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Abstract
We describe an algorithm based on shrinkage in the curvelet domain to attenuate speckles in
optical coherence tomography (OCT) images. The algorithm exploits the curvelet transform’s
sparse representation of edge discontinuities that are common in OCT images and its ability to
map signals and noise into different areas in the curvelet domain. The speckle attenuation is
controlled by a single parameter that determines the threshold in the curvelet domain. Applying
the algorithm to OCT images shows significant improvement of image quality.

Recent years have seen increasing interest in the use of optical coherence tomography
(OCT) for a variety of imaging applications, especially in the field of biomedical imaging
[1]. Many issues remain to be addressed in order for OCT to be widely used in clinical
applications. One of these is the degradation of OCT image quality owing to speckles [2].
Speckles make it particularly challenging to perform further quantitative image analysis
such as edge detection, segmentation, and pattern recognition. Consequently, much research
has been carried out to develop methods to reduce speckles. The methods developed include
spatial compounding [2,3], frequency compounding [2], and digital filtering such as an
enhanced Lee filter [4], median filter [4], a symmetric nearest neighbor filter [4], an adaptive
Wiener filter [4], an I-divergence regularization [5], as well as filtering in a transform
domain such as the wavelet [4,6-9]. Among them, filtering in a transform domain is one of
the most promising approaches.

The basic principle of transform domain filtering is to shrink transformed coefficients
according to some threshold values. This method is based on the assumption that, in the
transform domain, signals are usually more concentrated and represented by some large
coefficients, while noise is more spread out and coded in small ones. As a result, by zeroing
out small coefficients and keeping large ones, it is possible to effectively attenuate noise
without significantly damaging signal components. Two elements are therefore essential for
the method: a domain that provides sparse representation of signals and an optimal threshold
value. The wavelet is one such domain. It provides a sparse representation for signals
containing singularities that satisfy a variety of local smoothness constraints including, for
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example, piecewise smoothness [10]. Different thresholding strategies in the wavelet
domain have been applied for OCT images previously [6,8,11].

OCT images, however, are usually characterized by edge discontinuities rather than
individual point discontinuities as many biological tissues have layered structures. The
wavelet representation of this kind of feature is not optimally sparse and therefore limits the
application of the thresholding strategy. Recently, another multiscale method called curvelet
transform was developed [12]. The basis functions of the curvelet transform, so called
curvelets, can represent curved edges much more efficiently than wavelets. This concept is
illustrated in Fig. 1, which shows that, for the same image, the signal energy is concentrated
in a fewer number of curvelet coefficients than of wavelet coefficients. Importantly, the
error of reconstructing original signals based on curvelet coefficients as a function of the
largest coefficients decays rapidly, which makes denoising via coefficient thresholding quite
robust. Curvelets are also directionally sensitive, which offers many degrees of freedom to
manipulate signals along certain directions. In contrast, the 2D wavelet transform
decomposes data in only three directional subbands. Given the many superior properties of
curvelets, we present in this work a method based on the curvelet transform to attenuate
speckle noise in OCT images. Our results indicate that image quality is significantly
improved.

There are several software implementations of curvelet transform. We use the wrapping
method of fast discrete curvelet transform to perform both the forward and inverse
transformations [13]. The forward transformation involves several steps, and one of the
major steps is to partition the frequency plane into dyadic annuli and trapezoidal regions.
The dyadic annuli provide scale information, and trapezoidal regions provide the orientation
information of image features. The curvelets are localized in both frequency plane and space
domain, and hence the transformed coefficient is a function of the scale j, the orientation l,
and the spatial coordinates p and q.

The denoising procedure of our algorithm closely mimics those in the wavelet domain and
consists of four steps: logarithm transformation, forward curvelet transform, thresholding,
and inverse curvelet transform. As speckles are usually well modeled as multiplicative
noises, a logarithm transformation is first applied to convert them to additive noises: log(s) =
log(x) + log(z), where s is the acquired data, x is the noise-free signal to be recovered, and z
is the speckle. Then a forward curvelet transform is performed on the converted data to
produce curvelet coefficients Sj,l,p,q = Xj,l,p,q + Zj,l,p,q, where S, X, and Z are the coefficients
for measured data, noise-free signals, and speckle noise, respectively. Following that, a hard
threshold Tj,l is applied to each curvelet coefficient Sj,l,p,q so that S̄j,l,p,q = Sj,l,p,q when |
Sj,l,p,q| > Tj,l, and S̄j,l,p,q = 0, otherwise. Then an inverse curvelet transform is performed to
S̄j,l,p,q to reconstruct the denoised image, and a simple exponential calculation of base 10
would convert the denoised image in the logarithm scale back to the original linear scale.

To obtain the threshold, we use a method called k sigma [14]: Ti,j = kσ1σ2. Here k is an
adjustable parameter, σ1 is the standard deviation of speckles in a background region, and σ2
is the standard deviation of speckles in the curvelet domain at a specific scale j and
orientation l. By choosing a background region, which contains only speckles, one can
compute the mean value and the standard deviation σ1. Based on those values, σ2 is
computed using the Monte Carlo simulation method [14]. We note that, in the computation
of σ2, speckles after logarithm operation are assumed to have a Gaussian distribution, but
extensive data analysis shows that they generally do not fully satisfy this assumption, so the
computed value will be theoretically slightly off. However, since k is adjustable, that effect
turns out not to be critical. The value of k can be scale and orientation dependent. It is
usually obtained by trial and error.
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Figure 2 shows a Fourier domain OCT image of the optical nerve head (a) before and (b)
after curvelet denoising. The details of the OCT instrument and image acquisition have been
previously described [15]. Much of the speckle in the original image has been reduced,
making some image features hidden in the original image more obvious, as shown at the
places, for example, indicated by the two white arrows in (b). To better appreciate the
performance of the algorithm, Fig. 2(c) shows a cross section of the images at the indicated
dashed line in Figs. 2(a) and 2(b). The denoised signal is much cleaner than the original one:
the noise fluctuation at the beginning of the original signal is attenuated to close to zero and
the noise superimposed on the signal components is also attenuated significantly. Most
importantly, all of those are achieved when the image features and the edge sharpness of the
original signal are both well maintained, demonstrating the ability of the algorithm to
preserve signal while attenuating noise.

To quantify the performance of the algorithm, four quality metrics are computed: contrast-
to-noise ratio (CNR) [6], which measures the contrast between image features and noise;
average equivalent number of looks (ENL) [6], which measure the smoothness of
homogeneous areas; peak-signal-to-noise ratio (SNR), defined as SNR = 20 log10{[max(X)]/
σ}, where X is the amplitude data and σ is the noise variance; and cross correlation (XCOR),
which measures the similarity between the images before and after denoising and is defined

as , where s is the intensity data before denoising, y is
the intensity data after denoising, and m and n are the indices of the images. Both CNR and
ENL are computed using logarithmic scale data, while SNR and XCOR are computed using
linear scale data. The value of XCOR is smaller than 1, and the larger is the XCOR, the
closer the denoised image is to the original image.

Table 1 lists the results of the quality metrics for different thresholds. With a small increase
in the threshold, as expected, the cross correlation decreases, since more data are zeroed,
while the values of SNR, CNR, and ENL all increase. For comparison, we have also
performed wavelet-based thresholding. The wavelet filtering is based on undecimated
discrete wavelet transform and the threshold is chosen to be 4.2 times the noise variance,
obtained from the robust median estimator of the highest subband of the transform [16], with
the number 4.2 obtained by trial and error to give the best results. Comparing curvelet- with
wavelet-based methods, for a similar cross-correlation value, our curvelet method (k = 0.7)
further improves the SNR by 7.84 dB.

While the curvelet transform provides an optimally sparse representation of OCT images, it
is still unavoidable that image features can be attenuated in the process of thresholding. This
can be the result of setting too large a threshold and/or some image noise may have curvelet
coefficients that are comparable to those of signals. To minimize the impact, one can take
advantage of the direction selectivity of the curvelets. For example, when signals are mainly
along certain directions, a small threshold should be used for those directions to preserve
signals and a large threshold can be used for other directions to attenuate more noise. This
property of the curvelet transform makes it superior to wavelets, as it can distinguish image
events in more directions than the 2D wavelet transform, which only decomposes data into
three directions: horizontal, vertical, and diagonal. Another advantage is that here the whole
process is computationally very efficient, taking only a few seconds in a typical dual-
processor laptop computer; by contrast, while many simple wavelet filters take about a few
seconds, the spatially adaptive wavelet filter takes about 7 min [6].

To summarize, a curvelet based algorithm is demonstrated that significantly suppresses
speckles in OCT images. The image quality is significantly improved: the SNR is increased
by 27.7 dB, and the contrast ratio as well as smoothness measure are enhanced, with a small
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7.4% loss of similarity. These results highlight the power of the curvelet transform in OCT
image analysis and processing. We anticipate that this approach can be applied to other
problems in biophotonic and biomedical imaging where noise poses a serious challenge.
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Fig. 1.
(Color online) Energies of the curvelet and wavelet coefficients of the OCT image shown in
Fig. 2(a). The coefficients are sorted in descending order of energy from left to right.
Curvelets provide a sparser representation of the image, as the signal energy is concentrated
in fewer curvelet coefficients than wavelet coefficients.
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Fig. 2.
(Color online) Fourier domain OCT images of the optical nerve head (a) before and (b) after
curvelet despeckling. For direct comparison, the images are shown on the same color scale.
The SNR, CNR, and ENL are all increased, with a high similarity between the images
before and after denoising, as detailed in Table 1. The two white arrows in (b) indicate the
places where features hidden in the original image are more obvious in the denoised image.
(c) shows the cross section signal along the white dashed lines in (a) and (b), and they are
vertically offset for clarity. The edge sharpness of the original image is well preserved in the
denoising process, as can be seen in (c). The curvelet transform parameters are: the number
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of scales is 3 and the number of orientations at the second coarsest scale is 16. A universal
threshold is used for all directions, and the value of k is 0.7.

Jian et al. Page 7

Opt Lett. Author manuscript; available in PMC 2010 April 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Jian et al. Page 8

Table 1

Image Quality Metrics

Image XCOR SNR (dB) CNR (dB) ENL

Original 1 33.67 3.38 6.84

Curvelet, k = 0.65 0.932 57.89 5.31 18.07

Curvelet, k = 0.70 0.926 61.34 5.43 20.08

Curvelet, k = 0.75 0.920 64.50 5.53 21.99

Wavelet 0.927 53.50 4.91 17.79
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