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Abstract
Objectives—We used reflectance and fluorescence spectroscopy to noninvasively and
quantitatively distinguish benign from dysplastic/malignant oral lesions. We designed diagnostic
algorithms to account for differences in the spectral properties among anatomic sites (gingiva,
buccal mucosa, etc).

Methods—In vivo reflectance and fluorescence spectra were collected from 71 patients with oral
lesions. The tissue was then biopsied and the specimen evaluated by histopathology. Quantitative
parameters related to tissue morphology and biochemistry were extracted from the spectra.
Diagnostic algorithms specific for combinations of sites with similar spectral properties were
developed.

Results—Discrimination of benign from dysplastic/malignant lesions was most successful when
algorithms were designed for individual sites (area under the receiver operator characteristic curve
[ROC-AUC], 0.75 for the lateral surface of the tongue) and was least accurate when all sites were
combined (ROC-AUC, 0.60). The combination of sites with similar spectral properties (floor of
mouth and lateral surface of the tongue) yielded an ROC-AUC of 0.71.

Conclusions—Accurate spectroscopic detection of oral disease must account for spectral
variations among anatomic sites. Anatomy-based algorithms for single sites or combinations of
sites demonstrated good diagnostic performance in distinguishing benign lesions from dysplastic/
malignant lesions and consistently performed better than algorithms developed for all sites
combined.
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INTRODUCTION
Currently, definitive detection and diagnosis of oral cancer requires biopsy followed by
histopathologic assessment of the excised tissue.1 However, there are several shortcomings
to this scheme. First, only a limited number of biopsy specimens can be taken because of the
invasiveness of the procedure. On the basis of his or her experience, the physician selects the
area of the lesion most likely to show significant disease as the biopsy site. The absence or
presence of disease in this specimen is assumed to be representative of the extent of disease
in the suspicious lesion as a whole, and this finding often determines whether treatment is
indicated.2 Given the subjective nature of this process, regions of disease can be missed.
Significant underdiagnosis has been noted with biopsy, particularly when the lesion is
nonhomogeneous or only a single biopsy specimen is obtained.2,3 Second, the accuracy of
pathological classification is limited by significant interobserver and intraobserver
variability, largely due to the qualitative nature of the markers used for assessment.4–6

Spectroscopy may provide an objective and non-invasive tool for disease diagnosis.
Promising findings have been reported for identifying oral lesions by using reflectance and
fluorescence spectroscopy 7–13 The majority of these studies have focused on distinguishing
healthy mucosa from visible lesions (either a group consisting of dysplastic and malignant
lesions [“dysplastic/malignant”] or malignant lesions).7,8,12–19 However, this separation has
no clinical relevance, because these categories are easily distinguished by visual inspection.
In some cases, benign lesions are grouped with healthy mucosa samples.9,20 Most studies
combine data from several anatomic sites (eg, gingiva, buccal mucosa) in each category in
generating diagnostic algorithms based on differences in the spectral properties (spectral
contrast).7,10,11,13,14,18,21 This approach may not be ideal, because numerous studies have
shown significant differences in the spectral properties between various anatomic sites, even
for healthy oral mucosa.7,15,22–24 We refer to the spectral contrast produced by variations in
histologic characteristics from site to site as anatomic spectral contrast. The presence of
keratin on some sites (particularly the gingiva and hard palate) produces marked anatomic
spectral contrast between these sites and nonkeratinized sites.9,24 A recent study of clinically
normal mucosa in healthy volunteers (HVs) by our group demonstrated considerable
anatomic spectral contrast even among nonkeratinized sites.25 The results of our
investigation suggested that spectral diagnostic algorithms must be site-specific to ensure
accurate disease diagnosis. We use the term anatomy-based algorithms to refer to algorithms
that meet this condition, in that they are developed from and applied to a specific site or
group of sites. Because most studies combine several sites, the reported diagnostic
accuracies may be confounded by anatomic spectral contrast and therefore unreliable.

The distinction of benign lesions from dysplastic/malignant lesions is not possible by visual
inspection alone and has considerable clinical significance, yet few spectroscopy studies
focus on this separation.21,26–30 Anatomic spectral contrast can also influence the diagnostic
results for this separation if it is not taken into account. In a study by de Veld et al,28 for
most analysis methods, values of less than 0.70 were obtained for the area under the receiver
operator characteristic (ROC) curve (ROC-AUC) when data from 11 anatomic sites were
combined. Using fluorescence spectroscopy, van Staveren et al11 combined all sites and
achieved a sensitivity of 31 % and a specificity of 67%. Greater success has been achieved
in distinguishing lesions when the analysis was limited to a single site or a specific group of
sites. Wang et al30 performed a fluorescence study of patients with lesions located only on
the buccal mucosa. They obtained a sensitivity of 81% and a specificity of 96% for
distinguishing benign lesions from dysplastic/malignant lesions. Mallia et al21 successfully
developed diagnostic algorithms to discriminate various oral lesions by using fluorescence
spectroscopy, but only after excluding lesions of the vermilion border of the lip and of the
dorsal and lateral surfaces of the tongue. They suggested that a separate spectral database is
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needed for these 3 sites. In another study by Mallia et al,26 reflectance spectroscopy was
used to develop algorithms for all sites combined and for the buccal mucosa (ie, an
anatomy-based algorithm). The sensitivities and specificities obtained for algorithms
specific to the buccal mucosa were consistently higher for the discrimination of benign
lesions from dysplastic lesions and dysplastic lesions from malignant lesions. Müller et al9
developed a diagnostic algorithm to distinguish benign lesions from dysplastic/malignant
lesions specifically for keratinized sites, and they obtained a higher sensitivity and
specificity than when keratinized and nonkeratinized sites were combined. Although
diagnostic algorithms for single sites or limited groups of sites have been investigated, a
systematic approach for developing spectral algorithms for multiple sites has not been
developed.

The goal of the present study was to develop a strategy for designing anatomy-based
algorithms for multiple anatomic sites. Although the spectral properties of different
anatomic sites may vary considerably, certain subsets may be similar enough in their
spectral properties such that they can be combined. Furthermore, in many settings,
developing a single diagnostic algorithm for spectrally similar sites may be more practical
and less time-consuming than developing a diagnostic algorithm for each individual site.
Anatomy-based spectral diagnostic algorithms are developed for 2 applications: 1)
distinguishing visibly healthy mucosa from visible lesions, and 2) distinguishing benign
lesions from dysplastic/malignant lesions. The distinction of clinically normal (healthy)
mucosa from clinically abnormal mucosa (lesions) has been the focus of most of the
previous studies in the oral cavity. We address the question of whether anatomic spectral
contrast affects the diagnostic accuracy of this separation. The second application is the
primary objective of this work, since lesions demonstrating disease (dysplasia or
malignancy) require intervention.

From the tissue spectra, we extract parameters related to the morphological and biochemical
properties. To account for anatomic spectral contrast, we first study healthy mucosa from
several anatomic sites to characterize the similarities and differences in their spectroscopy
parameters. We then apply these findings by developing common diagnostic algorithms for
combinations of sites that share a high degree of spectral similarity. To evaluate the benefit
of anatomy-based algorithms, we compared the performance of algorithms developed for
these specific combinations of sites to those developed for all anatomic sites combined and
to those for a single anatomic site. We also examine the trends in the spectroscopy
parameters on the basis of disease category.

PATIENTS AND METHODS
Patients

Patients were recruited from the Department of Otolaryngology–Head and Neck Surgery at
Boston Medical Center. The experimental protocol for in vivo data collection was approved
by the Institutional Review Board of Boston Medical Center and the Committee on the Use
of Humans as Experimental Suhjects at the Massachusetts Institute of Technology. Subjects
enrolled in the study included patients undergoing biopsy for clinically suspicious lesions, as
well as patients undergoing surgical resection of known dysplastic or malignant lesions.
Pregnant women and individuals under the age of 18 years were excluded from the study.
Written informed consent was obtained from all subjects to indicate their willingness to
participate. Spectral data were collected from tissues with visible abnormalities identified by
the clinician. The clinical appearance of the lesions (eg, leukoplakia, erythroplakia) was
recorded. After collecting the spectral data, the physician scored the exact area from which
the data were acquired using the blade of a small punch biopsy instrument (1.5 or 2 mm in
diameter). The tissue sample was subsequently removed using a larger punch biopsy
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instrument (3.5 mm diameter) and sent for histopathologic evaluation. In some cases, a
scalpel biopsy was performed because of the lesion architecture or location. Spectral data
were collected from multiple tissue samples in a patient when the physician selected
multiple areas of the lesion for biopsy, or when several biopsies were performed of a lesion
to be resected. The histopathologic assessment was performed by 3 pathologists. Specimens
were classified as benign, dysplastic, malignant, or indefinite for dysplasia. The consensus
diagnosis (agreement between at least 2 of the 3 pathologists) was considered the final
diagnosis. An additional set of 710 spectra previously collected from 79 HVs at 9 anatomic
sites was also analyzed, as described below.25 Tissue samples from HVs were assumed to
represent healthy mucosa and were not biopsied.

Data Collection
Reflectance and fluorescence spectra were collected from patients using the Fast Excitation
Emission Matrix (FastEEM), an investigational instrument developed by our laboratory that
has been previously described.31 A 1.3-mm-diameter optical fiber probe was used to deliver
the excitation light and collect the light emitted from the tissue. The optical fiber probe was
disinfected with Cidex OPA (Advanced Sterilization Products, Irvine, California) according
to the manufacturer’s specifications, and placed in contact with the tissue during data
collection. No exogenous contrast agents were applied to the tissue. The data collection
procedures have been further described elsewhere.25 Data were collected and analyzed from
the following anatomic sites: buccal mucosa (BM), dorsal surface of the tongue (DT), floor
of the mouth (FM), gingiva (GI), hard palate (HP), lateral surface of the tongue (LT),
retromolar trigone (RT), soft palate (SP), and ventral surface of the tongue (VT).

Model-Based Analysis
We employed physical models to extract morphological and biochemical parameters from
the tissue reflectance and fluorescence spectra. Details of the models are presented in other
reports.25,32,33 The inputs to the reflectance model are the reduced scattering coefficient, μs′
(λ), and the absorption coefficient, μa(λ). By modeling the wavelength dependence of μs′,
we extract 3 parameters: A, B, and C. The A parameter is a scaling parameter proportional
to the density of scatterers. The B parameter reflects the size of the scattering particles.34

The C parameter represents the magnitude of scattering by small scatterers.

The absorption coefficient was modeled as the sum of the contributions from 2 absorbers,
hemoglobin (Hb) and β-carotene (βC). Hemoglohin absorption, μaHb(λ), was modeled with
use of a correction for the effect of vessel packaging, which provides the effective blood
vessel radius as an additional fitting parameter.25 By modeling the absorption, we extracted
the following 4 parameters: the concentration of Hb (cHb), the oxygen saturation (α), the
effective vessel radius, and the concentration of βC (cβC). Hence, from the reflectance
spectra we extracted 7 parameters in all: 3 scattering parameters (A, B, C) and 4 absorption
parameters.

We applied a physical model to the measured fluorescence spectra in order to remove
distortions introduced by scattering and absorption and obtain what we call the intrinsic
fluorescence.33,35 In order to apply the findings of a study of the spectral properties of
healthy mucosa by McGee et al25 to the present study, data were analyzed at the same 2
excitation wavelengths (308 nm and 340 nm). At 308-nm excitation, the spectra were fit
with a linear combination of tryptophan (308 nm), Coll (308 nm), and NADH (308 nm). The
number in parentheses represents the excitation wavelength, Coll refers to collagen, and
NADH refers to the reduced form of nicotinamide adenine dinucleotide. At 340 nm
excitation, the spectra were fit with a linear combination of NADH (340 nm), Coll401 (340
nm), and Coll427 (340 nm), Coll401 (340 nm), and Coll427 (340 nm) are attributed to 2
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distinct collagen components.25 We obtained a total of 6 fluorescence parameters. Overall, a
total of 13 spectroscopy parameters were used to characterize the degree of spectral
similarity between various sites and to construct diagnostic algorithms.

Identifying Spectrally Similar Anatomic Sites
We compared the spectroscopy parameters extracted from each of the 9 sites in the HV data
to identify anatomic sites that shared similar spectral properties and could be combined. The
interquartile range exclusion criteria were applied to the data to remove outliers (eg, from
probe slippage, tissue movement).36 For each spectroscopy parameter, a multiple
comparison test was performed to compare each pair of sites and identify those that had
statistically different distributions. The Tukey-Kramer correction was applied to compensate
for multiple comparisons. For each pair of anatomic sites, we calculated a “similarity score,”
the total number of spectroscopy parameters for which the distributions for the 2 sites were
not statistically different. Perfect correspondence between the spectroscopy parameter
distributions for a pair of sites would be indicated by a similarity score of 13 (total number
of spectroscopy parameters). We considered pairs of sites with a similarity score of at least
10 to be spectrally similar sites.

Spectral Diagnostic Algorithm Development
The diagnostic performance of anatomy-based algorithms developed for spectrally similar
sites or individual sites was compared to that of algorithms designed for all sites combined.
Logistic regression was used to develop the diagnostic algorithms. The log-likelihood ratio
test was used to identify the spectroscopy parameters with the greatest diagnostic potential
for the distinction of healthy mucosa from lesions and of benign lesions from dysplastic/
malignant lesions.37 The discriminatory power of each algorithm was evaluated by leave-
one-out cross-validation and by calculating the ROC-AUC, sensitivity, and specificity. The
sensitivities and specificities quoted in the subsequent analysis were selected based on the
Youden index, the point on the ROC curve with the maximum vertical distance from the 45°
line.38

The fewest parameters necessary to achieve the maximum ROC-AUC for a comparison
were retained. To prevent overtraining, we limited the maximum number of spectroscopy
parameters used in the model to n/5, where n is the number of training samples in the
category with the fewest samples. To further ensure the reliable assessment of the diagnostic
algorithms, we only analyzed categories in which there were at least 10 samples.

RESULTS
General Description of Data Set

A total of 71 patients were recruited for this study. The average age (±SD) of the patients
was 56±14 years. Of the 101 spectra collected from patients, 12 spectra from 7 patients were
excluded because of an error noted during data collection, a broken probe, or the poor
quality of the biopsy specimen, or because the pathology results were unavailable. Two
samples, one of which was a lymphoma and another of which was classified as indefinite for
dysplasia, were also excluded. Thus, a total of 87 spectra collected from 64 patients were
included in the final analysis (Table 1). The abbreviations for the 9 sites are also shown in
Table 1. The average age (±SD) of the 64 patients was 56 ± 15 years. Data collected from
HVs on the BM, DT, FM, GI, HP, LT, RT, SP, and VT were used in the subsequent
analysis. These groups consisted of 100, 124, 112, 58, 54, 112, 33, 43, and 74 spectra,
respectively (not shown in Table 1).
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Identification of Spectrally Similar Sites
The set of 710 spectra collected from 9 anatomic sites in HVs was used to calculate
similarity scores for each pair of sites and to identify which specific pairs could be
combined. There were pronounced differences in the spectral properties among the various
anatomic sites (Table 2). For 75% of the comparisons, the similarity score was 7 or less. We
identified sites with a high degree of similarity on the basis of a similarity score of at least
10. The following 3 pairs of sites met this criterion: 1) BM and SP, 2) FM and VT, and 3) GI
and HP. We refer to pairs of sites with high similarity scores as spectrally similar sites. Just
as for the dysplastic/malignant category, we use the slash notation (eg, FM/VT) in the text
that follows to refer to a group that combines samples from 2 sites.

For algorithm development, it is important to have a sufficient number of samples in each
category. In this study, we used the criterion of at least 10 samples per category. Table 3
lists the numbers of benign and dysplastic/malignant lesions for each of the 3 pairs. For the
FM/VT group, we analyzed samples from every category (healthy mucosa, lesions, benign
lesions, and dysplastic/malignant lesions). For the BM/SP group, we analyzed samples from
the healthy mucosa, lesion, and benign lesion categories.

Distinguishing Healthy Mucosa From Lesions
We first examined the benefit of anatomy-based algorithms when applied to the distinction
of healthy mucosa samples from lesions. Table 4 lists the ROC-AUC results for
discriminating healthy mucosa (HV data) from visible lesions (patient data). In each case,
the results are shown for all sites combined (9 sites total), nonkeratinized sites (all sites
except the GI and HP), individual sites, and spectrally similar sites. Our prior study in HVs
clearly demonstrated that the GI and HP display significant spectral contrast from most other
sites for several spectroscopy parameters.25 By analyzing nonkeratinized sites separately, we
eliminate spectral contrast due to keratin, and can determine whether eliminating it improves
the identification of lesions among the remaining sites in the group.

The results in Table 4 indicate that excellent discrimination between healthy mucosa and
lesions is possible with spectroscopy (ROC-AUC, 0.81 to 0.97), particularly when the
diagnostic algorithms are developed and applied to individual sites or spectrally similar
sites. The diagnostic performance of the spectral algorithms was poorest for the group in
which all sites were combined (ROC-AUC, 0.81 to 0.85). The spectroscopy parameters
frequently identified as diagnostic included NADH (340 nm), cβC, tryptophan (308 nm),
Coll427 (340 nm), and α. The effective vessel radius, Coll (308 nm), and A and C
parameters were not diagnostic.

When lesions were compared to healthy mucosa, the parameter trends were found to be
identical for all 3 separations: healthy mucosa versus all lesions, benign lesions, and
dysplastic/malignant lesions, respectively. Lesions were characterized by higher B
parameter, cHb, α, tryptophan (308 nm), and NADH (340 nm) and by lower cβC, NADH
(308 nm), Coll401 (340 nm), and Coll427 (340 nm). We compared the parameter trends for
lesions relative to healthy mucosa to the trends for healthy keratinized sites (GI and HP)
relative to healthy nonkeratinized sites. The latter comparison was used as a marker for the
influence of keratin; however, mucosal features specific to the GI and HP may also
contribute to the trends. The trends for both comparisons were identical for 7 of the 9
spectroscopy parameters employed in the spectral diagnostic models (data not shown).

Distinguishing Benign Lesions From Dysplastic/Malignant Lesions
We next evaluated the benefit of anatomy-based algorithms for a clinically relevant
distinction, the discrimination of benign lesions from dysplastic/malignant lesions. Spectral
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algorithms were developed for the 4 groups with at least 10 samples in the 2 lesion
categories: all sites combined, nonkeratinized sites, the LT alone, and the FM/VT group.
The Figure shows ROC curves for all sites combined, the LT alone, and the FM/VT group.
The ROC curve for all sites combined demonstrated the poorest discriminatory power.

Table 5 lists the ROC-AUC values, sensitivities, and specificities for the discrimination of
benign lesions from dysplastic/malignant lesions. The highest ROC-AUC value (0.75) was
obtained for the LT, and once again, the lowest value (0.60) was obtained when all sites
were combined. The diagnostic performance of the FM/VT group was considerably better
than that of all sites combined.

Table 6 lists the spectroscopy parameters that were combined to yield the performance
values shown in Table 5. The diagnostic parameters were almost entirely different from
those used to separate healthy mucosa from lesions (data not shown). Although the C
parameter was not diagnostic in distinguishing healthy mucosa from lesions, it played a
significant role in separating benign lesions from dysplastic/malignant lesions. Similarly,
Coll401 (340 nm) had greater significance in separating benign lesions from dysplastic/
malignant lesions than in separating healthy mucosa from lesions. The cβC continued to be
an important diagnostic parameter. Dysplastic/malignant lesions were characterized by
higher C parameter and cHb and by lower cβC, Coll401 (340 nm), and Coll427 (340 nm).

DISCUSSION
The oral cavity is complex, in that it consists of multiple morphologically distinct anatomic
sites, each of which is characterized by its own spectral properties. In many clinical studies,
only a limited amount of data can be collected in a practical time period; therefore, data
from all anatomic sites are combined to maximize the number of samples in each category.
Consequently, differences in the histologic characteristics between the anatomic sites may
confound the detection of spectral contrast related to the presence of disease. We developed
a strategy to evaluate whether certain pairs of sites are comparable in their spectral
properties so that one could combine those sites with a high degree of similarity. This
approach was designed to address 2 potential pitfalls: 1) combining dissimilar sites may
broaden parameter distributions and make it more difficult to detect disease-related spectral
contrast and 2) if the sites being combined have different spectral properties and samples are
unevenly distributed between the 2 categories being compared, the likelihood is increased
that anatomic spectral contrast may compete with or contribute to the apparent disease-
related contrast. We identified 3 pairs of spectrally similar sites: 1) BM and SP, 2) FM and
VT, and 3) GI and HP.

Distinguishing Healthy Mucosa From Lesions
The results of this comparison demonstrated the significant influence of anatomic spectral
contrast on diagnostic accuracy, as well as a clear benefit to combining spectrally similar
sites. As in other studies, we obtained excellent results for this comparison; however,
anatomy-based algorithms were more accurate (ROC-AUC, 0.90 to 0.97) than were
algorithms developed for all sites combined (ROC-AUC, 0.81 to 0.85). We tested an
alternative approach for combining multiple sites on the basis of a morphological criterion,
only combining nonkeratinized sites together. The performance of the diagnostic algorithm
for the nonkeratinized group did not produce ROC-AUC values dramatically higher than
those for all sites combined. The number of lesion samples from keratinized sites in our data
set was limited (5 samples total); however, this finding is consistent with our previous
observation of significant anatomic spectral contrast among nonkeratinized sites, and
supports the need for a more effective strategy for determining which sites to combine.25
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The excellent separations achieved for comparisons between healthy mucosa and lesions
may be influenced by hyperkeratosis, ulceration, or other mucosal changes associated with
lesions that are not directly linked to malignancy. The spectral contrast between healthy
mucosa and visible lesions is largely independent of the presence of disease, as shown by
the comparable ROC-AUC values for discriminating healthy mucosa from benign lesions
and healthy mucosa from dysplastic/malignant lesions (0.81 to 0.96 and 0.85 to 0.97,
respectively). The parallel parameter trends for lesions compared to healthy mucosa and
healthy keratinized sites compared to healthy nonkeratinized sites provide added support for
the hypothesis that keratin, rather than disease, is a major source of spectral contrast. These
results indicate that clinically healthy mucosa samples and samples from clinically abnormal
mucosa (lesions) should be treated as distinct entities. The high values for the diagnostic
accuracy reported for this comparison in previous studies may in fact be unrealistically high
because of the confounding effects of mucosal changes that are unrelated to disease.

The parameter trends we observed when comparing lesions to healthy mucosa are consistent
with those of other studies. In distinguishing healthy mucosa from malignant lesions,
Amelink et al12 noted that malignant lesions exhibited a lower α, an increase in blood
content, and an increase in scattering slope (B parameter). A decrease in scattering
amplitude (A parameter) was also observed, which was not found in our analysis. Müller et
al9 also noted increased NADH and decreased collagen fluorescence for lesions excited at
340 nm. The increase in the B parameter is most likely due to scattering from keratin present
in leukoplakias, as previous work has shown that this parameter is greatly affected by this
feature.25 Vascular dilation or inflammation in ulcerated lesions or erythroplakias may give
rise to an increased cHb. The decreased collagen fluorescence at 340 nm excitation, which
may result from degradation of the extracellular matrix by matrix metalloproteinases, has
been noted in numerous spectroscopic studies.27,39–41 The increased NADH at 340 nm
excitation may be due to the increased metabolic activity of abnormal proliferating epithelial
cells.

Distinguishing Benign Lesions From Dysplastic/Malignant Lesions
The results for the distinction of healthy mucosa from lesions demonstrated the benefit of
anatomy-based algorithms, but this application has no real clinical importance. Therefore,
we applied the anatomy-based algorithms to the distinction of benign lesions from
dysplastic/malignant lesions. Once again, the best diagnostic performance was obtained for
the individual site (LT), and the poorest performance for all sites combined (ROC-AUC,
0.60). The FM/VT group (spectrally similar sites) also produced more accurate results
(ROC-AUC, 0.71) than did all sites combined. We did not evaluate the BM/SP group,
because it did not meet the criterion of at least 10 samples in each category.

The ROC-AUC values obtained for the distinction of benign lesions from dysplastic/
malignant lesions were significantly lower than those for the distinction of healthy mucosa
from lesions. Furthermore, very few parameters were statistically significant in the
diagnostic model for the former comparison. Therefore, the diagnostic accuracies reported in
studies comparing healthy mucosa to lesions may be misleading, because they do not reflect
how spectroscopy performs when applied to clinically important diagnostic distinctions. The
heterogeneity of lesions within each category contributes to the challenge of distinguishing
lesion categories and can further obscure subtle disease-related changes in the spectroscopy
parameters. Some malignant lesions had small foci of invasion in a large area of relatively
normal mucosa, whereas others demonstrated more diffuse disease. Similarly, the benign
lesions ranged from mildly to highly hyperkeratotic, with various degrees of hyperplasia and
inflammation. Interindividual variation is another source of spectral contrast that may affect
diagnostic performance.
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Another approach for combining sites, employed by some researchers, is to combine healthy
mucosa samples with benign lesions. This can dramatically increase the number of samples
in the negative-for-dysplasia/malignancy category, because healthy mucosa samples are
readily available. However, this approach may produce misleading results for 2 reasons.
First, we have shown that there is significant spectral contrast between healthy mucosa and
lesions even in the absence of disease. Second, our findings demonstrate a marked
difference in spectral contrast between benign lesions and dysplastic/malignant lesions, as
compared to healthy mucosa and visible lesions. Therefore, the diagnostic performance may
falsely appear to improve as the proportion of healthy mucosa samples in the negative group
increases. To test this hypothesis, we combined 10 LT healthy mucosa samples with the
benign LT lesions. Whereas an ROC-AUC value of 0.75 was obtained for distinguishing
benign lesions from dysplastic/malignant lesions, the ROC-AUC value increased to 0.85
when we used the combined healthy mucosa/benign lesion category (data not shown). When
50 LT healthy mucosa samples were combined with the same benign samples, the ROC-
AUC value increased further, to 0.91. These results underscore the importance of
considering how data are combined in order to reliably evaluate spectral diagnostic
algorithms.

We examined the trends in the spectral parameters used in the diagnostic models with
increasing disease severity. The increase in the C parameter is consistent with increased
scattering by small particles, as may occur with increased epithelial proliferation. The higher
cHb may be the result of vascular dilation and inflammation as seen in erythroplakias or
with ulceration (features that are more likely to be associated with dysplasia/malignancy),
whereas white lesions are less likely to be dysplastic/malignant upon biopsy.42,43 Decreased
collagen fluorescence was observed once again for this distinction. The reason for the
decreased cβC is unknown. β-Carotene is an antioxidant and can be metabolized into
vitamin A, which is involved in the differentiation of normal epithelial cells.44

Application of Spectral Algorithms in Clinical Practice
The current standard screening method for oral cancer — inspection with palpation —
enables inspection of the entire oral cavity. Our probe may not be appropriate for this
purpose, because it samples only a small area of tissue. However, when patients with
suspicious lesions are referred to an otolaryngologist, spectroscopy may be useful for
distinguishing benign lesions from dysplastic/malignant lesions. A study by Waldron and
Shafer42 of 3,256 leukoplakias (the most commonly encountered oral lesions) found that
42.9% of biopsies from FM lesions and 24.2% of biopsies from tongue lesions exhibited
dysplasia/malignancy. Of the 3,256 cases of leukoplakia, 6.8% and 8.6%, respectively, were
located at these sites. If we consider 1,000 patients with leukoplakia of the tongue or FM, a
total of 442 FM lesions and 558 tongue lesions would be expected, given the relative
frequency of leukoplakia at these 2 sites noted in that study. Of these patients, 32.5% would
be expected to show dysplasia/malignancy (42.9% of FM lesions and 24.2% of tongue
lesions). The performance values for the LT and FM/VT sites are similar, so we use the
average values of 93% and 64% as the sensitivity and specificity, respectively, of the
spectral diagnostic test. Based on these values and the aforementioned prevalence estimates
for diseased lesions, the positive and negative predictive values for our test are 55% and
95%, respectively. These results indicate that our spectral algorithms can identify the
absence of dysplasia/malignancy, with few false negatives, thereby reducing the number of
unnecessary biopsies. A large prospective study is needed to rigorously confirm these
findings.
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CONCLUSIONS
The results of this study demonstrate the importance of developing anatomy-based
algorithms for disease detection in the oral cavity. Combining multiple anatomic sites
without accounting for anatomic spectral contrast reduced disease-related contrast and
resulted in poor diagnostic performance. Spectral algorithms designed specifically for
multiple anatomic sites sharing a high degree of spectral similarity considerably improved
diagnostic accuracies. The best diagnostic performance was achieved when anatomy-based
algorithms were developed for individual sites. The discrimination of healthy mucosa from
lesions yielded excellent results, as in previous studies, but the findings do not extend to the
clinically relevant distinction of benign lesions from dysplastic/malignant lesions. However,
anatomy-based algorithms significantly improved diagnostic performance for the latter
distinction. Diagnostic accuracies for distinguishing healthy mucosa/benign lesions from
dysplastic/malignant lesions were dependent on the proportion of healthy mucosa samples
and were therefore unreliable, even with the use of anatomy-based algorithms. This study
demonstrates a successful approach for developing common algorithms for multiple
anatomic sites while accounting for anatomic spectral contrast.

Developing a spectral diagnostic algorithm for every anatomic site may not be necessary to
provide a substantial clinical benefit. One potential future direction is to develop a reliable
diagnostic tool designed specifically for sites at high risk for oral cancer. To ensure that
dysplasia or malignancy is not missed, biopsies are likely to be taken of lesions at these
sites; therefore, a tool for identifying benign lesions could reduce the number of unnecessary
biopsies. Alternatively, unnecessary biopsies could be reduced by developing a tool for sites
at which lesions are frequently encountered but generally prove benign by histopathology
(low likelihood of disease). Large, prospective clinical studies are needed to reliably
evaluate the efficacy of spectroscopy for these applications. Ultimately, we would like to
detect invisible disease, particularly in high-risk individuals and at surgical margins.
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1. .
Receiver operator characteristic curves for discrimination of benign lesions from dysplastic/
malignant lesions for all sites combined (hatched line), lateral surface of tongue (LT; thick
dashed line), and floor of mouth/ventral surface of tongue (FM/VT; thick solid line).

McGee et al. Page 13

Ann Otol Rhinol Laryngol. Author manuscript; available in PMC 2010 April 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

McGee et al. Page 14

TABLE 1

TOTAL NUMBER OF SPECTRA MEASURED AT EACH ANATOMIC SITE IN PATIENTS AND
PATHOLOGICAL CLASSIFICATION

Site Malignant Dysplastic Benign Total

Buccal mucosa (BM) 2 0 11 13

Dorsal surface of tongue (DT) 0 0 4 4

Floor of mouth (FM) 2 11 3 16

Gingiva (GI) 0 1 0 1

Hard palate (HP) 1 1 2 4

Lateral surface of tongue (LT) 4 9 12 25

Retromolar trigone (RT) 0 1 3 4

Soft palate (SP) 4 0 5 9

Ventral surface of tongue (VT) 1 3 7 11

Total 14 26 47 87
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TABLE 3

DESCRIPTION OF SPECTRALLY SIMILAR ANATOMIC SITES

Similarity Score Spectrally Similar Sites Dysplastic/Malignant Benign

10 BM and SP 6 16

12 FM and VT 17 10

11 GI and HP 3 2
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TABLE 4

ROC-AUC VALUES FOR DISCRIMINATION OF HEALTHY MUCOSA FROM LESIONS

Group Healthy Mucosa vs Lesions
Healthy Mucosa vs Dysplastic/Malignant
Lesions Healthy Mucosa vs Benign Lesions

All sites 0.83 0.85 0.81

Nonkeratinized sites 0.84 0.88 0.84

LT 0.95 0.97 0.93

FM 0.94 0.95

BM* 0.94 0.96

VT 0.95

FM/VT 0.97 0.97 0.94

BM/SP* 0.91 0.90

ROC-AUC – area under receiver operator characteristic curve.

*
No dysplastic samples.
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TABLE 5

ROC-AUC, SENSITIVITY, AND SPECIFICITY VALUES FOR DISCRIMINATION OF BENIGN
LESIONS FROM DYSPLASTIC/MALIGNANT LESIONS

Group ROC-AUC Sensitivity (Based on Youden Index) Specificity (Based on Youden Index)

All sites 0.60 53% 70%

Nonkeratinized sites 0.63 49% 76%

LT 0.75 92% 67%

FM/VT 0.71 94% 60%
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TABLE 6

SIGNIFICANT DIAGNOSTIC PARAMETERS FOR DISCRIMINATION OF BENIGN LESIONS FROM
DYSPLASTIC/MALIGNANT LESIONS

Group Diagnostic Parameters for Benign Lesions vs Dysplastic/Malignant Lesions

All sites C parameter, Coll401 (340 nm), cβC

Nonkeratinized sites C parameter, Coll401 (340 nm), cβC

LT cβC, Coll401 (340 nm)

FM/VT C parameter, Coll427 (340 nm), cHb

BM/SP* A parameter

*
No dysplastic samples.
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