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Abstract
This paper concerns task-based image quality assessment for the task of discriminating between
two classes of images. We address the problem of estimating two widely-used detection
performance measures, SNR and AUC, from a finite number of images, assuming that the class
discrimination is performed with a channelized Hotelling observer. In particular, we investigate
the advantage that can be gained when either (i) the means of the signal-absent and signal-present
classes are both known, or (ii) when the difference of class means is known. For these two
scenarios, we propose uniformly minimum variance unbiased estimators of SNR2, derive the
corresponding sampling distributions and provide variance expressions. In addition, we
demonstrate how the bias and variance for the related AUC estimators may be calculated
numerically by using the sampling distributions for the SNR2 estimators. We find that for both
SNR2 and AUC, the new estimators have significantly lower bias and mean-square error than the
traditional estimator, which assumes that the class means, and their difference, are unknown.

I. Introduction
Task-based assessment of image quality provides a pragmatic paradigm for objective
evaluation and comparison of image reconstruction algorithms and imaging systems [1].
One task that is frequently of interest is the detection of a specified object in an image. For
example, an important task in radiology is the discrimination of two classes of images:
images with a lesion present and with no lesion present.

Lesion detectability may be appraised with both human observers and mathematical model
observers [1]. However, human observers come with prominent difficulties. They are highly
variable, slow, costly, and subject to fatigue, to the extent that they become impractical,
especially for imaging system optimization, as noted by Park et al. [2]. By contrast,
mathematical model observers [1] can be implemented efficaciously using computers. Thus,
they offer an attractive alternative to human observers for task-based assessment of image
quality. One type of model observer which has been given significant attention in medical
imaging is the channelized Hotelling observer (CHO) [1]. Specifically, CHO methodology
for image quality assessment has been applied in nuclear medicine, e.g., [3]–[8] and in x-ray
computed tomography (CT) [9]–[12].

To assess the capability of a given model observer to detect lesions, summary measures of
observer performance need to be estimated. Two popular measures of observer performance
are the observer signal-to-noise ratio (SNR) and the area under the receiver operating
characteristic curve, denoted as AUC [1] (see section II-C). In most situations, it is not
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possible to calculate SNR and AUC exactly, and they must be estimated from a finite
collection of images. Therefore, it is important to understand the small-sample statistical
properties of the estimators which are used. We note that two main approaches may be
considered for the estimation of SNR and AUC: (i) an SNR-based approach, in which the
SNR is first estimated, and then the AUC is obtained from the SNR estimate [1]; (ii) an
AUC-based approach, in which the AUC is first estimated, and then the SNR is obtained
from the AUC estimate [1]. Under conditions of normality, both approaches are valid
because SNR and AUC are functions of each other [1]. Here, we focus on the SNR-based
approach. Some researchers have investigated direct estimation of the AUC, e.g., [13]–[15];
these works rely on the Mann-Whitney U statistic.

Note that two main estimation strategies may be selected for the two approaches described
above. In the first strategy, all available images are used together to estimate the desired
figure of merit [1, p. 972]. In the second strategy, the images are divided into two groups,
with one group being used to define (aka train) the observer whereas the second group is
used to estimate the performance of the trained observer (aka testing the observer) [1, p.
973]. The second strategy has the advantage of yielding a negative (conservative) bias in the
estimated performance [16], [17]. In this paper, we adopt the first strategy, and we will see
later that negative biases may also be achieved in this case, provided that the class means, or
their difference, are known.

In general, deriving the small-sample properties of estimators is difficult. However,
analytical results are known for some cases. For example, if SNR2 for a CHO is estimated
using a scalar multiple of the two-sample Hotelling T2 statistic, then the sampling
distribution is known for normally distributed measurements [18, p. 216]; see section IV-A.
Also, results pertaining to direct AUC estimation via the nonparametric Mann-Whitney U
statistic may be found in [15]. When exact analytical results are not readily available, Taylor
series approximations may be beneficial [19], [20], or one may resort to analysis based on
Monte Carlo simulation and resampling techniques [16], [17], [21]–[27].

As mentioned by Barrett and Myers [1, p. 972], there is potential to improve the estimation
accuracy of SNR2 for a CHO if prior knowledge of the mean images with and without a
lesion present is incorporated into the estimation procedure. However, to our knowledge,
and according to Barrett and Myers [1, p. 973], the statistical properties of such estimators
have not been investigated. We have examined this potential and report on our findings here.

Specifically, we propose uniformly minimum variance unbiased (UMVU) estimators of
SNR2 for a CHO in the situation when the mean images for the lesion present and lesion
absent cases are known, and also when only the difference of the mean images is known.
We present analytical results for the sampling distributions of these estimators and provide
expressions for their variance. Using the sampling distributions of the SNR2 estimators, we
illustrate how the bias and variance for the related AUC estimators may be numerically
evaluated, and we compare the results with a traditional estimator which assumes that the
class means, and their difference, are unknown. For expositional clarity, all mathematical
proofs are deferred to the appendices.

II. Background
In this section, we set our notation and review several necessary concepts. First, some
probability distributions that will be used later in the paper are introduced. Afterwards, the
classification task and the channelized Hotelling observers which we consider in this paper
are covered. Next, two common summary measures for model observer performance, SNR
and AUC, are reviewed. The remainder of the section discusses calculation of moments for
AUC estimators. Throughout the paper, we write vectors using boldface and denote the
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transpose of vectors and matrices with the superscript T, e.g., xT is the transpose of the
vector x.

A. Some Probability Distributions
We assume that the reader is familiar with both the multivariate normal distribution and the
univariate noncentral χ2 distribution, e.g., see [18], [28]. A p×1 random vector X ∈ ℝp

following a multivariate normal distribution with mean μ and covariance matrix Σ is
denoted X ~ Np(μ, Σ). A random variable X ∈ ℝ following a noncentral χ2 distribution with

ν degrees of freedom and noncentrality parameter, λ, is denoted . Recall that
when λ = 0, the noncentral χ2 distribution becomes the central χ2 distribution.

1) Inverted Gamma—The inverted gamma distribution arises as the distribution of the
reciprocal of a gamma variate, and has two positive parameters, α and β. A random variable
X is said to have an inverted gamma distribution if its probability density function (pdf) is of
the form [29]

(1)

when x > 0, and fX(x) = 0 otherwise. Just as the central χ2 distribution is a special case of
the gamma distribution, the inverted central χ2 distribution is a special case of the inverted
gamma distribution. In particular, the reciprocal of a central χ2 random variable with ν
degrees of freedom is an inverted gamma random variable with α = ν/2 and β = 1/2. An
inverted gamma random variable X will be denoted as X ~ IG(α, β). The mean and variance
of an inverted gamma deviate are [29]

(2)

and

(3)

2) Noncentral F—The noncentral F distribution [18], [28]–[30] appears as the distribution
of the ratio of a noncentral χ2 random variable to an independent, central χ2 random

variable. Specifically, if  and X and Y are independent, then the
random variable F = (X/ν1)/(Y/ν2) has a noncentral F distribution with ν1 and ν2 degrees of

freedom and noncentrality parameter, λ. In this case, we write . An expression
for the pdf of the noncentral F may be found in [28].

3) Wishart—The Wishart distribution [18], [28], [31] is a matrix variate generalization of
the χ2 distribution and it emerges naturally as the distribution of the sample covariance
matrix for multivariate normal measurements [18, p.82], [31, p. 92–93]. Let Z1, Z2, … Zn
each be independently distributed according to Np(0, Σ) and consider the p × p random

matrix . The matrix W is said to have a Wishart distribution, written as W ~
Wp(n, Σ), with n degrees of freedom and p × p positive definite scale matrix Σ. When n ≥ p,
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W is invertible and expressions for the pdf of W may be found in [18], [28], [31]. When n <
p, W is singular, and the pdf does not exist in the conventional sense, but the distribution is
nonetheless defined [18, p. 85].

4) Inverted Wishart—The inverted Wishart distribution originates as the distribution of
the inverse of a Wishart distributed random matrix, and it is the matrix variate generalization
of the inverted gamma distribution [31, p. 111]. A p × p random matrix V which is
distributed as an inverted Wishart with m degrees of freedom and a p × p positive definite
parameter matrix, Ψ, will be written as V ~ IWp(m, Ψ). The inverted Wishart distribution is
defined if m > 2p and is undefined otherwise. An expression for the pdf is given in [18],
[31]. Lemma 4 in appendix A clarifies the relationship between Wishart and Inverted
Wishart matrices. According to this lemma, when n ≥ p, S ~ Wp(n, Σ) if and only if S−1 ~
IWp(n + p + 1, Σ−1).

B. Channelized Hotelling Observers
We consider a binary classification task in which the goal is to discriminate between two
classes of noisy images. The two classes will be denoted as class 1 and class 2, respectively.
When the classification task corresponds to lesion detection, we assume that class 1 consists
of images with no lesion present, and that class 2 consists of images with a lesion present.

For each noisy image realization, a model observer generates a statistic, t, which is
compared to a threshold, tc, in order to classify the image as belonging to either class 1 or
class 2. Specifically, if t > tc, the observer indicates that the image belongs to class 2,
otherwise, the observer indicates that the image belongs to class 1 [1].

Channel filters are often added to model observers in order to reduce the dimensionality of
the image data and to model human performance. Suppose that the noisy image realization is
represented as a m × 1 column vector, g. We denote the number of channels by p, where
usually, p is much smaller than m. The weights that make up each channel are organized
into a column of a m × p channel matrix, designated as U. A channelized model observer
applies the channel matrix to the image to get a p×1 output vector, v, according to v:= UTg.
Note that a model observer without channels corresponds to the case when the channel
matrix is the identity, i.e., U = I and p = m.

We denote the means of the channel outputs over class 1 and class 2 by μi, for i = 1, 2
respectively, and write the difference of these means as Δμ:= μ2 − μ1. Also, we write the
covariance matrices for v over the two classes as Σi, for i = 1, 2 respectively, and designate
their average as Σ̄:= 0.5(Σ1 + Σ2).

One type of model observer is the Channelized Hotelling observer (CHO) [1], which is the
focus of this paper. This observer computes the observer statistic as the inner product of v

with a p × 1 template, defined as wCHO:= Σ̄−1 Δμ, i.e., .

C. Observer Performance Measures
One measure of an observer’s performance is its signal-to-noise ratio (SNR), defined as the
difference of the class means for t divided by the pooled standard deviation [1, p. 819]. The
SNR is a good measure of class separability when t is normally distributed for each class,
higher values of the observer SNR indicating greater class separation [1, p. 819]. The square
of the SNR for a CHO may be computed as [1, p. 967]
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(4)

The performance of an observer may also be characterized by its receiver operating
characteristic (ROC) curve, which plots the true positive fraction (TPF) versus the false
positive fraction (FPF) for different values of the discrimination threshold [1, p. 814–815].
A useful summary measure for the overall performance of an observer is the area under the
ROC curve, denoted as the AUC. The AUC ranges from 0.5 to 1, where higher values of the
AUC indicate better class discrimination. The AUC may be interpreted as the average TPF
over all FPF values. Another useful interpretation of the AUC is as the probability that the
observer makes a correct classification when a randomly selected pair of images from class
1 and class 2 are compared [32, p. 77–78], [1, p. 823]. If the observer statistic, t, is normally
distributed for each class, then the AUC may be computed from the SNR as [1, p. 819]

(5)

where erf(z) is the conventional error function. When t is computed as a linear combination
of channel outputs, the observer statistic is typically well-approximated by normal
distributions for each class [1, p. 824].

D. Calculation of Moments for AUC estimators

Given a generic estimator of SNR2, denoted as , we may define an estimator for the
AUC by substituting the square root of this generic estimator into equation (5). We denote
the resulting AUC estimator as .

When the sampling distribution for  is known, we may use it to calculate the kth raw
moment of  by numerically evaluating the integral

(6)

where fX(x) is the pdf for . Therefore, we can compute the mean and variance of
 by evaluating equation (6) for k = 1, 2.

III. Estimation of SNR2 with Known Class Means or Known Difference of
Class Means

In this section, estimation of SNR2 is considered for two scenarios. In the first scenario, the
means for classes 1 and 2 are assumed to be known. In the second scenario, only the
difference of the class means is assumed to be known. We introduce one estimator for
scenario 1 and two different estimators for scenario 2. We assume that we have n

independent realizations of channel outputs from class 1, , and n

independent realizations of channel outputs from class 2, . Also, we assume
that the channel outputs are normally distributed with equal class covariance matrices, i.e.,

 and  for i = 1, 2, … n. In this case, Σ̄ = Σ. The normality
is a reasonable assumption in many CHO applications thanks to the multivariate central limit
theorem, and the equal covariance assumption is easily met for low-contrast signals. After
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defining each estimator, we provide an analytical expression for the estimator’s sampling
distribution and discuss its properties.

A. Scenario 1: Known Class Means
First, we consider the situation when the class means μ1 and μ2 are known, and the class
covariance matrix, Σ, is unknown.

1) Estimator Definition—In this scenario, unbiased estimates for the covariance matrices
of class 1 and class 2 are [18, p. 17]

(7)

for k = 1, 2, respectively. Let Ŝ:= 0.5(Ŝ1 + Ŝ2). From Lemmas 2 and 8(i) in appendix A, it
follows that ((2n − p − 1)/(2n))Ŝ−1 is an unbiased estimator for Σ−1 if n > (p + 1)/2.
Substituting this estimator for Σ−1 into equation (4) yields an estimator for SNR2, defined as

(8)

for n > (p + 1)/2.

2) Sampling Distribution—For normally distributed samples, the sampling distribution
for θ̂1 may be expressed as an inverted gamma distribution. We state this result in the
following theorem, which is proved in appendix A.

Theorem 1: Suppose that θ̂1 is computed from independent samples  and

 from classes 1 and 2, respectively, where i = 1, 2, … n. Then

for n > (p + 1)/2.

3) Estimator Properties—Since the sampling distribution for θ̂1 is an inverted gamma
distribution, one may easily find expressions for the mean and variance of θ̂1 by using
Theorem 1 together with equations (2) and (3). We write these expressions in the following
corollary.

Corollary 1: If θ̂1 is computed from independent, normally distributed samples as stated in
Theorem 1, then θ̂1 is an unbiased estimator of SNR2, i.e., E[θ̂1] = SNR2 for n > (p+1)/2,
and its variance is
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Also, we have the pleasing result that θ̂1 is the uniformly minimum variance unbiased
(UMVU) estimator for SNR2 when the class means are known. For reference, we state this
result as a theorem; see appendix B for a proof.

Theorem 2: Suppose that μ1 and μ2 are known, and that Σ is unknown. If θ̂1 is computed
from independent, normally distributed samples as stated in Theorem 1 with n > (p+1)/2,
then θ̂1 is the unique UMVU estimator of SNR2.

B. Scenario 2: Known Difference of Class Means
Next, we examine the case for which the difference of the class means, Δμ, is known but
μ1, μ2, and Σ are unknown. We consider two estimators of SNR2 for this scenario.

1) Estimator Definitions—The first estimator which we consider for scenario 2
incorporates knowledge of Δμ into the estimation of Σ. The conventional unbiased
estimators for the means of classes 1 and 2 are [28, p. 77]

(9)

for k = 1, 2, respectively. Using equations (9) together with our knowledge of Δμ, we define
unbiased estimators for the means of classes 1 and 2 as

(10)

and

(11)

Using these estimators for the class means, we define estimators for the covariance matrices
of classes 1 and 2 as

(12)

for k = 1, 2, respectively. Next, we define a pooled estimator of Σ as S̃:= 0.5(S̃1 + S̃2). From
Lemmas 2 and 8(ii) in appendix A, it follows that ((2n − p − 2)/(2n − 1))S̃−1 is an unbiased
estimator for Σ−1 if n > (p + 2)/2. This suggests the following estimator for SNR2:

(13)

which is defined for n > (p + 2)/2.

The second estimator which we consider in this scenario does not use knowledge of Δμ for
estimation of Σ. The conventional unbiased estimators for the covariance matrices of classes
1 and 2 have the form [28, p. 77]
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(14)

for k = 1, 2, respectively. Define a pooled estimator of Σ as S̄:= 0.5(S1 + S2). From Lemmas
2 and 8(iii) in appendix A, it follows that ((2n − p − 3)/(2n − 2)))S̄−1 is an unbiased
estimator for Σ−1 if n > (p + 3)/2. This result motivates an estimator for SNR2, defined as

(15)

for n > (p + 3)/2.

2) Sampling Distributions—For normally distributed samples, the sampling
distributions for θ̂2 and θ̂3 may be expressed as inverted gamma distributions. We state
these results below. Proofs are provided in appendix A.

Theorem 3: Suppose that θ̂2 is computed from independent samples  and

 from classes 1 and 2, respectively, where i = 1, 2, … n. Then

for n > (p + 2)/2.

Theorem 4: Suppose that θ̂3 is computed from independent samples  and

 from classes 1 and 2, respectively, where i = 1, 2, … n. Then

for n > (p + 3)/2.

3) Estimator Properties—Similar to section III-A3, expressions for the mean and
variance of θ̂2 and θ̂3 may be easily found by using equations (2) and (3) together with
Theorems 3 and 4, respectively. These results are collected below.

Corollary 2: If θ̂2 is computed from independent, normally distributed samples as stated in
Theorem 3, then θ̂2 is an unbiased estimator of SNR2, i.e., E[θ̂2] = SNR2 for n > (p+2)/2,
and its variance is
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Corollary 3: If θ̂3 is computed from independent, normally distributed samples as stated in
Theorem 4, then θ̂3 is an unbiased estimator of SNR2, i.e., E[θ̂3] = SNR2 for n > (p+3)/2,
and its variance is

As in section III-A3, we have a satisfying optimality property. Namely, if only the
difference of class means is known, then θ̂2 is the UMVU estimator for SNR2. This property
is stated precisely as the following theorem. A proof may be found in appendix B.

Theorem 5: Suppose that Δμ is known, and that μ1, μ2 and Σ are unknown. If θ̂2 is
computed from independent, normally distributed samples as stated in Theorem 3 with n >
(p + 2)/2, then θ̂2 is the unique UMVU estimator of SNR2.

From the above results, it is clear that θ̂3 is not the UMVU estimator for SNR2 in scenario 2.
However, θ̂3 is the UMVU estimator within the family of unbiased estimators of SNR2 that
disregard the knowledge that Δμ is equal to μ2 − μ1. This statement is clarified by the
following theorem. We omit the proof, which is similar to that of Theorem 5 in appendix B.

Theorem 6: Suppose that  and  are independent samples
from classes 1 and 2, respectively, where i = 1, 2, … n with n > (p + 3)/2, and where μ1, μ2,
and Σ are unknown. Let δ be an arbitrary, known p × 1 column vector, and define the
estimator

Then φ̂ is the unique UMVU estimator of δTΣ−1δ.

IV. Computational Evaluations
Now, we further explore the theoretical properties of the estimators introduced in the last
section. We will compare these estimators to a conventional estimator for SNR2, which is

reviewed first. As before, we assume that there are  independent realizations

of channel outputs from class 1 and  independent realizations of channel
outputs from class 2. Also, we will be assuming that p = 40 channels are used. There is
nothing special about p = 40, as opposed to another value, such as p = 4, which is typical for
isotropic channels. Our choice of p = 40 is motivated by our current interest in evaluating
the impact of anisotropic noise on lesion detectability [11].

A. An Estimator for SNR2 When the Class Means and Their Difference Are Unknown
Suppose that the class means, μ1 and μ2, and their difference, Δμ, are unknown. In this
situation, the conventional method to construct an estimator for SNR2 is to substitute the
sample estimates Δv̄:= v̄2 − v̄1 and S̄ for Δμ and Σ in equation (4). This approach is used in
[1, p. 972], and yields an estimator defined as
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(16)

The sampling distribution for θ̂4 is known in the case when the samples are normally

distributed with equal covariance matrices, i.e.,  and  for i
= 1, 2, … n. Specifically, [18, p. 216]

(17)

where  is the non-central F distribution with ν1 = p and ν2 = 2n − p − 1 degrees of
freedom and noncentrality parameter, λ = (n/2)SNR2. Expressions for the mean and
variance for the noncentral F distribution [18], [30] may be used to derive formulae for the
bias and variance of θ̂4. These formulae are [33]

(18)

for n > (p + 3)/2, and

(19)

for n > (p + 5)/2.

B. Comparison of the SNR2 Estimators
In the first set of comparisons, the relative error for each of the four SNR2 estimators is
plotted as a function of the total number of images, 2n; see Figure 1. The plots assume SNR2

values of 0.12837, 0.90987, and 3.2847, corresponding to AUC values of 0.6, 0.75, and 0.9,
respectively. Here the relative error (in %) is calculated as the square root of the mean-
square error (MSE) divided by the SNR2 value times 100. Using the fact that the MSE is
equal to the bias squared plus the variance [34], the MSE for θ̂1, θ̂2, θ̂3 and θ̂4 was
calculated using the expressions from Corollaries 1, 2, and 3 and equations (18) and (19).

Comparing θ̂1, θ̂2, and θ̂3 in the plots, we observe that their relative errors are very similar.
This is not surprising, since they are all unbiased and their variance expressions are
comparable. In addition, we note that for fixed n and p, the relative errors for θ̂1, θ̂2 and θ̂3
are invariant over the different SNR2 values. Although this invariance is only shown in the
plots for particular values of n and p, it actually holds for any choice of n and p. This follows
from the fact that the standard deviation of each estimator divided by SNR2 only depends on
n and p; this quantity is independent of SNR2 and also of the correlation matrix and the class
means.

On the other hand, the relative error for θ̂4 decreases as the true SNR2 value increases.
Furthermore, we see that the relative error for θ̂4 is significantly larger than that for θ̂1, θ̂2,
and θ̂3. For example, in the case of SNR2 = 0.90987 with 2n = 250 total images, the relative
error for θ̂1 is 9.8%, compared to a relative error of 112.3% for θ̂4.
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C. Comparison of the AUC Estimators
For the next set of comparisons, we consider the AUC estimators which are found by
substituting the square root of θ̂i for SNR in equation (5). For each i ∈ {1, 2, 3, 4}, the

resulting AUC estimator will be denoted as .

In Figure 2, the bias magnitude and relative error for each of the AUC estimators are plotted
as functions of the total number of images, 2n. The plots compare the estimator behavior for
AUC values of 0.6, 0.75, and 0.9. The bias magnitude (in %) is calculated by dividing the
absolute value of the bias by the AUC value and multiplying by 100. The relative error (in
%) is calculated as the square root of the MSE divided by the AUC value times 100. The
bias and MSE for each AUC estimator were computed from the estimator’s mean and
variance, which were calculated numerically using the pdf of the corresponding θ̂i and the
method described in section II-D. In all cases, the numerical error for the mean and variance
results was constrained to be less than 10−6.

Examining the bias magnitude plots in Figure 2 (top row), we see that the bias magnitudes

for , and  are very similar, and increase at fixed n with increasing AUC
values, but are generally very small. Specifically, for 2n ≥ 100, the bias magnitudes for these

three estimators are all less than 0.3%. In contrast, the bias magnitude for  decreases
with increasing AUC values, but it is always much larger than for the other three estimators.

For instance, in the case of 2n = 100, the bias magnitude for  has values of 47.1%,
23.1%, and 8.4%, corresponding to AUC values of 0.6, 0.75, and 0.9, respectively. Although

not reflected in the plots, the biases for  and  were negative in all cases

and the bias for  was positive in all cases.

Directing our attention to the relative error plots in Figure 2 (bottom row), the trends of

, and  are again seen to be very similar. For 2n ≥ 100, the relative errors

for these three estimators are less than 2.7%. On the other hand, the relative error for 

is significantly larger. For example, when 2n = 100, the relative error for  has values of
47.4%, 23.4%, and 8.55% corresponding to AUC values of 0.6, 0.75, and 0.9, respectively.
Comparing these relative errors to the bias magnitude values mentioned above, we see that

most of the relative error for  is due to bias.

V. Discussion and Conclusions
In this work, we were interested in the estimation of classical performance metrics for
discrimination between two classes of images. The discrimination was assumed to be
performed by a channelized Hotelling observer. Also, we assumed that the estimation is to
be carried out using a small number of image realizations, as is typically the case in medical
imaging.

Unfortunately, access to a limited number of image realizations implies that the estimated
performance values will have some statistical errors, quantified, for example, in terms of
estimator bias and variance. Barrett and Myers [1, p. 972] suggested that these statistical
errors could potentially be reduced if the class means are assumed to be known. We have
investigated this issue thoroughly. Assuming that the channel outputs corresponding to the
two classes of images have multivariate normal distributions with equal covariance matrices,
we have completely characterized the sampling distributions for three estimators of SNR2

that assume that the class means, or their difference, are known. Using these distributions,
we have demonstrated that a significant decrease in estimation error can be achieved when
the class means, or their difference, are known.
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A useful property of our three SNR2 estimators is the fact that the ratio of each estimator’s
standard deviation to its mean is a function of only n and p. This property allows for easy
pre-selection of the number of images needed to achieve a desired level of accuracy.

Another interesting property of our three SNR2 estimators is that they yield AUC estimators
that have negative bias, just as estimators based on a training/testing paradigm [16], [17].
Thus, we demonstrated that the training/testing paradigm is not the only estimation strategy
that can result in negative biases. Moreover, recall from Figure 2 that the biases achieved by
our new estimators are fairly small.

Of course, it is natural to ask in which situations the image class means, or their difference,
may be found. One situation where this is possible is for image reconstruction from
simulated data with the data mean known. For example, in the case of linear reconstruction
algorithms (e.g, filtered backprojection (FBP) type), which are still the methods of choice in
CT, the image class means may be found by simply reconstructing the means of the data for
each class. Similarly, for many types of (nonlinear) iterative reconstruction methods, the
image class means may be found to first order by reconstructing the means of the data for
each class [35]. This approximation has been found to be fairly accurate for the cases of
expectation maximization (EM) [36], [37] and penalized-likelihood reconstruction [35].

When significant uncertainty exists for the class mean estimates, our estimators may not be
satisfactory. This could be the case for iterative reconstruction methods if first-order
estimates of the means are not accurate enough. This could also be the case for image
quality assessment from real data, because the class means of real data are rarely known
exactly. For these situations, it would be useful to understand how our estimators are
affected by errors in the mean estimates. Moreover, as refined estimates of the class means
may possibly be obtained at low cost, we note that knowledge of the distributions for our
estimators may pave the way for new attractive estimators that incorporate prior information
pertaining to the class means. These topics define interesting areas of further research.

In order to safely apply our results to a particular imaging application, we emphasize that it
is necessary to verify that the channel outputs corresponding to the two classes of images are
well-approximated by multivariate normal distributions that have the same covariance
matrix. We are currently assessing the validity of this assumption for x-ray CT. This
assessment will include a comparison of our approach to nonparametric AUC estimation
using the Mann-Whitney U statistic.

Last, note that our estimators allow for a significant improvement in efficiency for the
computation of detectability maps. These maps plot SNR or AUC as a function of lesion
location [1, p. 858] [38]. This is one way to investigate the dependence of lesion
detectability on background variation [1, p. 858–859]. In the future, we will evaluate our
estimators for the purpose of building detectability maps for commercially-available FBP
reconstruction methods in x-ray CT.
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Appendix A
In this appendix, we prove Theorems 1, 3, and 4 which characterize the sampling
distributions of θ̂1, θ̂2, and θ̂3. For this task, we first review several useful properties of the
Wishart, inverted Wishart, and inverted gamma distributions.

Lemma 1
If A1 ~ Wp(m, Σ) and A2 ~ Wp(n, Σ) are independent, p×p random matrices, then A1 + A2 ~
Wp(m+ n, Σ).

Proof
See [18, Thm 3.2.4, p.91] or [31, Thm 3.3.8, p.94].
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Lemma 2
Let n > p + 1. If S ~ Wp(n, Σ), then

Proof
See [18, p. 97] or [28, p. 273].

Lemma 3
Let n ≥ p. If S ~ Wp(n, Σ) and A is a q × p matrix of rank q ≤ p, then

Proof
See [18, Thm 3.2.11, p. 95] or [31, Thm 3.3.13, p. 97].

Lemma 4
Let n ≥ p. Then S ~ Wp(n, Σ) if and only if S−1 ~ IWp(n + p + 1, Σ−1).

Proof
See [31, Thm 3.4.1, p. 111].

Lemma 5
Let n ≥ p. If S ~ Wp(n, Σ) and A is a q × p matrix of rank q ≤ p, then

Proof
This follows immediately from Lemmas 3 and 4.

Lemma 6
If X ~ IW1(m, Ψ) and m > 2, then .
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Proof
Suppose that X ~ IW1(m, Ψ) and m > 2. First, note that since X is an inverted Wishart
matrix with p = 1, X and Ψ are scalars. For the p = 1 case, the pdf of the inverted Wishart
distribution [31, p. 111] is

(20)

Comparing with equation (1), we recognize the above expression as the pdf for an inverted
gamma random variable with α = (m − 2)/2 and β = Ψ/2.

Lemma 7
Let c > 0 be an arbitrary constant. If X ~ IG(α, β), then Y = cX ~ IG(α, cβ).

Proof
Suppose that X ~ IG(α, β) and let Y = cX. The pdf for Y may be expressed in terms of the
pdf for X by applying the rule for a monotonic transformation of a random variable [39, p.
51], i.e., fY (y) = (1/c)fX(y/c). Using this rule together with equation (1), we may express the
pdf for Y as

(21)

Hence, Y ~ IG(α, cβ).

Next, we collect some results concerning the distributions of Ŝ, S̃, and S̄.

Lemma 8

Suppose that  and  are independent samples from classes 1
and 2, respectively, where i = 1, 2, … n. If Ŝ, S̃, and S̄ are computed from these samples
according to equations (7), (12), and (14), respectively, then (i) 2nŜ ~ Wp(2n, Σ), (ii) (2n −
1) S̃ ~ Wp (2n − 1, Σ), and (iii) (2n − 2) S̄ ~ Wp(2n − 2, Σ).

Proof
i.

First, observe that Ŝ1 may be expressed as , where .
Since Z1, Z2, … Zn are independently distributed according to Np(0, Σ), it follows
from the definition of the Wishart distribution [18, p. 82] that nŜ1 ~ Wp(n, Σ). By a
similar argument, nŜ2 ~ Wp(n, Σ). Because nŜ1 and nŜ2 are independent, Lemma 1
implies that 2nŜ = nŜ1 + nŜ2 ~ Wp(2n, Σ).

ii. From the definition of S̃, we have
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(22)

Substituting  for  and  for 
into the definition, and rearranging, we find

(23)

Inserting the definitions of μ̃ 1and μ̃2 given by equations (10) and (11) into the last
equation, and simplifying, yields

(24)

By a theorem concerning the distribution of the sample covariance matrix [31, Thm
3.3.2, p. 92], the first and second terms in equation (24) are distributed as Wp(n − 1,
Σ). Also, using standard results for the sample mean and multivariate normal

distribution [18], it follows that . Therefore, by the
definition of the Wishart distribution [18, p. 82], we see that the third term in
equation (24) has a Wp(1, Σ) distribution.

The first and second terms in equation (24) are clearly independent because they
are computed from independent samples. Moreover, for the same reason, we note
that the sample means, v̄1 and v̄2, are independent of the second and first terms,
respectively. Also, by a standard theorem [31, Thm. 3.3.6, p. 92], v̄1 and v̄2 are
independent of the first and second terms, respectively. Hence, the third term is
independent of the first and second terms. Because the three terms in equation (24)
are independent, we may apply Lemma 1 to conclude that (2n − 1)S̃ ~ Wp(2n − 1,
Σ).

iii. By a theorem for the distribution of the sample covariance matrix [31, Thm 3.3.2,
p. 92], we have (n−1)S1 ~ Wp(n−1, Σ) and (n−1)S2 ~ Wp(n−1, Σ). In addition, since
S1 and S2 are computed from independent samples, they are independent. Thus,
Lemma 1 implies that (2n − 2)S̄ = (n − 1)S1 + (n − 1)S2 ~ Wp(2n − 2, Σ).

Now, we are ready to prove Theorems 1, 3, and 4. Recall that each of these estimators is

computed from independent samples  and  from classes 1
and 2, respectively, where i = 1, 2, … n.
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Proof of Theorem 1
Assume n > (p+ 1)/2. The definition of θ̂2 in equation (8) may be rewritten as (1/(2n − p −
1)) θ̂1 = ΔμT (2nŜ)−1Δμ. From Lemma 8(i), 2nŜ ~ Wp(2n, Σ). Hence, we may apply
Lemma 5 and equation (4) to find that (1/(2n − p − 1)) θ̂1 ~ IW1(2n − p + 3, SNR2). Lemma
6 then yields (1/(2n − p −1)) θ̂1 ~ IG((2n − p + 1)/2, (1/2)SNR2). Finally, application of
Lemma 7 gives the desired result.

Proof of Theorem 3
Assume n > (p + 2)/2. The definition of θ̂2 in equation (13) may be rewritten as (1/(2n − p −
2)) θ̂2 = ΔμT [(2n − 1)S̃]−1Δμ. From Lemma 8(ii), (2n − 1)S̃ ~ Wp(2n − 1, Σ). Hence, we
may apply Lemma 5 and equation (4) to find that (1/(2n−p−2)) θ̂2 ~ IW1(2n − p + 2, SNR2).
Lemma 6 then yields (1/(2n − p − 2)) θ̂2 ~ IG((2n − p)/2, (1/2)SNR2). Finally, application of
Lemma 7 gives the desired result.

Proof of Theorem 4
Assume n > (p + 3)/2. The definition of θ̂3 in equation (15) may be rewritten as (1/(2n − p −
3)) θ̂3 = ΔμT [(2n − 2) S̄]−1Δμ. From Lemma 8(iii), (2n − 2)S̄ ~ Wp(2n − 2, Σ). Hence, we
may apply Lemma 5 and equation (4) to find that (1/(2n−p−3)) θ̂3 ~ IW1(2n − p + 1, SNR2).
Lemma 6 then yields (1/(2n −p −3)) θ̂3 ~ IG((2n − p − 1)/2, (1/2)SNR2). Finally, application
of Lemma 7 gives the desired result.

Appendix B
In this appendix, we prove Theorems 2 and 5, which state that θ̂1 and θ̂2 are UMVU
estimators. Again, we assume that each of these estimators is computed from independent

samples  and  from classes 1 and 2, respectively, where i
= 1, 2, … n.

Proof of Theorem 2
Assume n > (p + 1)/2. Also, suppose that μ1 and μ2 are known, and that Σ is unknown. First,
we show that Ŝ is a sufficient statistic for the joint pdf of the sample. The joint pdf of

 and  is

(25)

where

(26)

Using the additive and cyclic properties of the trace, denoted tr, we may rewrite η as
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(27)

i.e.,

(28)

Hence, the joint pdf has the form

(29)

By the Fisher-Neyman factorization theorem [40, Thm. 6.5, p. 35] [41, Prop. IV.C.1, p.
159], Ŝ is a sufficient statistic. Moreover, because the expression in equation (29) has the
form of a full rank exponential family [40, p. 23–24], Ŝ is a complete statistic [40, Thm.
6.22, p. 42]. Since (i) Ŝ is a complete sufficient statistic, (ii) θ̂1 is an unbiased estimator of
SNR2, and (iii) θ̂1 = E[θ̂1|Ŝ], i.e., θ̂1 is a function of Ŝ only, the Lehmann-Scheffé Theorem
[40, Thm. 1.11, p. 88] [41, p. 164] implies that θ̂1 is the unique UMVU estimator of SNR2

in scenario 1.

Proof of Theorem 5
Assume n > (p + 2)/2. Also, suppose that Δμ is known, and that μ1, μ2, and Σ are unknown.

The joint pdf of  and  is given by equations (25) and (26).
After lengthy algebra, one may rewrite the joint pdf in the form

(30)

By the Fisher-Neyman factorization theorem [40, Thm. 6.5, p. 35] [41, Prop. IV.C.1, p.
159], the statistic

(31)

where τ = (2n−1)S̃ −n(v̄1 + v̄2 − Δμ)(v̄1 + v̄2 − Δμ)T, is sufficient. Moreover, because the
expression in equation (30) has the form of a full rank exponential family [40, p. 23–24], T
is a complete statistic [40, Thm. 6.22, p. 42]. Since (i) T is a complete sufficient statistic, (ii)
θ̂2 is an unbiased estimator of SNR2, and (iii) θ̂2 = E[θ̂2|T], i.e., θ̂2 is a function of T only,
the Lehmann-Scheffé Theorem [40, Thm. 1.11, p. 88] [41, p. 164] implies that θ̂2 is the
unique UMVU estimator of SNR2 in scenario 2.
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Fig. 1.
Relative error of SNR2 estimators as a function of the total number of images, 2n. The plots
assume p = 40 channels with SNR2 = 0.12837 (left), 0.90987 (middle), and 3.2847 (right),
corresponding to AUC values of 0.6, 0.75, and 0.9, respectively. The estimators are denoted
as follows: θ̂1 (circles), θ̂2 (diamonds), θ̂3 (triangles), and θ̂4 (squares). The relative error (in

%) is calculated as , where MSE denotes the mean-square error.
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Fig. 2.
Bias magnitude and relative error of AUC estimators as a function of the total number of
images, 2n. The plots assume p = 40 channels with AUC = 0.6 (left), 0.75 (middle), and 0.9
(right). Bias magnitude is on the top and relative error is on the bottom. The estimators are

 (circles),  (diamonds),  (triangles),  (squares). For each i ∈ {1, 2, 3,

4},  is calculated by substituting the square root of θ̂i for SNR in equation (5). The bias

magnitude (in %) for an AUC estimator, , is calculated as

. The relative error (in %) is calculated as

, where MSE denotes the mean-square error.
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