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Abstract
In emission tomography, anatomical side information, in the form of organ and lesion boundaries,
derived from intra-patient coregistered CT or MR scans can be incorporated into the
reconstruction. Our interest is in exploring the efficacy of such side information for lesion
detectability. To assess detectability we used the SNR of a channelized Hotelling observer and a
signal-known exactly/background known exactly detection task. In simulation studies we
incorporated anatomical side information into a SPECT MAP (maximum a posteriori)
reconstruction by smoothing within but not across organ or lesion boundaries. A non-anatomical
prior was applied by uniform smoothing across the entire image. We investigated whether the use
of anatomical priors with organ boundaries alone or with perfect lesion boundaries alone would
change lesion detectability relative to the case of a prior with no anatomical information.
Furthermore, we investigated whether any such detectability changes for the organ-boundary case
would be a function of the distance of the lesion to the organ boundary. We also investigated
whether any detectability changes for the lesion-boundary case would be a function of the degree
of proximity, i.e. a difference in the radius of the true functional lesion and the radius of the
anatomical lesion boundary. Our results showed almost no detectability difference with vs without
organ boundaries at any lesion-to-organ boundary distance. Our results also showed no difference
in lesion detectability with and without lesion boundaries, and no variation of lesion detectability
with degree of proximity.

1. Introduction
In emission tomography (ET) one tries to determine the underlying radiotracer distribution
of radiopharmaceutical within the patient body. This tracer concentration has high
correlation with the underlying anatomy. The high correlation is due to the fact that different
anatomical structures have different physiological function and hence we expect to see a
difference in tracer uptake between these anatomical regions. A common assumption on
anatomy-function correlation is that activity uptake tends to be slowly varying within an
organ or anatomical region, but can suffer a discontinuity at a region boundary. This general
observation is borne out in high resolution autoradiographic images in which functional
images also clearly reveal the morphology of the underlying structures (Gindi et al 1993). In
some cases, lesion boundaries can also be observed in the anatomical scan (Bruyant et al
2004a), and so lesion boundary information can be used to aid in determining whether there
is a significant uptake in the lesion versus its surround. This high correlation with anatomy
would lead one to expect an improvement in the functional image quality with the use of this
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anatomical “side-information” in the image reconstruction process. Such anatomical side
information can be made available from coregistered MR (for brain) and from CT (whole
body) images. Furthermore, the advent of PET/CT and SPECT/CT increase the availability
of coregistered anatomical images. Many ways of improving the ET reconstruction by
incorporating anatomical side information have been proposed, but the improvement in the
ET images must be evaluated based on the performance with respect to a chosen task, in our
case, a detection task.

As discussed below, one might intuitively expect lesion detectability to be improved by
anatomical side information if the lesion were proximate to an anatomical boundary; and
less improved if the lesion was distant from the boundary. To address this question, we use
an SKE/BKE (signal-known-exactly/background-known-exactly) detection task, and a CHO
(channelized Hotelling observer) which is a numerical observer whose detection
performance emulates that of humans for this task. To investigate lesion proximity effects,
we therefore vary lesion and boundary locations and calculate an SNR, a scalar figure of
merit for detection.

Though there are many ways to impose anatomical information, we choose a MAP
(maximum a posteriori) reconstruction method in which a simple uniform smoothing prior
can be modified by not smoothing across organ and/or anatomical lesion boundaries. Such a
method lends itself to very rapid calculation of the SNR by using analytic methods, and so
allows us to perform many more experiments than we could using sample methods. In
addition, the imposition of smoothness only within boundaries is a strategy shared by many
proposed reconstruction schemes that use anatomical information.

Previous work can be categorized based on the use of the side-information either in the
image reconstruction step or in post-processing the reconstructed image. A limited survey
follows. In Videen et al (1988), Meltzer et al (1990), Muller-Gartner et al (1992) and
Rousset et al (1990) a post-processing method for brain imaging using a convolution-based
approach was discussed. The approaches in the former category use Bayesian estimation
techniques to introduce the anatomical side-information into the reconstruction processes.
Gindi et al (1993), Leahy and Yan et al (1991), Lipinski et al (1997) and Ouyang et al
(1994) used an edge-preserving Gibbs prior where the anatomical boundary information was
used to control the formation of discontinuities in the emission reconstruction. In more
recent work in Comtat et al (2002) and Bruyant et al (2004a), segmented anatomical labels
were used to manipulate the weighting of a quadratic prior. Baete et al (2004a) have
developed an anatomy-based MAP algorithm for PET brain imaging. The “AMAP” scheme
uses an edge-preserving concave prior (Nuyts et al 2002) for the grey matter and Gaussian
priors for white matter and CSF. Ardekani et al (1996) proposed an minimum cross-entropy
reconstruction algorithm that incorporates multi-spectral MR data into a cross-entropy prior,
which performs edge preserving smoothing based on the anatomical information. An
interesting MAP approach by Hsu and Leahy (1997) used a segmented anatomical image to
impose a graded form of smoothing in inter-region areas where partial volume effects limit
one’s ability to impose sharp continuity breaks. A more elaborate hierarchical Bayesian
approach was proposed by Bowsher et al (1996). Sastry and Carson (1997) suggested a
label-based tissue composition model to impose a Gaussian distribution within a tissue
region. The exact tissue fractions for each pixel were provided from segmented MR brain
images. Rangarajan et al (2000) used a joint-mixture framework to incorporate anatomical
information. Much of the previous work reports improvement with anatomical priors in
terms of ROI quantitation tasks. In more recent work, discussed in detail in section 5.2,
several authors have addressed improvements in detection tasks.
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To motivate our interest in the question of lesion proximity, consider the following:
Intuitively, one might expect that for a case in which a small hot spherical lesion in a weaker
background is enveloped precisely by continuity-suspending boundaries, these boundaries
might be helpful in detection. The intuition comes from the fact that the suspension of
smoothness across boundaries prevents the blurring of the lesion into the surrounding tissue,
thus possibly enhancing detection. (Any reconstruction will have a noise-resolution tradeoff,
leading to a somewhat blurred reconstructed lesion.) See figure 1 for an example using
noiseless reconstructions. If the boundary were distant or absent, we’d intuitively expect the
detectability to not be enhanced. In fact, in our study, our results show that these intuitions
are incorrect for an SKE/BKE detection task using a CHO and our SPECT MAP
reconstruction.

In section 2, we review MAP reconstruction and present a simple way to incorporate
anatomical information into the prior. We also review some relevant details of the CHO. In
section 3 we show how to rapidly calculate detection performance using analytic methods.
Our simulation results are shown in section 4. In the discussion section 5.1, we summarize
our work. In our discussion in section 5.2, we place our work in the context of efforts by
others to improve lesion detectability using anatomical information.

2. Background
2.1. MAP Reconstruction With Anatomical Priors

Define an N-voxel 3D emission object as the N-dim lexicographically ordered vector f, {fn;
n = 1,…, N }. A MAP reconstruction is given by the following optimization: f ̂ = argmaxf≥0
(ΦL(g; f) + βΦP (f)) where g, {gm; m = 1, …, M} is the M-element sinogram, ΦL the log of
the Poisson likelihood, and ΦP a quadratic prior. The scalar β > 0 controls the degree of
smoothing. For Poisson data, the log likelihood term is

 where ℋ is the system matrix whose
element ℋmn is proportional to the probability that an emission from pixel n reaches
detector bin m. (The likelihood term used here excludes affine terms sometimes used to
model scatter in SPECT or randoms and scatter in PET.).

We assume the anatomical information to be present in the form of a tissue label map, where
label ln is the tissue class of voxel n. We use a quadratic prior to capture anatomy-function
correlation by smoothing within an organ or lesion boundary while suspending smoothing
across boundaries. The prior, similar to ones used in Bruyant et al (2004a) and Comtat et al
(2002), is given by

(1)

where (n) defines neighbors of pixel n, dnj is the Euclidean distance between voxels n and
j, and the penalty weight ωnj (ln, lj) is dependent on the anatomical labels of voxels n and j
as follows:

(2)
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Thus, if n and j belong to different anatomical regions, ωnj is set to 0, thus “breaking
continuity” between voxels n and j. Note that if want to turn off anatomical information, we
simply set ω(ln, lj) = 1 unconditionally and thus obtain a uniform space-invariant quadratic
prior.

The anatomical prior would reduce noise by smoothing within anatomical regions and
preserve edges by not blurring across different anatomical regions. It will be convenient to
re-express the prior, ΦP (f) as a quadratic form , where the N × N matrix ℛ is the
Hessian of −ΦP (f) with matrix elements given by

(3)

The anatomical prior we use described above is idealized in two ways. We assume that the
anatomical label map is in perfect register with the reconstruction volume, and that the label
maps, derived from high resolution CT or MR, occur on voxels whose size is the same as
that of an emission reconstruction voxel. Thus in our scheme each reconstruction voxel gets
a unique label. In actuality, since anatomical images are usually of higher resolution than
functional images, each functional image voxel contains many anatomical voxels with
possibly heterogeneous labels. Hence instead of a unique label for each fn, various label
mixture schemes are more realistic. Indeed, misregistration and mismatched resolution
effects are important and have been addressed in Gindi et al (1993), Sastry and Carson
(1997), Comtat et al (2002), Baete et al (2004a,2004b) and elsewhere. However, we assume
that if boundary proximity effects are significant, they should show up in the idealized case
where both effects are absent.

So far, we have implied a model in which different anatomical regions have different
activity. But to complicate matters, there may be an emission lesion boundary with no
corresponding anatomical lesion boundary. For example, a tumor avid lesion in an organ
may not have an anatomical signature. In the same vein, an anatomical lesion boundary may
not correspond to an emission hot-spot, e.g. a necrotic lesion that shows up in CT may not
show up in SPECT. To assess the efficacy of anatomical priors, we must consider both cases
of false boundaries.

2.2. Channelized Hotelling Observer
To evaluate the performance for a detection task one would have to perform a human
observer study and use a figure of merit, such as the area under the ROC curve, to assess
performance. The experiments we describe below involve many lesion locations and
boundaries, and each would require a human observer study. Since the amount of labor
involved would be unrealistic, we used numerical observers that emulate human
performance. The channelized Hotelling observer (CHO) (Barrett and Myers 2003) is found
to be a good predictor of human performance in detecting lesions in correlated noisy
backgrounds such as those in SPECT reconstruction (Gifford et al 2000, Abbey and Barrett
2001, Narayanan et al 2002, Wollenweber et al 1999). The CHO uses the first- and second-
order statistics of the reconstructed images and delivers a scalar figure of merit, the SNR.
The use of an SNR requires an assumption that the CHO observer responses are
approximately Gaussian distributed under both signal-present and signal-absent hypotheses,
a requirement satisfied in our case.
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SNR calculations typically require sample methods as discussed in section 3.3. For each of
the many cases we will consider, the calculation of SNR using sample methods requires a
few hundred sample reconstructions. This is a formidable amount of computation. The SNR
is applied to an SKE/BKE detection task since such a task can clearly elicit the effects of
boundary proximity. In addition, SKE/BKE tasks lend themselves to rapid evaluation of
SNR for the CHO using the theoretical methods described in section 3.

As does a human, the CHO observes a 2D slice image extracted from the 3D reconstruction.
Let ℒ be a linear slice extraction operator which is an N2D × N matrix with N2D the number
of pixels in the extracted image. The CHO applies anthropomorphic bandpass channels to
reduce the N2D-dim image into Nc channel responses (features). The feature reduction step is
carried out by the dot product of the image with each of the Nc channel templates. Since Nc
is usually around 3–6, the number of features is far less than the number of pixels N2D. If the
vector ti is the ith channel template centered at the lesion center, then the corresponding ith
channel response is ûi = (ti)T ℒf ̂. (Here, the T exponent means “transpose”.) The feature
vector is given by û =  ℒf ̂, where ti is the ith column of , and  is an N2D × Nc matrix.
In this study we use radially symmetric channels. Figure 2(a) displays the radial channel
profiles in the frequency-domain, showing three difference-of-Gaussian (DOG) kernels
(Abbey 1998, Abbey and Barrett 2001) of dyadically increasing widths. Figure 2(b) shows
the 2-D spatial version of the first channel template and figure 2(c) its central profile. The
CHO applies an optimal linear discriminant to these channel responses to get a scalar
observer response.

Let b be a fixed background and s be a fixed signal. Define f1 = b and f2 = b + s as signal-

absent and signal-present objects, respectively. Let  and  represent the mean (over data
noise) reconstructions and  and  the mean feature vectors of f ̂1 and f ̂2, respectively.
Denote the average of the signal-present and signal-absent covariance of the reconstruction
by . Let  be the average of the lesion-absent and lesion- present channel response
covariance matrices. The channel covariance matrix is thus  =  ℒ ℒT . Then a
measure of detectability, the CHO SNR, is given by (Abbey 1998)

(4)

Note that  is an average covariance, but for the low contrast signals that we will use, it is a
good approximation to use  for . We can justify this approximation because our
analytically calculated SNR’s (which use ) are validated by sample-method SNR’s

(computed using ). The mean channel responses become  and .
The covariance of these extracted 2D images is ℒ ℒT and the corresponding covariance of
the channel responses, , becomes  ℒ  ℒT . With the inclusion of slice extraction and
the approximation  ~ , the CHO SNR becomes

(5)

We shall base our sample-method calculation of SNR on (4) and our analytic methods on
(5).
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3. Methods
In this section, we focus on the theoretical methods used to rapidly obtain SNR. We perform
two types of studies. In the first, termed the “organ boundary experiment”, we place a lesion
at varying distances from an organ boundary and evaluate the SNR vs. distance for the case
of an anatomical prior and for an ordinary smoothing prior (no anatomy). In the second,
termed a “lesion boundary experiment”, there were no organ boundaries, only a uniform
background with a single lesion. We fix the functional lesion size and location but vary the
anatomical boundary about the lesion so that its radius increases beyond the functional
lesion. At its minimum radius, the anatomical boundary exactly encloses the lesion
boundary. The maximum radius corresponds to no lesion boundary information at all. The
lesion boundary experiment is motivated by the following consideration: A perfect
anatomical lesion boundary is the extreme case of isotropic boundary information at
minimal proximity in all directions. We relax this “ultimate” anatomical information by
increasing the radius of the boundary until there is no boundary, and then we assess the
effects on SNR vs. radius to gain insight.

3.1. Organ Boundary Experiment

Let sj denote a lesion centered at j. Then, f2j = b + sj is the signal-present 3D object. Let 
be the the mean reconstruction of the object with sj. Denote  as the channel template matrix
centered at j. From (5) the detectability of the lesion centered at j is given by

(6)

The quantities  and  are well approximated by noiseless reconstructions. The main

theoretical computation is in the terms ( ) in (6). This involves the difficult-to-
compute covariance matrix . For our MAP case, a theoretical expression for the
covariance in (6) is approximated by (Fessler 1996)

(7)

where  is an N × N matrix that approximates the Fisher
information matrix.

For uniform quadratic priors with no continuity breaking, the Hessian of the prior, ℛ, is

triply block circulant (shift invariant), hence ( ) in (6) can be evaluated using a
local shift invariance assumption and Fourier approximations (Qi and Leahy 2000). But with
the incorporation of continuity breaking, the matrices ℛ become shift variant and hence we
cannot use the Fourier tricks. Instead we use the following alternate method. Substituting (7)

in ( ) we get
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(8)

(9)

where Xj ≡ (ℱ + βℛ)−1 ℒT  is an N × Nc matrix. The ith column of matrix Xj, given by

vector , can be obtained by solving the following linear system

(10)

where  is the ith channel template centered at j.

Equation (10) must be solved for all i = 1, …, Nc channels and j = 1, …, J locations. We can

solve this matrix-vector equation for a given  using a preconditioned conjugate-gradient

(PCG) method with a diagonal preconditioner (Trefethen and Bau 1997). Solving for one 
is computationally equivalent to a few reconstructions. Thus (10) would involve an order of

JNc reconstructions. In (9), the matrix  is obtained by

projecting each column of Xj. (In this notation , the projection of  is the lth column of
ℋXj). Thus ℋXj entails Nc projections. Given ℋXj, each mnth element of the Nc × Nc

matrix  can be calculated by the dot product of  and  weighted by

diagonal elements of diag . That is

. Thus in (9) we have shown how to

compute the crucial Nc × Nc matrix . Since Nc is small, the inversion of this Nc
× Nc matrix is rapidly accomplished.

The terms  and  in (6) can each be evaluated by a noiseless reconstruction (Fessler
1996) for each lesion location plus one noiseless reconstruction for a signal-absent case,
requiring a total of J + 1 reconstructions. Since (10) requires ~JNc reconstructions, our
theory method to calculate the CHO SNR at locations j = 1, ···, J with varying proximity to a
fixed boundary thus entails an order of J(Nc + 1) + 1 reconstructions, where Nc is typically
3–5. Sample methods as discussed below would take (J +1)Nsamp reconstructions, where
Nsamp is the number of sample reconstructions for a given object. Since Nsamp should 10
~100 times Nc (Abbey et al 1997), the net computational savings using theory vs. sample
methods is thus roughly two orders of magnitude.

3.2. Lesion Boundary Experiment
In this scenario, we take r = 1, ···, R spherical anatomical lesion boundaries with varying
radii circumscribing the fixed-location functional lesion s of fixed radius. (The quantity r is
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not the radius; it indexes the lesion boundary radius as will be shown in figure 3 below.) Our
intent is to relax the lesion boundary confinement (proximity) of the fixed functional lesion
by surrounding it with continuity-breaking lesion boundaries of increasing radii. To study
the effects of r = 1, …, R different lesion boundaries on the detectability of the lesion, we
have to calculate the CHO SNR for the rth lesion boundary given by

(11)

where  and  are the reconstructions of f2 and f1 using the rth lesion boundary information
in the prior. Figure 3 shows an example of varying anatomical lesion boundaries for r = 1,
…, 8.

As in section 3.1, the main computation is in the terms ( ) in (11). Following
(7), (8), (9), (10) in section 3.1 but for given r instead of a given j, we can again compute

( ). Note that in (7), ℛ becomes ℛr, i.e. the ℛ prior matrix indexed by r, and

ℱ becomes ℱr, given by . Furthermore since the lesion is
now centered at a single location, the channel matrices  becomes a single matrix . With
this reindexing, and for R lesion boundaries and Nc channels, we obtain the following
computational burden for the lesion boundary case. It takes ~RNc reconstructions to obtain

( ) for r = 1, ···, R. For a single boundary,  and  can be calculated using 2
noiseless reconstructions. Therefore, for R different boundaries, the theory method takes on
the order of RNc + 2R reconstructions, while sample methods would involve 2RNsamp
reconstructions. The net computational savings is again about two orders of magnitude.

3.3. Sample Methods
We can also calculate the CHO SNR with sample methods. First we reconstruct an ensemble

of noisy reconstructions  and , where k = 1, ···, Nsamp indexes sample number. Then we

obtain the channel response  and  by applying the channel matrix on
the extracted slice. The sample means of the signal-present and -absent channel responses
are given by

(12)

and the sample covariance of the channel responses is given by

(13)

Since  is Nc × Nc, calculating its inverse is easy. As mentioned, to get a good estimate of
 and its subsequent inverse, Nsamp should 10 ~100 times Nc (Abbey et al 1997). We can
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then substitute (12) and (13) into (4) to obtain the sample SNR. We shall use sample
methods to validate the analytic methods.

4. Results
We conducted 3D SPECT simulations to explore the effects of anatomical information. In
all cases, we used Nc = 3 DOG bandpass channels in the radially symmetric CHO as shown
in figure 2. The center frequencies of the 3 DOG channels were 0.0625 cycles/pixel, 0.1250
cycles/pixel and 0.250 cycles/pixel. These channel parameters were chosen according to
criteria described in Oldan et al (2004). We used the theoretical methods of section 3 to
calculate SNR and validated the theory methods with sample methods.

We performed the organ boundary experiment with a 3D MCAT 64 × 64 × 16 phantom with
cubic voxels of size 0.625cm and an attenuation map at 140 KeV. The 16 slices comprised a
region around the liver (The slices start where the lungs end and contain most of the liver).
A depth-dependent collimator response was modeled as a Gaussian psf whose σ was
modeled as σ (cm) = 0.013 d (cm) + 0.0392 cm where d is depth measured from the
collimator face. No scatter was simulated. Figure 4 shows the 9th slice of the phantom with
four prospective lesion locations in the liver at varying distances from the (inner edge)
straight liver boundary. We used 10 lesion locations across the liver from one edge to the
other. The lesion is a 3 × 3 × 3 cube with the 8 corner voxels deleted and with a low-contrast
lesion-to-background ratio of 6:5. We note that for SKE/BKE studies in ET, low-contrast
lesions are required to avoid unacceptably high SNR’s. Each camera face comprised 96 × 32
square bins of size 0.625 cm and was placed at a distance of 30 cm from the center of
rotation. We simulated a parallel-beam geometry with 65 equispaced projection angles. The
total number of counts was 4.8M. The reconstructions with a regularization weight of β =
0.001 used the COSEM-MAP (Hsiao et al 2002) algorithm with 16 subsets and was run till
convergence. The smoothing parameter β was chosen to obtain a reasonable noise-resolution
trade-off. Organ boundary information was applied using (2) in the reconstructions.

Figure 5(a) plots SNR vs. lesion location from the inner edge to the outer edge of the liver
boundary for the cases with/without anatomy. The CHO SNR’s were calculated using the
theoretical expressions for SNR in (6). There is no visible difference in the anatomy/no
anatomy curves. One thousand two hundred lesion-present and lesion-absent reconstructions
were used for the sample validation of the SNR using (12),(13) and (4). The sample SNR
curves are shown in figure 5(b). They show close correspondence with the theory curves in
figure 5(a). Error bars calculated using a jackknife procedure (Zoubir and Boashash 1998)
and displayed in figure 5(b) represent a 68% confidence interval. As seen, there is no visible
anatomy vs. no-anatomy difference in the SNR (for either sample or theory methods) even
when the lesion is adjacent to either edge of the liver. Figures 6(a)(b) show signal-present
anecdotal reconstructions with no anatomy information and with anatomy information,
respectively. Figures 6(c)(d) are anecdotal signal-present reconstructions with the signal
contrast enhanced for display purposes.

The bowing of the SNR curves is due to attenuation effects. The voxel corresponding to the
location # 1 in figure 5 is near the object center while that at location # 10 is near the edge of
the object. Pixels near the center will suffer lower SNR relative to those near the edge, hence
the bowing. When attenuation is removed, the SNR curves in figures 5(a)(b) become nearly
flat, but remain coincident.

One might suspect that our main conclusion for the organ boundary experiment, i.e. no
separation of the anatomy and no-anatomy curves in figure 5, would be altered with the
inclusion of internal noise (Barrett and Myers 2003) in the CHO. To address this we used an
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internal noise model (Oldan et al 2004) summarized by the following transformation of the
diagonal of : →  + α1  + α2 maxj  where α1, α2 were positive scalars. We tried
441 combinations of (α1, α2). In each case, the curves in figure 5 were lowered, but they
remained coincident, so that internal noise did not affect our main conclusion.

We performed the lesion boundary experiment using a 64 × 64 × 16 object with cubic voxels
of size 0.625cm. Here, as seen in figure 7(a), the background was uniform and the lesion
was placed near the center of the object volume. The lesion, a 3 × 3 × 3 cube with the 8
corner voxels removed, had a contrast of 1.345 relative to background. All other imaging
and reconstruction parameters were as before except that a smoothing parameter β = 0.002
was used. The smoothing is reasonable in reducing the noise in the reconstruction without
over-smoothing the reconstructed signal. Anatomical information in the form of R spherical
anatomical lesion boundaries indexed by r = 1, ···, R was used in the reconstructions.
Anatomical information is indexed by a parameter r, with r = 1 implying perfect knowledge
of the functional lesion boundary, r = 2 imperfect knowledge where the radius of the
surrounding anatomical lesion boundary is enlarged slightly, r = 3, 4, 5, 6, 7 even more
imperfect knowledge with even larger radii as shown in figure 3, and with r = 8
corresponding to no lesion boundary. MAP reconstructions with and without anatomical
information were evaluated using our theoretical expressions for the SNR in (11). The
observer is applied at the lesion site and evaluated vs. r. Nine hundred lesion-present and
lesion-absent reconstructions for each r were used for the sample validation of the SNR
using (12), (13) and (4). Error bars calculated using a jackknife procedure (Zoubir and
Boashash 1998) and displayed in figure 7(b) represent a 68% confidence interval.

From figure 7(b) we see that the SNR does not significantly vary with r and that the theory
and sample methods correspond well. This result belies the intuition discussed in figure 1.
That the SNR vs. r curve is indeed flat is borne out by the anecdotal signal-present (+) and -
absent (−) reconstructions shown in the first four rows of figure 7(c). Note that even in the
signal-absent cases, the lesion boundaries can induce false lesions as seen in the 4th row of
figure 7(c). For signal-present cases, the lesion boundaries can induce reverse contrast (cold)
lesions in place of the hot-lesion signal. The fifth row of figure 7(c) comprises the variance
images (at a common gray scale) of the 9th slice. The sixth row shows the 9th slice of the

noiseless reconstructions of the signal, given by . Note that the variance level
along the perimeter of the anatomical lesion boundary increases as the lesion boundary
becomes more confining. This accounts for a typical result of a false positive lesion as seen
in the fourth row, column r=1 and the cold lesion as seen in the third row, column r = 1. The
high variance can also lead to false negative reports as seen in the images in row 3, columns
r = 4, 6 and 8. The last row illustrates that the anatomical lesion boundary restricts the
spread of the mean reconstructed lesion and yields for noiseless images a higher contrast
with more restricting lesion boundaries. One would expect this latter effect to increase SNR
as r is reduced. However, tight lesion boundaries also increase variance (row 5), and this
decreases SNR. The trade-off of these two effects results in the slow variation of SNR with r
seen in figure 7(b). We note that increased variance within a lesion boundary was also
observed by Comtat et al (2002).

We repeated the lesion boundary experiment of figure 7(b), but with a smaller 1 × 1 × 3
pixel lesion whose size in the plane of observation was less than the system resolution. We
added one additional lesion boundary, indexed by r = 0, that exactly encompassed the
smaller functional lesion. The resulting SNR vs r curve was again invariant with r.

We again tested whether the inclusion of internal noise would affect our main conclusion -
the invariance of SNR with r. As before, we used 441 combinations of (α1, α2) in the
internal noise modification of . We observed that inclusion of internal noise lowered the
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overall SNR(r) curve, but did not change the invariance with r. Internal noise, therefore, did
not alter our conclusions.

Though the results in figures 5 and 7 were for a single β, we found that using higher or
lower β’s (10β and 0.1β) simply shifted the curves up (for 10β) and down (for 0.1β) without
altering the basic shape of the curve for the lesion boundary experiment and without
changing the agreement of the anatomy and no-anatomy cases for the organ boundary
experiment.

5. Discussion
5.1. Summary

We studied the effects of anatomical information on lesion detectability using anatomical
and non-anatomical MAP priors, an SKE/BKE task, a CHO observer and a scalar figure of
merit SNR. We investigated, in this context, whether SNR would be improved with the
incorporation of organ boundary information. We further investigated whether this
improvement in SNR would be a function of proximity of the lesion to an organ boundary.
We concluded that SNR was unchanged with the addition of organ boundary information,
and in particular, we found no change in SNR at any proximity.

We also investigated whether the incorporation of anatomical lesion boundaries coincident
with the assumed functional lesion boundary (our r = 1 case) would improve SNR relative to
no anatomical information (our r = 8 case). We further investigated whether SNR
improvements, if any, would vary if the anatomical lesion boundary was less proximate (our
1 < r < 8 case) to the assumed functional lesion boundary. We concluded that SNR was
unaffected by the inclusion of perfect (r = 1) lesion boundaries. In particular, SNR was
insensitive to r. This insensitivity may be due to the fact that for the low lesion contrast
necessary for an SKE/BKE task, the detection performance is limited by the appearance of
false positive and false negative lesions within anatomical lesion boundaries. This is caused
by an increase in variance within the lesion boundary as seen in figure 7(c).

In sum, we found that anatomical boundary information did not affect SNR in our context,
and that SNR was unaffected as proximity was varied. We note that related studies by
others, discussed in section 5.2, do not include proximity effects. Hence any comparisons to
our work involve only perfect (r = 1) lesion boundary information. In addition, comparisons
involving organ boundaries do not take into account lesion location with respect to the organ
boundary.

One can gain some insight into our negative results by noting that, for our reconstruction
method an optimal linear observer, the Hotelling observer (HO), would yield no SNR
difference with anatomy versus without anatomy. Therefore any difference in our anatomy
versus no-anatomy results must be due to the inclusion of channels. Note that the CHO is a
Hotelling observer applied to channel responses instead of directly to pixels. The HO is a
limiting form of the CHO as we increase the number of channels so that a unit-weight

channel template is applied to each pixel. Note that . (We verified this
numerically for simple 2D organ boundary experiments.) Qualitatively, the smoothing prior
without anatomy acts as a linear information-preserving slowly-varying smoothing filter in
the reconstruction domain, and the HO is insensitive to this smoothing if the reconstruction
step does not remove information. When we adjust ℛ to incorporate anatomical
information, it simply induces a form of smoothing on the reconstruction that yields sudden
changes along anatomical loci and the HO is again insensitive to this form of smoothing.
Indeed, it is possible for the SKE/BKE case, given that ℱ and (ℱ + βℛ) are invertible, to
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calculate  using only sinogram quantities (Qi and Huesman 2001, Abbey 1998)
having nothing to do with ℛ.

Our selection of a 3-DOG channel scheme does not seem especially important and we have
observed similar results with different channel schemes. For any reasonable β, the anatomy/
no anatomy SNR curves remain in close agreement. We also observed that the inclusion of
internal noise did not alter our conclusions. Our CHO used radially symmetric channels
even near organ boundaries where a non-symmetric channel might be more appropriate. The
use of radially symmetric channels is justified (Abbey and Barrett 2001) when the signal
profile and noise covariance is radially symmetric around the lesion. This is true for our
lesion boundary experiment. But for the organ boundary experiments, the signal spread and
the covariance are anisotropic and the use of anisotropic channels might give different
performance. Partly to address this problem, we designed our somewhat artificial lesion
boundary experiment to be completely isotropic in 3D. We again observed little difference
in SNR as the anatomical lesion boundary radius was expanded to the point where the
boundary disappeared.

Finally, this work should obviously be extended to human observer testing. Preliminary
results using human experiments with a 2AFC methodology (Barrett and Myers 2003) to
measure SNR showed agreement of human and model observer for our lesion boundary
experiment, but far more work is needed.

5.2. Related Work
Any comparison of our results to other work must be couched in the context of the
components of a generalized detection task. Thus one must specify the task (detection or
detection plus localization or localization). The object model including signal (size, contrast,
shape, location known or unknown) and background (variable or fixed) must be stated. The
imaging modality (PET or SPECT) and imaging model (Monte Carlo vs analytical projector,
modeling of scatter or other effects) must also be stated. One must consider the nature of the
anatomical boundary information (the particular type of lesion and or organ boundary) and
the reconstruction method (MAP with some anatomical or non-anatomical prior, post
smoothed ML). To measure image quality, one must specify the observer + scalar figure of
merit (CHO+SNR, NPW+SNR, scanning CNPW+ALROC, human+ALROC, human
+localization accuracy.) Finally many studies focus on the variation of the figure of merit
with some regularization parameter (smoothing weight β in MAP, post smoothing kernel for
ML, number of iterations).

It will be useful in our comparisons below to be more specific about our anatomical
boundary taxonomy. We will consider 4 types of boundary: (i) organ boundaries (ii) perfect
lesion boundaries as in our r = 1 case (we shall refer to these as “tight lesion boundaries”)
(iii) organ + tight lesion boundaries (iv) hybrid boundaries, in which functional lesions are
surrounded by complex anatomies that do not correspond to any of the cases (i)–(iii).

Others have assessed the effects of anatomical priors in PET and SPECT for pure detection,
pure localization, and for detection plus localization tasks. None of these directly addressed
our question of boundary proximity effects, but some of these works had conclusions that
bore relation to our work. We first consider previous work that involved detection only.

The work most similar to ours is found in Nuyts et al (2005). Nuyts et al (2005) considered
the detection of hypometabolic regions in brain PET using an SKE/BKE task and CHO
+SNR. They compared SNR performance for their brain-specific AMAP anatomical
reconstruction versus a non-anatomical post-smoothed ML (psML) reconstruction. Like our
anatomical MAP prior, the prior in AMAP breaks continuity across anatomical boundaries
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but applies different forms of smoothing within grey matter, white matter and CSF. In
phantom studies incorporating tight lesion boundaries, organ boundaries and hybrid
boundaries, they found that AMAP at a variety of smoothing parameters β outperformed
psML at a variety of Gaussian post-smoothing kernels with standard deviation σps. A related
study by Baete et al (2004a,2004b) assessed SNR of hypometabolic brain regions in PET
but used an NPW (Non-prewhitening) observer (Barrett and Myers 2003) rather than a
CHO. Again AMAP was compared to psML. The brain phantom used here involved hybrid
boundaries only. No significant difference was found between the optimal NPW SNR of
AMAP and the optimal NPW SNR of psML. In further work by Baete et al (2004a), they
again addressed the same PET problem using an NPW observer, but this time compared the
performance of AMAP versus that of a MAP algorithm using a relative difference prior
(Nuyts et al 2002). The NPW SNR was greater for AMAP than that of MAP-RD.

Since for our MAP with SKE/BKE and CHO+SNR, anatomical information essentially had
no advantage, and since, in the various contexts listed above, AMAP did often show an
advantage, one is motivated to reconcile these differences. In (Nuyts 2005) AMAP did
indeed outperform psML using a CHO and SKE/BKE detection task. However, the study
was incommensurate with ours in that AMAP differed from our anatomical MAP and psML
differed from our non-anatomical MAP. In Baete et al (2004a) the MAP-RD prior is of
interest because it is the natural non-anatomical Bayesian counterpart of AMAP. However,
that study was again incommensurate with ours since the observer was an NPW. Despite
incommensurabilities, one might well infer that a prior (such as AMAP) highly tuned to the
anatomical correlates of the underlying radiotracer distribution might lead to improved
performance in a detection-only task.

We now consider previous work (Bruyant et al (2004a,2003,2004b) and Lehovich et al
2006) involving a detection plus localization task for a Ga-67 SPECT torso simulation. The
projection data were generated using a Monte Carlo package. These tasks involve model
observers and a figure of merit radically different than ours and also necessarily involve
lesion contrasts much higher than those required by SKE/BKE. The figure of merit was the
area under the LROC curve (ALROC). These works used either human observers or a
numerical scanning channelized NPW (CNPW) observer (Gifford et al 2003). The observer
was required to correctly detect the signal while also localizing it within a search tolerance.
They addressed the case of SPECT with an imaging model similar to ours. They encoded
anatomical information using a MAP objective identical to ours. Their lesion contrasts were
high ranging from 12:1 to 30:1. They considered organ boundaries but with the lesion
location, if the lesion was present, distributed uniformly throughout a search region. The
results in Bruyant et al (2004a), using their numerical observers, showed that the use of
organ-boundary information did not increase ALROC relative to that obtained with non-
anatomical psML. While scatter was not modeled in Bruyant et al (2004a), it was included
in Bruyant et al (2003, 2004b). In Bruyant et al (2003), organ boundary information led to a
mild increase in ALROC for the numerical observer relative to that of non-anatomical
psML. In a human observer study in Lehovich et al (2006), they used, in addition to a non-
anatomical psML reconstruction, a non-anatomical MAP reconstruction identical to the one
in this paper. Scatter was included. An interesting conclusion was that for MAP
reconstructions organ boundaries alone did not significantly improve ALROC. These papers
also considered the case of organ + tight lesion boundaries. All four papers found significant
ALROC increases with respect to their non-anatomical counterparts for this organ + tight
lesion boundary case. In sum, organ boundaries alone did not help much, but organ + tight
lesion boundaries were of significant help in detection plus localization studies. In a separate
work by a PET brain group, Baete et al (2004b) used a pure localization task (signal always
present but location unknown), human observers, and a figure of merit given by percent
correctly localized signals in an MAFC study. They used a brain phantom whose
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hypometabolic lesions were surrounded by hybrid boundaries. The lesion contrast ranged
from 5% –100%. In this context it was found that AMAP outperformed the non-anatomical
psML reconstruction.

While none of the studies involving higher-order tasks, such as detection plus localization,
directly addressed boundary proximity effects, it would be interesting to investigate these.
For example, since the ALROC metric involves an aggregate detectability over all locations
in a search region, it is not clear whether lesions nearer to boundaries contributed more to
ALROC than other lesions.

Finally, we point out that previous studies discussed in this section have not included the
important feature of statistically variable backgrounds. Aside from their realism, the
inclusion of background variability might lead to a change in conclusions regarding the
efficacy of anatomical priors in some task contexts.

Acknowledgments
This work was supported by National Institute of Health (NIH)-NIBIB grant R01 EB02629 and in part by grants
NSC94-2320-B-182-014 NSC Taiwan and CMRPG34005 from Chang Gung Research Fund, Taiwan

References
Abbey, CK.; Barrett, HH.; Eckstein, M. Practical issues and methodology in assessment of image

quality using model observers. Conf. Rec. SPIE Med. Imaging; 1997. p. 182-94.
Abbey, C. PhD Thesis, Graduate Interdisciplinary Program in Applied Mathematics. University of

Arizona; Tuscon, AZ, USA: 1998. Assessment of reconstructed images.
Abbey C, Barrett HH. Human- and model-observer performance in ramp-spectrum noise: effects of

regularization and object variability. J Opt Soc Am A 2001;18(3):473–88.
Ardekani BA, Braun M, Hutton BF, Kanno I, Iida H. Minimum cross-entropy reconstruction of PET

images using prior anatomical information. Phys Med Biol 1996;41(11):2497–517. [PubMed:
8938041]

Baete K, Nuyts J, Van Paesschen W, Suetens P, Dupont P. Anatomical-based FDG-PET reconstruction
for the detection of hypo-metabolic regions in epilepsy. IEEE Trans on Medical Imaging 2004a;
23(4):510–9.

Baete K, et al. Evaluation of anatomy based reconstruction for partial volume correction in brain FDG-
PET. NeuroImage 2004b;23:305–17. [PubMed: 15325378]

Barrett, HH.; Myers, KJ. Foundations of Image Science. Wiley Interscience; 2003.
Bowsher J, Johnson V, Turkington T, Jaszczak R, Floyd C Jr, Coleman R. Bayesian reconstruction and

use of anatomical a priori information for emission tomography. IEEE Trans Med Imaging
1996;15(5):673–86. [PubMed: 18215949]

Bruyant P, Gifford H, Gindi G, King M. Numerical observer study of MAP-OSEM regularization
methods with anatomical priors for lesion detection in Ga-67 images. IEEE Trans Nucl Sci 2004a;
51(1):193–7.

Bruyant, P.; Gifford, H.; Gindi, G.; King, M. Investigation of observer performance in MAP-EM
reconstruction with anatomical priors and scatter correction for lesion detection in 67Ga images.
Conf. Rec. IEEE Nuc. Sci. Symp. Med. Imaging Conf.; 2003. p. 3166-9.

Bruyant, P.; Gifford, C.; Gindi, G.; Pretorius, P.; King, M. Human and numerical observer studies of
lesion detection in Ga-67 images obtained with MAP-EM reconstructions and anatomical priors.
Conf. Rec. IEEE Nuc. Sci. Symp. Med. Imaging Conf.; 2004b. p. 4072-5.

Comtat C, Kinahan P, Fessler J, Beyer T, Townsend D, Defrise M, Michel C. Clinically feasible
reconstruction of 3D whole-body PET/CT data using blurred anatomical labels. Phys Med Biol
2002;471:1–20. [PubMed: 11814220]

Fessler J. Mean and variance of implicitly defined biased estimators (such as penalized maximum
likelihood): applications to tomography. IEEE Trans Image Processing 1996;5(3):493–506.

Kulkarni et al. Page 14

Phys Med Biol. Author manuscript; available in PMC 2010 April 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Gifford HC, King MA, de Vries DJ, Soares EJ. Channelized hotelling and human observer correlation
for lesion detection in hepatic SPECT imaging. J Nucl Med 2000;41(3):514–21. [PubMed:
10716327]

Gifford, HC.; Pretorius, PH.; King, MA. Comparison of human- and model-observer LROC studies.
Conf. Rec. SPIE Med. Imaging; 2003. p. 112-22.

Gindi G, Lee M, Rangarajan A, Zubal G. Bayesian reconstruction of functional images using
anatomical information as priors. IEEE Trans Med Imaging 1993;12:670–80. [PubMed:
18218461]

Hsu, CH.; Leahy, R. PET image reconstruction incorporation anatomical information using segmented
regression. Conf. Rec. SPIE Med. Imaging; 1997. p. 381-92.

Hsiao, IT.; Rangarajan, A.; Gindi, G. A new convergent MAP reconstruction algorithm for emission
tomography using ordered subsets and separable surrogates. Conf. Rec. IEEE Int. Symp. Biomed.
Imaging; 2002. p. 409-12.

Lipinski B, Herzog H, Rota Kops E, Oberschelp W, Muller-Gartner HW. Expectation maximization
reconstruction of positron emission tomography images using anatomical magnetic resonance
information. IEEE Trans Med Imaging 1997;16(2):129–36. [PubMed: 9101322]

Leahy, R.; Yan, X. Incorporation of anatomical MR data for improved functional imaging with PET.
Information Processing in Medical Imaging: 12th International Conference; Wye, UK. 1991. p.
105-20.

Lehovich, A.; Bruyant, PP.; Gifford, HC.; Gindi, G.; Schneider, PB.; Squires, S.; King, MA. Human-
observer LROC study of lesion detection in Ga-67 SPECT images reconstructed using MAP with
anatomical priors. Conf. Rec. IEEE Nuc. Sci. Symp. Med. Imaging Conf.; 2006. p. M03-5

Meltzer C, Leal JP, Mayberg HS, Wagner HN, Frost JJ. Correction of PET data for partial volume
effects in human cerebral cortex by MR imaging. J of Comp Assisted Tomography 1990;14(4):
561–70.

Muller-Gartner HW, Links JM, Prince JL, Bryan RN, Mcveigh E, Leal JP, Davatzikos C, Frost JJ.
Measurement of radiotracer concentration in brain gray matter using positron emission
tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab
1992;12(4):571–83. [PubMed: 1618936]

Narayanan M, Gifford H, King M, Pretorius P, Farncombe T, Bruyant P, Wernick M. Optimization of
iterative reconstructions of 99mTc cardiac SPECT studies using numerical observers. IEEE Trans
Nuc Sci 2002;49:2355–60.

Nuyts J, Beque D, Dupont P, Mortelmans L. Concave prior penalizing relative differences for
Maximum-a-Posteriori reconstruction in emission tomography. IEEE Trans Nucl Sci 2002;49(1):
56–60.

Nuyts J, Baete K, Beque D, Dupont P. Comparison between MAP and postprocessed ML for image
reconstruction in emission tomography when anatomical knowledge is available. IEEE Trans Med
Imaging 2005;24(5):667–75. [PubMed: 15889553]

Oldan J, Kulkarni S, Xing Y, Khurd P, Gindi G. Channelized Hotelling and human observer study of
optimal smoothing in SPECT MAP reconstruction. IEEE Trans Nucl Sci 2004;51(3):733–41.

Ouyang X, Wong WH, Johnson VE, Hu X, Chen CT. Incorporation of correlated structural images in
PET image reconstruction. IEEE Trans Med Imaging 1994;13(4):627–40. [PubMed: 18218541]

Rangarajan A, Hsiao IT, Gindi GR. A Bayesian joint mixture framework for the integration of
anatomical information in functional image reconstruction. J Math Imaging and Vision
2000;12(3):199–217.

Rousset OG, Ma Y, Evans AC. Correction partial volume effects in PET: principle and validation. J
Nucl Med 1998;39(5):904–11. [PubMed: 9591599]

Sastry S, Carson RE. Multimodality Bayesian algorithm for image reconstruction in PET: a tissue
composition model. IEEE Trans Med Imaging 1997;16(6):750–61. [PubMed: 9533576]

Trefethen LN, Bau D. Numerical Linear Algebra (SIAM). 1997
Qi J, Leahy R. Resolution and noise properties of MAP reconstruction for fully 3-D PET. IEEE Trans

Med Imaging 2000;19(5):493–506. [PubMed: 11021692]
Qi J, Huesman R. Theoretical study of lesion detectability of MAP reconstruction using computer

observers. IEEE Trans Med Imaging 2001;20(8):815–22. [PubMed: 11513032]

Kulkarni et al. Page 15

Phys Med Biol. Author manuscript; available in PMC 2010 April 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Videen O, Perlmutter J, Mintun M, Raichle M. Regional correction of positron emission tomography
data for the effects of cerebral atrophy. J Cereb Blood Flow Metab 1998;8(5):662–70. [PubMed:
3262114]

Wollnweber SD, Tsui BMW, Lalush DS, Frey DS, LaCroix KJ, Gullberg GT. Comparision of
Hotelling observer models and human observers in defect detection from myocardial SPECT
imaging. IEEE Trans Nucl Sci 1999;46(6):2098–103.

Zoubir AM, Boashash. The bootstrap and its application in signal processing. IEEE Signal Processing
Magazine 1998;15(1):56–76.

Kulkarni et al. Page 16

Phys Med Biol. Author manuscript; available in PMC 2010 April 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
(a) Phantom with lesion present. Lesion contrast is 1.333:1 (b) Noiseless lesion-present
MAP reconstruction without anatomical boundary information. (c) Noiseless lesion present
MAP reconstruction with anatomical boundary information placed precisely along the lesion
boundary. The figure supports the intuition that with the presence of lesion boundary
information, we expect the detectability of the lesion to be enhanced.
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Figure 2.
(a) Radial profile of channels in frequency space. (b) 2D space domain channel template
(corresponding to the first channel) displayed here as a 64 × 64 grey scale image. (c) Central
profile of the channel template in (b).
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Figure 3.
2D cross-section of 3D spherical anatomical lesion boundaries of increasing radii centered
on a fixed small functional lesion. The radii are indexed by r. Note r = 1 corresponds to an
anatomical lesion boundary coincident with the fuctional lesion boundary and r = 8 to no
anatomical lesion boundary. Dark pixels are inside the anatomical lesion boundary.
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Figure 4.
(a) The 9th slice of the phantom through the lesion center. The figure shows four of the ten
prospective lesion locations. (b) Horizontal profile plot through center of second lesion from
top. In the profile plot the lesion is easily seen, centered at pixel 25.
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Figure 5.
Organ boundary experiment (a) Theory SNR plotted as a function of location ranging from
the inner edge of the liver to the outer edge. “Location” is proportional to distance from the
inner edge. (b) Sample SNR along with error bars plotted as a function of location ranging
from the inner edge of the liver to the outer edge. In each case, the curves for the anatomy
and no-anatomy cases coincide almost exactly, so the plots appear as a single curve.
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Figure 6.
Slice from anecdotal signal-present reconstructions (a) without organ boundaries (b) with
organ boundaries. Signal-present reconstructions with a signal contrast increased for
visualisation (c) without and (d) with anatomical boundary discontinuities. Note (a)(b) share
a common gray scale and (c)(d) share a common grey scale.
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Figure 7.
Effects of increasingly inaccurate boundary information about the lesion. (a) 9th slice of the
phantom through center of the lesion (b) SNR versus proximity of boundary with r=1 a
perfect boundary and r=8 no boundary. Plot shows that SNR versus r is relatively flat, with
theory and sample methods in agreement. (c) Each column corresponds to a boundary
indexed by r. The first two rows show anecdotal reconstructions with the lesion present (+)
and absent (−). The next two rows show another such set of anecdotal reconstructions. Each
image in the four rows shares a common gray-scale. The fifth row plots variance at each
pixel and the sixth row is the difference of mean signal present and absent reconstructions.
The fifth row images share a common gray and the sixth row images share a common gray
scale.
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