower contrast to 0.2 to obtain reasonable values of SKEV AROC. For the
0.4 contrast in the ALROC experiments in figure 6, we observe an interesting variation in the
shape and level of the ALROC vs. β curve as search tolerance varied. These effects would be
difficult to observe in our simulations with a contrast much greater than 0.4.

4. Discussion and Conclusions
In Khurd and Gindi (2005), we developed an alternate, purely analytic means of calculating
ALROC that did not require sampling from a normal distribution. However, the theory in
Khurd and Gindi (2005), unlike our present theory, required an assumption of independence
of local observer responses. This assumption can break down in practice, as we
demonstrated in Khurd and Gindi (2004), where we showed improved agreement to MC
with our current theory vs. the one in Khurd and Gindi (2005). In Qi and Huesman (2004), a
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method similar to our current theory was proposed to rapidly compute ALROC. Their method
lent insight into the problem of joint detection and localization, showing how ALROC
approached AROC as the search tolerance increased. However, in Qi and Huesman (2004),
the problem was restricted so that the signal was at a single fixed location and the observer
was required to search for it in a search radius around this single true location. This
restriction allowed mathematical simplifications in which the form of the template wloc did
not change with location, and allowed the use of an unique doubly-block-circulant
approximation to Kf ̂ in the computation of KΛ. This allowed rapid generation of samples of
Λ. To model our more realistic case in which the true location of the signal was allowed to
vary over a large region, we could not make use of the above simplifications, and our
method is therefore somewhat slower. Both our method and the one in Qi and Huesman
(2004) require obtaining samples of Λ. An attempt to replace this step with an approximate
analytical calculation (that still modelled local observer correlation) was made in Yendiki
and Fessler (2004a). Using an analytical formula for the tail distribution of λ under an MVG
assumption for the distribution of Λ, it was demonstrated that the initial part of the ROC
curve corresponding to large thresholds could be rapidly evaluated. However, this work did
not address the computation of ALROC and the proposed technique could only be used for a
small local search region.

Our theory has been applied to ALROC. We note, however, that the corresponding AROC
problem, in which signal location is unknown, but only detection is required, is of
importance. For rapid calculation of AROC, only a small modification of our procedure is
needed: simply include correctly detected but incorrectly localized observer responses to
plot and integrate an ROC curve.

We have demonstrated a fast theoretical means for LROC analysis of 2D MAP
reconstructed images in emission computed tomography. We note that LROC model
observers have been extensively used in optimizing SPECT reconstruction (Bruyant et al
2004, Farncombe et al 2004, Gifford et al 2002). Our theoretical ALROC computation could
potentially replace the laborious MC-based ALROC computation in such studies. As further
psychophysical research on the signal-location-unknown problem progresses, it is likely that
the recommended observer models in (Gifford et al 2002, Gifford et al 2003b) will be
modified and include internal noise effects (Barrett and Myers 2003). In addition,
application of model observers to multislice LROC studies (Gifford et al 2003a) would
entail further modifications. We plan to investigate incorporation of these advances into our
theory methods.
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Figure 1.
The ROC and LROC curves
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Figure 2.
(a) The 64×64 background (b) Background+signal at location (33,27) for signal contrast 0.4
(c) Background profile (d) Background+signal profile. Both profiles are taken through the
central row of the signal. Note (a) and (b) use different grey scales for clarity.
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Figure 3.
Sampling grid with signal at one grid point.
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Figure 4.
Anecdotal reconstructions of background+signal for signal contrast 0.4 at (a) β = 0.01, (b) β
= 0.1, (c) β = 1 and (d) β = 10. Arrows show signal location.
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Figure 5.
ALROC vs. β at a search tolerance of 1.5 for (a) NPW, (b) CNPW, (c) HO and (d) CHO
observers. All 4 plots have 2 curves corresponding to Theory and Monte Carlo (MC).
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Figure 6.
ALROC vs. β at search tolerances of 0.0; 1.0; 10.0 and ∞ pixels, along with a SKEV AUC
(top curve) at signal contrast = 0.2 for (a) CNPW and (b) CHO observers.
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