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Abstract
A framework is formulated within the theory of mixtures for continuum modeling of biological
tissue growth that explicitly addresses cell division, using a homogenized representation of cells
and their extracellular matrix (ECM). The model relies on the description of the cell as containing
a solution of water and osmolytes, and having a porous solid matrix. The division of a cell into
two nearly identical daughter cells is modeled as the doubling of the cell solid matrix and
osmolyte content, producing an increase in water uptake via osmotic effects. This framework is
also generalized to account for the growth of ECM-bound molecular species that impart a fixed
charge density (FCD) to the tissue, such as proteoglycans. This FCD similarly induces osmotic
effects, resulting in extracellular water uptake and osmotic pressurization of the ECM interstitial
fluid, with concomitant swelling of its solid matrix. Applications of this growth model are
illustrated in several examples.

1. INTRODUCTION
Biological tissue growth can occur through a variety of mechanisms, including cell division
and deposition of extracellular matrix (ECM) products synthesized by cells. Biological
tissue growth may also be regulated by alterations in the intracellular concentration of
osmolytes, which regulate cell volume. To date, continuum modeling of biological tissue
growth appears to have focused mainly on the challenge of modeling deposition of solid
matrix products [1,2,3,4,5,6,7,8,9,10], although some analyses have also addressed the
growth of charged species, such as proteoglycans, that are fixed to the solid matrix [11,12].
Modeling of chemical reactions among solutes is pervasive in chemistry and chemical
engineering, and the incorporation of such reactions in the analysis of tissue growth has been
demonstrated [12,13,14].

Other than in plant growth [15], less attention has been given to the porous nature of
biological tissues and the role of osmotic effects in the control of water uptake and release.
Since the growth of biological tissues involves significant uptake of intracellular and
extracellular water, it is important to also consider osmotic mechanisms in the study of
tissue growth.
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In the current study, we formulate a framework for continuum modeling of biological tissue
growth that explicitly addresses cell division, using a homogenized representation of cells
and their ECM. The essential elements of this model rely on the description of the cell as
containing a solution of water and osmolytes, and having osmotically inactive solid
constituents that may be generically described as a porous solid matrix. The division of a
cell into two nearly identical daughter cells normally starts with the duplication of cell
contents during the synthesis phase, followed by cell division during the mitosis phase.
Thus, ultimately, cell division is equivalent to doubling of the cell solid matrix and osmolyte
content, and a resulting increase in water uptake via osmotic effects. In a homogenized
representation of the tissue, the geometry of individual cells is not modeled explicitly, but
their solid matrix and intracellular osmolyte content can be suitably incorporated into the
analysis of the tissue response, thereby accounting for their osmotic effects. Thus, cell
division can be described by the growth of these cell constituents, including the
accumulation of osmotically active content, and the resultant uptake of water.

This framework is also generalized to account for the growth of ECM-bound molecular
species that impart a fixed charge density (FCD) to the tissue, such as proteoglycans. This
FCD similarly induces osmotic effects, resulting in extracellular water uptake and osmotic
pressurization of the ECM interstitial fluid, with concomitant swelling of its solid matrix.

The formulation of this biological tissue growth framework relies on a homogenization
procedure of the cell-ECM system, to overcome the challenge of modeling each cell
explicitly. The essential elements of this homogenization rely on the existence of consistent
frameworks for modeling the response of cells and porous-hydrated charged ECM to
osmotic and mechanical loading.

The classical mathematical treatment for the passive response of isolated cells to osmotic
loading with non-electrolytes was presented by Kedem and Katchalsky [16], who modeled
the cell as a fluid-filled semi-permeable membrane. In a recent theoretical study using
mixture theory, we extended their approach by modeling the protoplasm as a gel that may
limit the intracellular solubility of a membrane-permeant osmolyte [17]; experimental
support of this concept was subsequently provided in a biomimetic study of osmotic loading
of alginate beads [18].

To model swelling of a cell within its surrounding matrix it is also necessary to take into
account the swelling response of the matrix to osmotic changes in its external bathing
environment, as shown recently by Haider et al. [19]. The triphasic theory of Lai et al. [20],
and related theoretical frameworks [21,22], may be used to analyze a charged matrix
osmotically loaded with monovalent counter-ions. Similarly, the related mixture approach of
Mauck et al. [23] may be used to analyze osmotic loading of a matrix by neutral solutes,
accounting for their solubility in the porous matrix.

The current study combines many of these treatments and proposes a homogenization
method for describing the swelling response of a tissue whose cellularity may vary from 0 to
100 percent of its volume. Furthermore, the framework is extended to account for biological
tissue growth by cell division, via alteration of the intracellular concentration of osmolytes
and solid matrix content, and by growth of ECM-bound charged molecular species.
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2. BASIC DEFINITIONS
2.1. Apparent Density

In mixture theory [24,25], multiple constituents α can co-exist within an elemental region,
including solid and fluid constituents. The content of each constituent may be given by the
apparent density ρα, where

(1)

Here, dmα represents the mass of constituent α in the elemental mixture volume dV. If the
mixture includes solid constituents constrained to move together (collectively denoted by α
= s), a natural choice is to define dV as a material region on this solid matrix; there is no
flow of solid across the boundary surface of the elemental region dV. Therefore the only
change that may occur in the elemental solid mass dms would be from chemical reactions
(anabolic or catabolic reactions leading to resorption or growth, respectively). However,
fluid constituents of the mixture (α ≠ s) may flow in or out of the region dV , on the
understanding that the solid constituents of a solid-fluid mixture form a porous-permeable
matrix.1

In the mixture theory framework employed here, each constituent α is considered to be
intrinsically incompressible [26]. This means that the true density  of the constituent is
invariant, where

(2)

and dVα is the volume of constituent α in the elemental region dV. In particular, due to
intrinsic incompressibility, dVs can only change as a result of chemical reactions. However,
the elemental volume dV can change as a result of fluid flow in or out of the porous solid
material region. Thus, even though the individual constituents are intrinsincally
incompressible, the mixture is compressible as long as its pores remain open (also see
Section 2.6 below).

2.2. Volume Fraction
There are no voids in a saturated mixture, thus

(3)

It is also possible to define the volume fraction of constituent α as

(4)

such that

1In the special case when a fluid cannot flow, due to being entirely trapped within pores or otherwise bound to the solid, it may be
modeled as part of the solid matrix.
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(5)

The mixture saturation condition may also be written as

(6)

With this definition of φα, it follows that the apparent and true densities are related
according to

(7)

implying that the apparent density is also bounded, .

In biological mixtures, the fluid constituents generally consist of one solvent, typically water
(α = w), and multiple solutes, generically denoted by α ≠ s, w. In the mixture framework
employed here, it is assumed that the volume fraction of solutes is negligible, φα ≪ 1 (α ≠ s,
w), consistent with the fluid mixture being a dilute solution, so that the mixture saturation
condition may be approximated by

(8)

The solid and solvent volume fractions are natural variables for describing solid and solvent
content in a mixture of intrinsically incompressible constituents.

2.3. Concentration
For solutes, a natural variable describing their content is the concentration. Concentration
may be defined on a mixture volume basis,

(9)

or on a solution volume basis,

(10)

where dnα is the number of moles of solute α in the elemental region dV. The latter
definition is consistent with the common usage in chemistry; as shown in Section 2.5 below,
the former definition is more suitable for modeling growth of solute content. Based on these
definitions, concentration is related to apparent density via

(11)

where the molecular weight of constituent α,
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(12)

is invariant.

2.4. Kinematics
In the current configuration the spatial position of an elemental mixture region is denoted by
x. Since different mixture constituents may have different motions, each constituent α which
is currently at x originated from possibly distinct reference locations Xα. The motion of each
constituent is thus described by its own function

(13)

The solid s may itself consist of a mixture of solid constituents denoted generically by α = σ.
In the current treatment, the solid constituents are constrained to move together at all times
[7], thus they all share the same velocity vσ = vs. This constraint makes it meaningful to
define the net solid apparent density as ρs = ∑σ ρσ and the net solid volume fraction as φs =
∑σ φσ.

Whether the reference configurations of the solid constituents are the same represents a
critical consideration here. In the more general case, for distinct reference configurations Xσ,
the motions χσ (Xσ, t) would be distinct, albeit constrained to all satisfy

(14)

In this case, the deformation gradient of each solid constituent would also be distinct and
given by

(15)

Clearly, the stress  resulting from the strain in each solid constituent σ (the effective
stress), each being a function of its own Fσ, would also be distinct and not reduce to zero in
a common reference configuration. Furthermore, as the proportion φσ of each solid
constituent evolves due to growth or resorption, the net effective stress in the solid,

, may similarly evolve due to evolving contributions from each constituent.2 This
makes it impossible to define a time-invariant stress-free reference configuration Xs for the
mixture of solid constituents, in a framework that accounts for growth. Therefore, in a
general framework, it is necessary to keep track of multiple solid reference configurations,
with motions satisfying Eq.(14) and distinct deformation gradients given by Eq.(15). We
will address this general framework in greater detail in a future study, with the
understanding that the specialized presentation in the remainder of this treatment represents
an essential building block for this more general framework.

2In mixture theory, the effective stress  in a constituent is defined such that its associated traction vector on a surface represents the
force acting on that constituent, normalized by the elemental area of the mixture. It is thus an apparent stress; apparent stresses can be
added together to provide a net apparent stress, and its associated traction vector on an elemental mixture area.
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In the current study, we consider the special framework where all the solid constituents
share the same reference configuration Xσ = Xs, such that all their motions are the same,

(16)

and all solid constituents share the same deformation gradient

(17)

Thus, each of the stresses  reduces to zero in the common reference configuration, and we
need to keep track of only one deformation gradient, Fs.

2.5. Interstitial Growth
Interstitial growth is fundamentally described by the equation of conservation of mass,

(18)

where vα is the constituent’s velocity, and ρ̂α is the mass density supply to constituent α
from chemical reactions. Supply terms are rate variables; in the notation of this study, they
are denoted with a circumflex accent (^). The conservation of mass for the entire mixture
requires that

(19)

In many studies of biological tissue growth, this constraint is not explicitly enforced because
not all tissue constituents are modeled explicitly.

It is possible to dissociate changes in ρα resulting from growth and those resulting from solid
deformation, by defining the apparent density, and the density supply, of α constituents
relative to the stress-free reference configuration as

(20)

where

(21)

and dVr is the elemental mixture volume in its stress-free reference configuration, which
remains invariant [10,27,28]. Thus,

(22)

Ateshian et al. Page 6

J Biomech Eng. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In the case of solid constituents or molecular species fixed to the solid matrix, denoted by α
= σ, dmσ may vary over time due to growth, thus  can describe this change in mass using
an intensive variable, normalized to the invariant volume of the mixture in the reference
configuration. Substituting Eq.(20) into Eq.(18) produces an evolution equation for ,

(23)

where we used vσ = vs. This relation is expressed in the spatial frame, where . In
a material frame, where , this relation can be rewritten as

(24)

and integrated to yield

(25)

It is evident from this relation that in the absence of growth of constituent , its
apparent density relative to the stress-free reference configuration does not change over
time.

In this relation,  must be provided via a constitutive relation that may depend on the
density of any or all constituents present in the mixture, as well as the solid matrix strain, the
ambient temperature, and the respective gradients of all these parameters; the rate of
deformation of any constituent, its diffusion velocity relative to the mean mixture velocity;
and the solid matrix texture tensors in the reference configuration [28].

For constituents α whose content is described more naturally by their volume fraction, we
may define

(26)

to represent the volume fraction of α relative to the reference configuration, where dV α is
the elemental volume of constituent α in the current configuration; using the definitions of
Eqs.(1), (2), and (4), it follows that

(27)

and

(28)

Since φα is bounded according to Eq.(5),  also satisfies
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(29)

The mixture saturation condition, Eq.(6), now yields

(30)

In the case of solid constituents α = σ, substituting Eq.(27) into Eq.(25) and recognizing the
invariance of  yields the growth evolution equation for ,

(31)

where . Recognize that, unlike φσ, the upper bound on  is not unity but Js, as
given in Eq.(29). Thus, if Js > 1,  can exceed unity. This is consistent with the expectation
that a swollen tissue has more pore space available for interstitial solid growth.

The net solid volume fraction relative to the reference configuration is given by

(32)

Using the mixture saturation condition under the assumption of negligible solute volume
fraction implies that

(33)

For molecules bound to the solid matrix, whose content is described more naturally by their
concentration, we may define the concentration relative to the reference configuration as

(34)

such that

(35)

Thus,  provides a measure of the change in the number of moles of constituent σ as a
result of growth, in the form of an intensive variable normalized by the invariant mixture
volume in the reference configuration. Substituting Eq.(35) into Eq.(25) yields the growth
evolution equation for ,

(36)
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where . Since , this equation shows that, even in the absence of
growth in constituent , changes can occur in the solution volume-based
concentration cσ, either as a result of volume-altering deformation (changing Js) or the
evolution of  from the growth of other solid constituents.

2.6. Pore Closure
Closure of the pores in a porous permeable solid matrix represents a limiting condition in a
mixture of intrinsically incompressible constituents, whose implications are clarified here.
Pore closure can occur as a result of deformation or growth.

Pore closure occurs when φs = 1, implying that  according to Eq.(32). Once closure
has occurred, there can be no further decrease in Js since there can be no further exudation
of fluid, and the remaining solid is intrinsically incompressible. Thus, to accommodate pore
closure, an analysis must recognize this transition between a compressible and
incompressible mixture, with all the resulting implications (such as the enforcement of

 and the transition of the stress constitutive relation from compressible to
incompressible formulations when ). In transient analyses, pore closure can be avoided
by formulating the constitutive relation for the permeability of the porous-permeable solid
matrix such that it decreases asymptotically to zero as φs → 1. In this case, it will take an
infinite time for the fluid to completely exude from the pores as they close, indefinitely
postponing the need for transitioning from a compressible to an incompressible mixture.

An important implication of the current analysis is that interstitial growth of solid
constituents occurs by progressively filling the pores of the tissue, thereby displacing the
interstitial fluid. If the tissue swells as a result of growth, as may occur via osmotic
mechanisms as shown below, the resulting pore swelling will compete with solid matrix
deposition such that the pores do not necessarily close with increasing solid matrix
deposition.

3. BIOLOGICAL TISSUE MODEL
The mixture framework can describe cells and the ECM, albeit using different mixture
constituents. The total stress in a mixture is given by

(37)

where p is the fluid pressure, I is the identity tensor, and  is the effective or extra stress,
resulting from the deformation of the solid matrix. Under quasi-static conditions, and in the
absence of external body forces, the conservation of linear momentum for the mixture
requires that

(38)

The current treatment is limited to the equilibrium response to osmotic swelling and
mechanical loading, when all transient processes resulting from the flow of interstitial
solvent and solutes have subsided. In this case, p represents only the osmotic pressure in the
fluid, as the transient contribution from mechanical loading would have subsided. This
simplification enables a clearer presentation of the salient physico-chemical concepts, and
can be extended to transient processes subsequently. It also implies that the conservation of
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linear momentum for the fluid constituents (solvent and solutes), in the absence of external
body forces, requires that their mechano-electrochemical potentials be uniform [20,29].

The constitutive relations adopted for the mechano-chemical potential of solutes and solvent
are those of ideal solutions [30], to avoid a burdensome notation; non-ideal behavior may be
easily incorporated subsequently. Thus, for water, the mechano-(electro)chemical potential
is given by

(39)

where R is the universal gas constant, θ is the absolute ambient temperature (assumed
uniform), and  is the chemical potential in the reference physico-chemical state when p
= p0 and cα = 0 [20,22]. The summation term is taken over all solute constituents of the
mixture.

Similarly, the mechano-electrochemical potential of the solutes is given by

(40)

where zα is the charge number and κα is the solubility of solute α in the mixture (0 < κα ≤ 1)
[17,20,23]; Fc is Faraday’s constant and ψ is the electrical potential in the mixture;  is
the chemical potential of the solute in the reference physico-chemical state when ψ = ψ0 and

.3 For a tissue whose pore sizes vary over some distribution, κα may be thought of
as the fraction of the pore volume that is accessible to the solute [23]. This constitutive
relation is valid for dilute solutions where the volume fraction of solutes is negligible
compared to the solvent volume fraction.

In general the solid matrix of the mixture may be electrically charged due to ionization of
matrix-bound molecular species. The associated net FCD is denoted by cF (evaluated on a
solution volume basis), and its charge sign by zF (zF = ±1).4 It is assumed that the mixture
satisfies the electroneutrality condition,

(41)

The analysis of the tissue relies on a subdivision of the system into three compartments: the
cells, the ECM, and the external bathing environment of the tissue. A parameter f is denoted
by fc, fm and f* when associated with each of these respective compartments. The jump
condition for the mechano-electrochemical potential of interface-permeant solutes and
solvent across the interface between two compartments is given by

(42)

3The values of p0, ψ0, c0 and the corresponding reference chemical potentials  at a given θ are prescribed standard states that
remain invariant [30].
4If the FCD results from a homogeneous molecular species σ of concentration cσ and charge number zσ, then zσcσ = zF cF.
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This jump condition,5 derived from the conservation of linear momentum and energy, and
the entropy inequality across the interface, is valid in the absence of chemical reactions that
produce or remove that particular solute or solvent on that interface, and in the absence of
net interfacial free energy production or dissipation [28]. No jump condition applies for
interface-impermeant species. In addition, a jump condition is provided by the conservation
of linear momentum for the mixture,

(43)

where n is the unit normal to the interface. This jump condition is valid in the absence of
linear momentum supply on the interface; thus it neglects tension in the cell membrane [17].

The cell is treated as a gel filled semi-permeable membrane where the gel can limit the
solubility of the solute in the protoplasm. In some cases, as indicated below, the stresses
generated in the solid matrix of the protoplasmic gel may be neglected, , consistent
with prior treatments [16,17]. Also consistent with these prior treatments, the electrical
charge of the protoplasmic molecules is not modeled explicitly here. Therefore, in the case
of membrane-permeant solutes, the analysis presented here is limited to neutral osmolytes
only; membrane-permeant neutral solutes are denoted by α = p, with zp = 0.

For membrane-impermeant osmolytes, their electrical charge does not influence the cell’s
osmotic response, thus they are included in the analysis. In this treatment, the definition of
“membrane-impermeant solutes” includes solutes that may slowly leak across the cell
membrane via passive diffusion, but whose leakage is counter-balanced by active transport
via membrane pumps (such as Na+, Cl−, and K+ ions). If net transmembrane transport of
these solutes occurs due to an imbalance between leaking and pumping, the resulting change
in their concentration may be treated mathematically as a growth process. For simplicity, we
limit the ECM solutes that are cell membrane-impermeant to monovalent counter-ions (such
as Na+ and Cl−), denoted by α = + and α = − , respectively, and a single neutral solute
denoted by α = n (Table 2), with z+ = +1, z− = −1, and zn = 0.6 Intracellular membrane-
impermeant osmolytes, which play an important role in the regulation of the cell volume, are
denoted by α = i.

It is further assumed that the monovalent counter-ions are so small relative to the pore space
of the ECM that they are not excluded from any of the pores, . Note that in the
external bath, devoid of a porous solid matrix,  for all solutes (α ≠ s, w); furthermore,
since there can be no bath FCD, Eq.(41) requires that .

3.1. Single Cell and ECM
Consider a single cell embedded within the ECM. Since the ECM, cell membrane and
protoplasm are all permeable to the water solvent, equilibrium conditions and the jump
conditions on the water mechano-electrochemical potential, Eq.(42), yield

(44)

5Let the interface divide the domain into two regions, denoted by ’+’ and ’−’, then [[f]] n ≡ f+n+ + f−n− = (f+ − f−) n, where n is the
unit outward normal to the ’+’ side.
6Using monovalent counter-ions yields a closed-form solution for the Donnan osmotic pressure in the ECM, as shown below;
multivalent ions can be analyzed similarly but require numerical solutions. Analyzing multiple neutral solutes (whether membrane-
permeant or impermeant) requires a straightforward superposition of the analysis of a single solute.
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Similarly, for the membrane-permeant neutral solute,

(45)

For the membrane-impermeant ECM solutes, the conditions are limited to

(46)

Combining these relations with the constitutive equations (39)–(40) and using the
electroneutrality condition, Eq.(41), in the ECM yields

(47)

(48)

(49)

(50)

(51)

(52)

These expressions are arranged such that the right-hand-side depends on prescribed
quantities in the external bath ,7 solubilities in the ECM and cell ,
the FCD in the ECM , and the intracellular concentration of membrane-impermeant
solutes .

Since the charges fixed to the solid matrix of the ECM must move with it, Eq.(36) constrains
the variation in  according to

7It is common to let p* = 0 such that pm and pc represent gauge pressures; it is similarly convenient to let ψ*= 0.
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(53)

where  is the FCD on a mixture volume basis in the current configuration, evaluated
relative to the mixture volume in the stress-free reference configuration; the dependence of
each term on Xs is made implicit in this expression, for notational simplicity. According to
Eq.(35), the expression for  can be obtained from this relation via

(54)

evaluated in the current configuration.

Similarly, since the intracellular membrane-impermeant solutes cannot leave the cell, they
can also be considered solid matrix-bound so that

(55)

and

(56)

Example 1—Consider the case of an isolated cell (no ECM), subjected to a change in
external bath osmolarity (osmotic loading) using a membrane-impermeant neutral solute. In
this case,  and Eq.(52) reduces to . Furthermore, when neglecting
effective stresses in the protoplasm , the jump condition of Eq.(43) reduces to pc =
p*. Combining these two results implies that  which, when substituted into Eq.(55),
yields

(57)

where  represents the osmolarity of the external bath solution in the reference state (Js =
1, assumed to occur at t = 0). In the absence of intracellular solute and solid growth,

, the resulting linear relationship between the relative cell volume Js and the
ratio ,

(58)

is known as the Boyle-van’t Hoff relation [31]. Most cells exhibit this linear response under
osmotic loading and are called perfect osmometers [32]. Experimental measurements of Js
for various values of  can be used to extract the value of the cell solid volume
fraction ; note that  is also known as the fraction of osmotically
active water.
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Alternatively, if the external bath environment remains unchanged, , but in the
presence of growth of intracellular solute or solid, the cell volume ratio is given by

(59)

where we used the relation of Eq.(31). This relation shows that an increase in intracellular
solute concentration , or solid content , increases the cell volume (Js > 1). This
is a mathematical representation of the cell’s well-known volume regulation mechanism
[33], illustrating how cells can regulate their volume by altering intracellular membrane-
impermeant solute and solid content. This example also illustrates how growth of
constituents produces volume changes via osmotic mechanisms; note in particular that Js

increases linearly with increasing  such that there is no fixed upper bound on 
according to Eq.(29).

3.2. Homogenization
The goal of homogenization is to model the cells collectively, together with the ECM, using
a mixture representation. To avoid an excess of diacritics in our notation, the symbol f for a
parameter may represent either the generic form of that parameter, or the homogenized
value in the tissue; the meaning should be evident from the context.

Consider that the volume fraction of cells in an elemental region dV of the tissue is χ, so that
1 − χ is the volume fraction of the ECM (0 ≤ χ ≤ 1). The homogenized apparent density ρα
of constituent α is given by

(60)

Substituting Eq.(7) into this relation and recalling that  is invariant produces an expression
for the homogenized volume fraction of solvent in the cells and ECM,

(61)

Similarly, substituting Eq.(11) into Eq.(60) and recalling that Mα is invariant, the
homogenized concentration cα is found to be related to the concentrations in each
compartment via

(62)

For solutes that are not present in a particular compartment, the corresponding concentration
is simply set to zero . The form of Eq.(62) can also be specialized to evaluate
the homogenized FCD in the tissue, letting  and yielding

(63)

The homogenized solubility is similarly obtained,
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(64)

In particular, substituting the solutions of Eqs.(47)–(49) for concentrations in the single cell-
ECM-bath system into these equations, it is found that the corresponding solutions for solute
concentrations in the homogenized system reduce to

(65)

To find the homogenized interstitial fluid pressure p and electric potential ψ, note that the
mechano-electrochemical potential is defined here in terms of energy per mass, so that the
homogenized mechano-electrochemical potential of any fluid constituent is given by

(66)

Thus, using Eqs.(7) and (11) to relate ρw to φw, and ρα to cα, it is found that

(67)

(68)

Given that p and ψ appear as linear terms with constant coefficients in the constitutive
relations (39)–(40) for the mechano-electrochemical potential, the homogenized expressions
for these quantities are given by

(69)

(70)

Using the cell-ECM-bath equilibrium solutions of Eqs.(50)–(52), and recognizing that 
for α = +,− in the current treatment, the solutions for the homogenized system are thus given
by

(71)
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(72)

A key aspect of this homogenization procedure is to recognize that solid deformations of the
ECM and cells cannot remain distinct within an elemental region dV, as ECM and cells
become mixture constituents coexisting at every point in the homogenized region. In this
homogenized mixture, as seen above, the solid matrix constituents are described by ,
and the solid-bound molecular species by , where . Since all
solid constituents in an elemental region are constrained to move together, they must share
the same current configuration; as explained in Section (2.4), we also assume in the current
treatment that they share the same reference configuration, so that the deformation gradient
Fs, and relative change in the volume, Js = det Fs, also coincide for all solid constituents
within dV. An important implication of this constraint is that the cell volume fraction χ does
not vary with deformation in this homogenization scheme.

The homogenized tissue stress may be given by

(73)

where p is the homogenized interstitial fluid pressure, given in Eq.(71). Since the cell
volume fraction χ also represents the area fraction on any arbitrary plane through the tissue,
according to Delesse’s law [34], this homogenization scheme is consistent with the jump
condition of Eq.(43). Since we opted in Section 2.4 to simplify the analysis by letting the
cells and matrix share the same reference configuration, it follows that 
simultaneously in that configuration.

The last remaining requirement is to identify a suitable set of ambient conditions for the
reference (stress-free) configuration. In a pure elasticity analysis, in the absence of residual
stresses, the reference configuration is typically defined to be traction-free.8 Since the
current analysis also includes osmotic pressure, which can produce residual stresses, we may
additionally define the osmotic environment that can produce a stress-free state under
traction-free conditions. In previous studies of charged tissues bathing in a monovalent salt
environment [20], in the absence of explicit modeling of cells, an infinitely hypertonic state
(c* → ∞) could be defined in which the fluid pressure p reduced to the ambient pressure p*,
as can be observed from Eq.(71) under these suitable limiting conditions . In
that case the tissue would not be subjected to osmotic swelling, so that  could reduce to
zero under traction-free conditions (  according to Eq.(43)). A
hypertonic state can be reproduced experimentally by using a sufficiently large salt
concentration c* to overwhelm the effect of the FCD in the tissue, making it plausible to
achieve this reference configuration under experimental conditions.9

8In this treatment where we explicitly model the ambient bath pressure p*, traction-free should be understood to mean that the applied
traction is only that of the ambient pressure.
9However, there may be other physico-chemical factors, such as osmotic pressure resulting from configurational entropy of the
matrix-bound charged molecular species, that may not vanish under hypertonic conditions. Thus, as often encountered in continuum
mechanics, a true stress-free reference configuration may not be achievable experimentally, but only mathematically.
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In the current analysis, where cells are explicitly modeled, this hypertonic state is
mathematically plausible though it leads to a reference configuration for cells that is not
physiologically desirable. This can be illustrated with the special case of a homogenized
tissue with an uncharged ECM (cF = 0), subjected to the same bathing conditions .
In this case, Eq.(71) predicts that

(74)

when using Eqs.(61)–(62). Looking at this expression, it is not possible to expect p → p* as
c* → ∞, unless . In other words, the intracellular concentration of membrane-
impermeant solute must be infinite in the reference configuration, which implies that the cell
has been emptied of its water content. Not only is this condition physiologically undesirable,
but it would also be too restrictive to assume that  reduce to zero only in this
limiting case. Furthermore, as explained in Section (2.6), emptying a cell of its water content
implies that ; however, in a homogenized model of the tissue, the lower

bound on J is given by , thus it may not even be possible to empty the
cell of its water content if the ECM gets depleted first .

An alternative is to propose that the reference configuration corresponds to a charged tissue
bathing in a NaCl solution of finite tonicity , in the limiting case when
its FCD is zero (cF = 0). The resulting osmotic pressure is also given by Eq.(74) and we
similarly find that p = p* when  in the reference state, except that c*r is now finite.10

Thus the cell need not be devoid of its water under these conditions. In this reference state,
both  reduce to zero.

4. INTERSTITIAL GROWTH OF BIOLOGICAL TISSUE
In the current model, there are four solid or solid-bound constituents whose content may
change as a result of growth: The solid matrix of the ECM, whose content is described by

; the molecular species imparting the FCD to the ECM, whose content is described by
; the solid matrix of the cells, described by ; and the membrane-impermeant

intracellular solute, described by . In this homogenized representation of the tissue, the
intracellular solute is considered solid-bound since it remains in the cell, and the cell is
embedded in the solid matrix of the ECM. It is implicit that the molecular building blocks,
cytokines, morphogens, and other factors required for growth, are available even though
they are not modeled explicitly.

For the ECM and protoplasm solid matrix, the growth evolution relation of Eq.(31) can be
used to track changes in , given constitutive relations for . For the
FCD and intracellular membrane-impermeant solute, Eq.(36) can similarly be used to track
changes in , given constitutive relations for . (Recall that  may
change as a result of growth or volume deformation, according to Eqs.(54) and (56), but
changes in  can only occur due to growth.) Growth of any one of these four
constituents may alter the osmotic environment of the tissue, leading to changes in water

10For example, c*r = 0.15 M to reproduce common physiological conditions, though any other value may be chosen.
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content and tissue volume, as illustrated in Example 1. In the sections below, we address
specific biological processes in the context of changes in these constituents.

In some of the examples presented below, a finite element analysis is performed to illustrate
specific phenomena. Finite element modeling for the framework presented in this study is
conceptually similar to the approach required for finite elasticity [35], since the equation to
be solved is that of Eq.(38), where the unknown is the solid matrix deformation, subject to
the natural boundary condition of Eq.(43). The standard finite element approach of elasticity
theory is extended to incorporate the osmotic pressure p into the stress tensor, as per Eq.
(37), where p is given by Eq.(71). The dependence of p on Js produces a contribution to the
elasticity tensor of the mixture, called the osmotic modulus, as described in our recent study
[36]. The custom-written finite element code used in that study was extended here, to
include the osmotic pressure of a homogenized tissue of cells and ECM, and to allow
material properties to evolve arbitrarily over time in response to growth.

4.1. Extracellular Matrix Growth

Extracellular matrix growth can be described by an increase in , though the current
framework restricts this mechanism to the assumption that the reference configuration of the
newly deposited material is the same as that of the pre-existing matrix (Section 2.4). A
common occurrence in tissue growth processes, where this assumption may not be so
restrictive, is the case of ECM degradation, since the loss of solid matrix material points that
all share a common reference configuration does not require the identification of new
reference configurations.

The loss of solid constituent in the ECM is described by a decrease in .
Since ECM material properties may depend on the solid content , typically in a
nonlinear manner [37,38], changes in the amount of matrix can be equivalently described by
alterations in intrinsic material properties. Thus, if  represents a generic material
property of the solid matrix, a constitutive relation validated from experiments may describe
its dependence on . (More generally, the material properties may be functions of the
content of any of the solid or fluid constituents of the mixture, and the ambient temperature.)
An example is used to illustrate this ECM degradation mechanism in the case of articular
cartilage.

Example 2—The solid matrix of articular cartilage consists primarily of type II collagen
and proteoglycans. During the early onset of osteoarthritis it has been observed that the
collagen fibrillates and the cartilage matrix swells. This swelling is generally attributed to
the Donnan osmotic pressure of the proteoglycans, whose content may not have decreased
substantially in the early stage of the disease, encountering less resistance against swelling
from the weakened collagen matrix.

To simulate this mechanism with the current framework, we assume for simplicity that the
cell volume fraction, normally ~5% in adult cartilage, is negligible for the purposes of this
analysis (χ = 0). Thus, the only properties that need to be specified are those of the ECM.
Let  based on a representative composition of cartilage [39],
and assume that the external bathing environment of the tissue is isotonic saline (2c* = 300
mOsM, ) at body temperature (θ = 310 K). For simplicity, let the porous solid
matrix be described by an isotropic neo-Hookean model, with a Poisson’s ratio of 0 and
Young’s modulus initially set to 10 MPa, to represent the tensile properties of healthy
cartilage.11 Under traction-free conditions, the tissue swells isotropically and
homogeneously by 2.7% (Js = 1.027) relative to the reference configuration, under an
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osmotic pressure difference p − p* = 86 kPa. This solution is obtained by solving the jump
condition for the total traction, , where p is given by Eq.(71), for any
arbitrary direction n.

It is now assumed that  decreases to 0.18 as a result of collagen degradation and, as a
further consequence of concomitant fibrillation, Young’s modulus decreases to 2 MPa,
while  remains the same. Then Js is observed to increases to 1.115, implying that the
tissue swelled by 9% relative to its healthy initial state. The osmotic pressure difference
decreases slightly as a result of this volume increase, p − p* = 68 kPa; though  was held
constant, the FCD normalized to the interstitial fluid volume in the current configuration, ,
reduced from 145 mEq/L to 128 mEq/L. As expected, this simple analysis shows that the
initial swelling observed in the early stage of osteoarthritis can be explained by the influence
of collagen degradation on the tensile properties of the cartilage ECM.

4.2. Synthesis of Solid-Bound Charged Species

An increase in the FCD, , may occur by cell synthesis of charged molecules which then
bind to the ECM. All else remaining the same, the resulting increase in  will increase the
osmotic pressure in the ECM, according to Eq.(71). This type of growth is illustrated with
an example related to alterations in residual stresses in the aorta.

Example 3—The aortic wall is divided into the intima, media and adventitia. Unlike the
collagenous adventitia, the intima and media have a significant proteoglycan content,
synthesized by endothelial and vascular smooth muscle cells [40,41]. In a recent
experimental and theoretical study [36] we demonstrated that the associated FCD can play
an important role in regulating transmural residual stresses, and the “opening angle”
measured by cutting an arterial ring along a radial direction [42]. Our study demonstrated
that decreasing the NaCl concentration in the external bath produced an increasingly larger
opening angle, for a prescribed FCD in the intima and media.

Since proteoglycan content is known to increase during atherosclerosis [43,44,45], and since
the opening angle has also been shown to increase with this advancing disease [46,47,48], it
is reasonable to hypothesize that these two phenomena are directly related. In this example
we simulate the growth of proteoglycan in the rat aorta, using some of the geometric and
material parameters of our recent study [36]. The cell volume fraction in the intima and
media is taken to be χ = 0.3, while that of the adventitia is assumed to be negligible (χ = 0).
The intracellular and extracellular solid volume fractions relative to the reference state are
constant and taken to be  throughout the wall thickness. The intracellular
concentration of membrane-impermeant solutes is set to  (a value that yields

 when Js = 1). The FCD is non-zero only in the intima and
media; to model FCD growth,  is increased from 40 mEq/L to 120 mEq/L over time. The
external bath is physiological saline, with 2c* = 300 mOsM, . Room
temperature is assumed, θ = 298 K. The ECM solid matrix is modeled with a neo-Hookean
constitutive relation, with a shear modulus of 140 kPa and Poisson’s ratio of 0 throughout
the entire wall thickness. The finite element model represents an aortic ring cut along its

11Recall that the porous solid matrix is compressible because its pores may change their volume during deformation, even though the
matrix skeleton and the interstitial fluid are modeled as intrinsically incompressible. Thus, it is acceptable to have a Poisson’s ratio
equal to zero in this framework.
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radius; the objective is to analyze the evolution of the opening angle with growth of the
FCD. Due to symmetry considerations, only one quarter of the ring is modeled.

Results of the finite element analysis are presented in Figure 1, showing that the opening
angle increases significantly with increasing FCD, from 13° to 95° in this case. This effect
can be attributed to the Donnan osmotic swelling induced by the FCD in the intima and
media; since no swelling occurs in the adventitia, the intimal and medial swelling produce
an inhomogeneous transmural stress that manifests itself as an opening angle upon
sectioning of the aortic ring. This analysis provides theoretical support for the hypothesis
that the increase in intimal and medial proteoglycan content (a growth process)
accompanying atherosclerosis can drive the increase in opening angle.

4.3. Cell Volume Regulation
Intracellular concentration of membrane-impermeant solutes may change as part of the well-
known mechanism for regulating cell volume [33]; this mechanism is primarily driven by
alterations in , either via active membrane transport processes, or the binding and release
of intracellular solutes from substrates. There are many problems in growth and remodeling
of biological tissues where such a process may play an important role. Two illustrative
examples are provided below, relevant to conditions encountered in biological tissues.

Example 4—Increased intracranial pressure may be caused by osmotic swelling of cells or
their ECM. An increase by 10 mmHg is clinically significant and potentially life threatening
[49]. It has been shown that brain cells can increase their intracellular osmolarity via active
uptake of sodium, potassium and chloride ions, or production of organic osmolytes
generically described as “idiogenic osmoles” [33].

In the current framework, an elementary analysis can be performed, using a simplified
representation of the brain, that can predict this increase in intracranial pressure. Consider
that the volume of the brain does not change in situ (Js =constant) due to the physical
constraints of the cranium. The blood supply represents the “external bath” in this
simplification, with pressure p* and osmolarity 2c*, and . Though brain tissue
contains proteoglycans, it is assumed for simplicity that  in this example, so that we
can let Js = 1. Then, Eq.(71) simplifies to

(75)

Clearly, all else being equal, an increase in  will lead to an increase in the intracranial
pressure relative to the blood pressure, p − p*. For example, if we let χ = 0.85, 
(so that ), θ = 310 K, 2c* = 300 mOsM, and let the initial value  yield zero
pressure difference , then an increase in pressure by 10
mmHg (p − p* = 1.3 kPa) can be achieved if  increases by as little as 0.42 mOsM.

This analysis is simplified of course, since it does not take into account the compliance
introduced by vasoconstriction, dura mater deformation, and drainage of cerebrospinal fluid.
Thus, in reality, it would take larger increases in  to produce this change in intracranial
pressure. However, this analysis conveys the salient aspect of the role of cell volume
regulatory mechanisms on intracranial pressure.
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Example 5—In Example 3, it was shown that the opening angle of the aorta increases with
increasing FCD. In that analysis, in the limit of zero FCD, it can also be shown that the
opening angle reduces to zero, since all residual stresses subside in this limiting condition.
However, experimental measurements have shown that the opening angle may vary
significantly along the length of the aorta, and in some cases it is observed to be negative.
This outcome, which cannot be predicted from Donnan swelling, suggests that residual
stresses in the aortic wall cannot be explained exclusively by the osmotic swelling resulting
from the FCD, as acknowledged in our earlier study [36].

In the cardiovascular biomechanics literature, the aortic wall residual stresses manifested by
the opening angle have been attributed to other factors, including “incompatible growth” of
the elastin and collagen constituents [50], and osmotic swelling of the endothelial and
vascular smooth muscle cells of the intima and media [51]. Both of these hypotheses are
plausible explanations for these residual stresses; in the current tissue modeling framework
we are able to address the latter mechanism (Section 2.4).

In this example we test the hypothesis that the negative opening angle observed in the aorta
could result from a decreasing concentration of the intracellular membrane-impermeant
solutes, via the normal mechanisms of cell volume regulation. A model of the rat aorta is
created, similar to that used in Example 3, except that  is constant and set to 40 mEq/L in
the intima and media. In this analysis, the parameter allowed to change as a result of growth
is the intracellular concentration  of membrane-impermeant solute in the intima and
media, which is decreased from 210 mOsM to 175 mOsM.

Results show that the initial opening angle is positive and equal to 13° when .
However, as  decreases, the cell volume also decreases as a result of water exudation, and
the opening angle becomes negative, reducing to −37° when  (Figure 2). This
outcome supports the hypothesis that the opening angle of arteries may be regulated by the
intracellular concentration of membrane-impermeant solutes, complementing other
mechanisms such as Donnan swelling due to the FCD.

Though this example illustrates the reduction in opening angle with decreasing , it can
also be shown that the opening angle can increase with increasing . This potential
mechanism is of particular interest in light of the observation that the opening angle of the
aorta can change over a period as little as two days following a ligation procedure [46], a
time duration consistent with the relatively rapid process of cell volume regulation.

4.4. Cell Division
The net effect of cell division can be modeled in the current framework by allowing three
parameters to change simultaneously, namely, the cell solid volume fraction , the
intracellular membrane-impermeant solute concentration, , and the cell volume fraction, χ.
The evolution in  occurs because the division of a cell into two daughter cells
follows an initial synthesis phase during which the parent cell doubles its content of
osmotically inactive and osmotically active molecules. Consequently, in the case of cell
division, it is expected that the growth rates  should be proportional to each other.

Everything else being equal, the evolution in χ occurs because the total volume of cells
increases relative to that of the extracellular matrix. The cell volume fraction may be
expressed as
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(76)

where dVm is the elemental mixture volume of the ECM and dVc is the elemental mixture
volume of cells in the elemental homogenized mixture volume dV, and ξ = dVc/dVm; since
dV = JsdVr, dVm = JsdVmr and dVc = JsdVcr in this homogenization framework, the
expressions for χ and ξ can be written in the same form when using the elemental volumes in
the reference configuration. Two limiting cases can be noted here. In the limit when the
matrix volume is negligible (confluent cells with negligible ECM), ξ tends to infinity and χ
approaches unity; in this case, though cell division further increases ξ, it does not cause
measurable changes in χ. In the opposite limit, when there are no cells, ξ = 0 and χ = 0.

The rate at which cells divide may be represented by the function ξ̂ = ∂ξ (X, t)/∂t, such that

(77)

On the assumption that the volume of daughter cells is nearly identical to the parent cell, it is
also reasonable to assume that ξ̂ is proportional to ,

(78)

This constraint is just a guideline that facilitates the analysis of cell division in this
homogenization framework. Deviations from this rule can occur and may be addressed in
the appropriate context.

Example 6—In long bone morphogenesis, the early stage of bone formation starts with the
development and growth of a hyaline cartilage model, followed by the development of
primary and secondary ossification centers, then the formation of the articular layers and
epiphyseal plate. In this example, the growth of the hyaline cartilage model by chondrocyte
division is described using a cell division analysis. For simplicity it is assumed that χ = 1;
thus, the only parameters that need to be specified explicitly are those related to the cells.
The external bath is assumed to be normal saline.

The intracellular solid content  and concentration of membrane-impermeant solute  are
both assumed to increase by an arbitrary factor of six at a constant rate,

. From symmetry considerations, only one
octant of the geometry is modeled. Results demonstrate that the cartilage model grows
homogeneously and isotropically (Figure 3), increasing in volume by a factor of six (from Js

= 1 to 6). This outcome represents the simplest analysis of growth by cell division, where
the ECM (non-existent in this example) has no influence on the outcome. Since there are no
extra stresses in the ECM  or cell , the osmotic pressure in the tissue is equal
to the ambient bath pressure, p − p* = 0. Importantly, the intracellular solute concentration
in the current configuration, , remains constant and equal to 300 mOsM
during this growth process. This example also illustrates a problem where  exceeds unity
without violating the constraint of Eq.(29).
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Example 7—In this example we reprise the analysis of growth of a hyaline cartilage
model, this time including an ECM. Let , and let the ECM be described by a neo-
Hookean model for , with shear modulus equal to 0.5 MPa and Poisson’s ratio equal to
0. The intracellular contents grow at a constant rate over time as described in Example 6.
The cell volume fraction is initially χ = 0.8, equivalent to ξ = 4. ξ is assumed to increase by a
factor of six at a constant rate, to ξ = 24, yielding a final cell volume fraction of χ = 0.96.
The increase in χ over time has a non-constant rate dictated by Eq.(76).

Results show that the growth is substantially similar to the ECM-free case described in
Figure 3, with a final value of Js = 5.95, homogeneous over the entire hyaline cartilage
model. The small difference in Js, as compared to the ECM-free case, occurs because the
tensile stress in the ECM offers some resistance to the osmotic swelling mechanism
accompanying cell division. This tensile stress is balanced by a small non-zero osmotic
swelling pressure difference, p − p* = 8 kPa in this example. This outcome suggests that
osmotic swelling easily overcomes the tensile stresses in the ECM, for the material
parameters used here.

5. DISCUSSION
The objective of this study was to formulate a mathematical framework for modeling growth
of biological tissues, with a particular emphasis on cell division and the growth of
constituents that alter the osmotic environment of the interstitial fluid. This framework was
developed in the context of the theory of mixtures, which can accommodate any number of
solid and fluid constituents. Though the general framework of growth is applicable to any
materials undergoing chemical reactions, the specific application to biological tissues stems
primarily from the modeling of cells within their (possibly charged) ECM, with a mixture
whose constituents are outlined in Table 2.

Incorporating cells within their ECM was achieved by focusing on mechano-electrochemical
balances between intracellular, extracellular, and external bathing environments. A tissue
homogenization procedure was introduced to combine the contributions of intracellular and
extracellular compartments to all the dependent variables in the analysis. The influence of
cells on the elasticity of the tissue’s solid matrix was not examined explicitly in this
homogenization framework, where a simple rule of mixtures was adopted for  and the
dependence of solid matrix elasticity on tissue content, including cell volume fraction, was
relegated to suitable constitutive modeling. For example, other studies have examined the
topic of modeling cells as inclusions in an infinite medium [52], and such frameworks could
be adopted here.

A basic principle of this study is that the growth of solid constituents is described by
changes in their apparent density, based on the equation of conservation of mass, Eq.(18).
The effects of growth and deformation on ρσ are dissociated by introducing the apparent
density relative to the reference configuration, , in Eq.(20). Thus, changes in  only
result from growth, according to the growth evolution equation (25).

Changes in  do not necessarily imply changes in the volume of the tissue. The examples
presented in Section 4 illustrate various possibilities. In the case of cartilage collagen
degradation, tissue volume increased due to swelling caused by proteoglycans, which
encountered less resistance against the weakened collagen matrix; had the cartilage been
devoid of proteoglycans, the collagen degradation in this example would not have caused
changes in tissue volume, but only an increase in tissue porosity. In the example of cell
volume regulation in the brain, the boundary conditions were set to prevent changes in brain
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volume, thus growth only led to changes in interstitial fluid pressure; however, if the brain
had been allowed to swell, as occurs in emergency treatments when decompressive
craniectomy is performed thereby removing a portion of the skull to relieve intracranial
pressure [53], the analysis could predict this volume increase by releasing the displacement
constraints on the brain surface. In the example of long bone growth, an increase in volume
(mostly by water uptake) was indeed predicted in direct proportion to changes in  for the
intracellular solid matrix content and membrane-impermeant solutes; however, as further
illustrated, this swelling growth could be constrained by increasing the stiffness of the ECM
(as also shown in the cartilage degradation example). Thus, interstitial growth does not
necessarily imply volume changes; it can influence tissue volume, or interstitial osmotic
fluid pressure, or both.

The growth mechanisms described in this study may result in the evolution of residual
stresses in tissues in a predictable manner. When the interstitial osmotic pressure increases
inhomogeneously as a result of selective growth of constituents, the stress distribution in the
tissue solid matrix may also become inhomogeneous under a traction-free configuration,
leading to residual stresses, as illustrated in the case of proteoglycan growth or cell volume
regulation in the intima and media of the aorta. Similarly, inhomogeneous cell division may
also produce such residual stresses, though this case was not specifically illustrated here.

The framework presented here was specialized to the case where all solid matrix
constituents share a common reference configuration. The topic of differential or
incompatible growth of solid constituents and evolving reference configurations remains an
active area of investigation, but this study did not place a focus on it, addressing instead the
role of osmotic effects on growth. Nevertheless, the presentation of Section 2.4 provides the
foundation of an approach that we believe can address the topic of growth of multiple
generations of solid constituents, each having its own reference configuration, though all
constrained to share the same current configuration, see Eqs.(14)–(15), a foundation shared
with the approach proposed by Humphrey and Rajagopal [7]. In this context, a “generation”
consists of any number of solid constituents that share the same reference configuration,
though their content may vary over time due to growth or degradation; thus, the
specialization adopted in our subsequent treatment may be viewed as that applicable to a
single generation of solid matrix constituents.

When a framework becomes available for describing multiple generations of solid matrix
constituents, it will become possible to address such problems as the initial growth of a
tissue by cell division, followed by selective cell apoptosis and their replacement with newly
synthesized extracellular matrix. Other applications may include the remodeling of actin
cytoskeletal structure in response to osmotically driven volume changes in cells. The other
mode of tissue growth not addressed in this study is that of appositional, or surface growth
[3,54]. A framework for describing surface growth in the context of mixture theory has been
proposed in our earlier study [28].

In summary, the current framework emphasizes the role of osmotic effects on the uptake of
water into the tissue. A significant benefit of giving due consideration to these effects is the
ability to model cell division as shown above. Since all biological soft tissues are hydrated,
the premise of our approach is that the inclusion of osmotic effects and water uptake is
essential to capture salient growth mechanisms in such tissues. This study provides a
formulation for this framework and several illustrations that demonstrate its application.
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FIGURE 1.
Effect of growth of fixed charge density on opening angle of rat aorta. Due to symmetry,
only one-quarter of a cut ring is displayed. The opening angle increases from 13° to 95° as

 increases from 40 mEq/L to 120 mEq/L in the intima and media.
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FIGURE 2.
Effect of growth of intracellular membrane-impermeant solute concentration on opening
angle of rat aorta. Due to symmetry, only one-quarter of a cut ring is displayed. The opening
angle decreases from 13° to −37° as  decreases from 210 mEq/L to 175 mEq/L in the
intima and media.

Ateshian et al. Page 29

J Biomech Eng. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIGURE 3.
Growth of hyaline cartilage model in long bone morphogenesis. Due to symmetry, only one
octant of the model is shown. In this analysis growth occurs by cell division. Sixfold
increases in  lead to a sixfold increase in tissue volume (χ = 1).
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TABLE 1

Nomenclature.

α refers to any mixture constituent
c̃r
α

concentration relative to reference mixture volume

σ refers to any solid constituent
ĉr
α

concentration supply relative to reference mixture volume

s refers to the mixture of solid constituents cF fixed charge density (FCD) relative to solution volume

w refers to the solvent
c̃r

F
FCD relative to reference mixture volume

θ absolute temperature
ĉr

F
FCD supply relative to reference mixture volume

κα solubility (α ≠ s, w) dmα elemental constituent mass

μ̃α mechano-eletrochemical potential dnα elemental number of moles in constituent

ξ cell-to-ECM volume ratio dV elemental mixture volume

ρα apparent density dVr elemental mixture volume in reference configuration

ρT
α

true density dVα elemental constituent volume

ρr
α

apparent density relative to reference mixture volume Fα deformation gradient (α = σ, s)

ρ ̂α apparent density supply Jα relative volume (α = σ, s)

ρ̂r
α

apparent density supply relative to reference mixture volume Mα molecular weight

φα volume fraction p fluid pressure

φr
α

volume fraction relative to reference mixture volume R universal gas constant

φ̂r
α

volume fraction supply relative to reference mixture volume T mixture stress

χ cell volume fraction in homogenized cell-ECM mixture
Te
α

effective stress in solid (α = σ, s)

χα motion vα velocity

ψ electric potential x position in current configuration

cα concentration relative to solution volume Xα position in reference configuration

cα̃ concentration relative to mixture volume zα charge number
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TABLE 2

Notation for the constituents of a mixture.

α Constituent

s Solid matrix

w Water solvent

p Membrane-permeant neutral solute in ECM and cell

n Membrane-impermeant neutral solute in ECM

+ Membrane-impermeant cation in ECM

− Membrane-impermeant anion in ECM

i Membrane-impermeant solutes in cell
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