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Abstract
We investigate the potential for using latency-based measures of retrieval processing capacity to
assess changes in perfomance specific to individuals with mild cognitive impairment (MCI), a
reliable precursor state to Alzheimer's Disease. Use of these capacity measures is motivated in part
by exploration of the effects of atrophy on a computational model of a basic hippocampal circuit.
We use this model to suggest that capacity may be a more sensitive indicator of undelying atrophy
than speed of processing, and test this hypothesis by adapting a standard behavioral measure of
memory (the free and cued selective reminding test, FCSRT) to allow for the collection of cued recall
latencies. Participants were drawn from five groups: college-aged, middle-aged, healthy elderly,
those with a diagnosis of MCI, and a sample of MCI control participants. The measure of capacity
is shown to offer increased classificatory sensitivity relative to the standard behavioral measures,
and is also shown to be the behavioral measure that correlated most strongly with hippocampal
volume.

Since the time of Ebbinghaus (1885), the study of memory has been guided by numerous
conceptualizations and metaphors for what memory is and does (see, e.g., Kandel, Schwartz
& Jessell, 2000; Neath & Suprenant, 2003; Roediger, 1980; Spear, 1978). Although there are
numerous differences among these views, a common thread is that a comprehensive
understanding of memory functioning requires consideration of four aspects of memory
functioning: encoding, consolidation, retention, and expression (retrieval). Within that
consensus view, however, there does exist a critical dichotomy. Specifically, aspects of
encoding, consolidation, retention, and expression have typically been considered either in
terms of the information involved or in terms of the processes that operate on that information
(see, e.g., Kolers & Roediger, 1984; Massaro, 1998; O'Toole, Wenger & Townsend, 2001;
Roediger, Gallo & Geraci, 2002; Wenger, 1999). Typically, the conceptual distinction has been
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expressed in the choice of the dependent variable, with questions regarding information relying
on frequencies of various types of outcomes, and questions regarding processing relying on
reaction times (RTs).

This same dichotomy has also characterized much of the research on life-span changes in
memory, with respect to both changes associated with normal development and aging, and
changes associated with impairments or disease states (see in particular Cerella & Hale,
1994; Kail & Salthouse, 1994; Petersen, Smith, Ivnik, Tangalos, Schaid, Thibodeau, Kokmen,
Waring & Kurland, 1995; Petersen, Smith, Kokmen, Ivnik & Tangalos, 1992; Petersen,
2007; Petersen & Negash, 2008). A central purpose of the work described here was to use a
novel (in this context) measure of memory performance to provide a link between the focus
on memory information and the focus on memory processes. That link is provided by adding
a theoretically-motivated measure of a fundamental characteristic of processing—specifically,
a measure of processing capacity—to a memory task that has been shown to be very sensitive
in characterizing and detecting changes associated with mild cognitive impairment (MCI). MCI
is a diagnostic category that has been shown to reliably distinguish the mild deficits associated
with normal aging from the more profound deficits associated with Alzheimer's disease (AD,
e.g., Petersen, 2007; Petersen & Negash, 2008; Petersen, Smith, Kokmen, Ivnik & Tangalos,
1992; Petersen, Smith, Waring, Ivnik, Tangalos & Komken, 1999). MCI status has also been
shown to be predictive of a transition to AD (e.g., Dickerson, Sperling, Hyman, Albert &
Blacker, 2007; Morris, Storandt, Miller, McKeel, Price, Rubin & Berg, 2001).

We begin with a general consideration of the distinction between processing speed and
processing capacity, as this distinction will be crucial to understanding the potential issues for
maximizing the sensitivity of behavioral changes associated with early neural pathology. We
then use a computational model of hippocampal connectivity and integrity to investigate the
extent to which the various behavioral measures of processing speed and capacity may be
differentially sensitive to the types of degeneration and atrophy that have been shown to be
characteristic of MCI and AD. Finally, we describe an experimental investigation of the utility
of combining measures of processing speed and capacity with standard measures of recall. To
our knowledge, the experimental work represents the first and only use of reaction times with
frequencies of cued and free recall in application to this clinical issue.

Processing Speed And Capacity in Memory
Studies concerned with the characteristics of memory processing have often focused on the
speed or rate with which memory tasks can be performed. This reflects a long history (dating
at least to work in the nineteenth century, such as that of Donders, Wundt, and Jastrow Boring,
1957; Jastrow, 1890; Townsend & Ashby, 1983) of relying on response latencies as a source
of evidence for the temporal and logical relationships among mental processes (see Luce,
1986; Townsend & Ashby, 1983; Townsend & Wenger, 2004a, for historical reviews). With
respect to changes across the life span, suggestions that response latencies may be critical to
understanding both normal aging and disease states also have a reasonably long history (e.g.,
Birren, 1974; Salthouse, 1985; Welford, 1958).

Reviews of the literature (see in particular Cerella & Hale, 1994; Kail, 1991; Kail & Salthouse,
1994) have outlined a general pattern relating overall response time to age: an inverted-U
shaped function (see, e.g., Kail & Salthouse, 1994, Figure 1, p. 200). That is, processing speeds
increase from early childhood through adolescence, peaking in young adulthood, remaining
stable through very early middle age, before beginning an uninterrupted decline. The tasks that
have been used to provide evidence for this pattern of changes include a wide range of tests of
perceptual, mnemonic, and cognitive abilities, such as simple and choice RT, same-different
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and categorization judgments, short-term memory scanning, recognition, and recall (see, e.g.,
Cerella & Hale, 1994, Table 1, p. 130).

Kail, Salthouse, and colleagues (e.g., Kail & Salthouse, 1994; Salthouse, 1985, 2000, 2001)
have argued that differences in processing speed can be interpreted in terms of global
differences in mental capacity (e.g., as a general cognitive resource) or in terms of general
executive control functions. There have been numerous criticisms of this and related
conceptualizations of capacity (e.g., Fisher & Glaser, 1996; Kantowitz & Knight, 1976; Light
& Burke, 1988; Schweickert & Boggs, 1984), most focusing on the extent to which the
typically-used measures of response speed—particularly mean or median RT—can be
interpreted in terms of processing capacity.

There are a number of conceptual problems associated with using mean or median RT as a
measure of processing capacity. Two are of particular relevance for the present effort. The first
concerns the manner in which capacity differences are revealed. As discussed in detail
elsewhere (see in particular Townsend & Ashby, 1978, 1983; Wenger & Gibson, 2004; Wenger
& Townsend, 2000, 2006), capacity is best understood in terms of the response of a system
(e.g., memory) to variations in workload. In the work presented here, workload is
operationalized as the number of retrieval cues presented on each trial of a cued recall task. A
system that shows degraded performance with increases in workload is characterized as
possessing a capacity limitation. A system that shows no changes in performance with increases
in workload is characterized as possessing unlimited capacity (at least across a specified range
of workload manipulations, see Fisher, 1984). Finally, a system that shows performance
improvements with increases in workload is characterized as possessing unlimited capacity.
A central characteristic of much of the work that has been used to support age-related
differences in capacity is that manipulations of workload are not consistently employed, nor
are contrasts made with respect to the effects of variations in workload. Consequently,
differences in processing speed cannot be unambiguously interpreted in terms of differences
in capacity.

The second conceptual problem concerns the information that is provided by, for example, the
mean RT. By definition, the mean gives the expectation for task completion time (overall
speed). In this sense, it is at best only coarsely reflective of the notion of processing capacity
(see the detailed exposition in Townsend & Ashby, 1978). In contrast, the work reported here
uses a measure on the entire RT distribution, one originally suggested by Townsend and Ashby
in a critical and comprehensive consideration of the theoretical and statistical characterization
of processing capacity (Townsend & Ashby, 1978, 1983). Specifically we make use of the
hazard function of the RT distribution,

where f(t) is the probability density function (pdf) and S(t) is the survivor function of the RT
distribution. This measure is one that is commonly applied in areas as diverse as reliability
engineering (e.g., Cooper & McGillem, 1999) and epidemiology (e.g., Collett, 1994), where
it is also known as the intensity function (see also Townsend & Ashby, 1978), as the variation
in the hazard function characterizes the intensity with which (for example) a disease state is
progressing. The integrated form of the hazard function has been of central importance in
characterizing capacity in work focused on strong empirical tests of process characteristics of
a variety of cognitive processes. For example, Townsend and Nozawa (1995), Wenger and
Townsend (2001), and Ingvalson and Wenger (2005) used these functions to characterize
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individual observers' performance in detection and identification tasks involving manipulations
of target redundancy. Wenger and Gibson (2006) used a similar approach to measure effects
in selective attention. (e.g., Ingvalson & Wenger, 2005; Townsend & Nozawa, 1995; Wenger
& Gibson, 2004; Wenger & Townsend, 2006)

Focusing the Question: A Model of Hippocampal Atrophy
At this point, we have established a general case for why and how capacity at a system level
can be characterized, and how that characterization can allow for a principled distinction to be
made between processing capacity and overall speed. We now turn to consideration of how
one of the more prominent changes associated with MCI and AD can provide a concrete
motivation for using these measures. Accumulating data suggests that measures of atrophy
across a restricted set of brain regions is highly predictive of the conversion from MCI to AD
(e.g., Fleisher et al., 2008; Jack et al., 1999; Vemuri et al., 2008; Whitwell et al., 2007,
2008a,b). Of particular interest for present purposes is hippocampal atrophy, given the critical
role that hippocampal circuits play in a range of memory tasks (see, e.g., Davachi & Wagner,
2002; O'Reilly & Rudy, 2001, among others).

We created a computational representation of a basic hippocampal circuit,1 shown in schematic
form in Figure 1, in order to contrast measures of capacity with measures of overall speed,
given varying levels of structural integrity. The model architecture was based on the established
intrinsic connectivity of the hippocampus (see Shepherd, 2004). We assumed the output of the
entorhinal cortex as the input to model, and assessed the output of the model at the level of the
subiculum. The major pathway in the circuit was from entorhinal cortex to dentate gyrus, then
to CA3, CA1, and the subiculum. In addition, CA3 and CA1 also took input directly from the
entorhinal cortex.

Each of the three regions in the circuit was modeled as a network of discrete-time integrate-
and-fire neurons (Amit & Brunel, 1995, 1997a,b; Dayan & Abbott, 2001). The sub-threshold
dynamics of the membrane potential V for each cell i in any given region evolved over time
(t) according to

(1)

with τα being the membrane time constant,  being the recurrent (within-region) input, and
 being the external input. The state of the recurrent input to each cell i at each point in time

is modeled as a combination of excitatory (E) and inhibitory (I) inputs from all other cells j ≠
i, in that region,

(2)

Here, ρj(t) is a reliability variable, set to 1 with probability r and 0 otherwise (see also Tsodyks
& Sejnowski, 1995); Jij is the relative efficiency of the synapse between cells j and i (0 for
cells that are not connected); δji is the time required to transmit a signal from cell j to cell i and
Sj indicates if a pre-synaptic spike has (= 1) or has not (= 0) occurred in cell j during the interval
from t − δji to t.

1The modeling approach used here follows a very general algorithm outlined by Ashby and Valentin (2007), and as such could be applied
to a range of questions in computational cognitive neuroscience.
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Each cell in each region was assumed to posses a threshold value for the membrane potential
Vi(t), such that if Vi(t) ≥ γ at time t, V (t + dt) was forced to an upper limit Vmax (simulating a
spike), and then returned to a lower limit Vmin. Each cell was assumed to have a resting value,
V0, which was also used as the default value for each cell at the beginning of each simulated
trial. The sub-threshold dynamics of cells in CA1 were also governed by a waiting time function

(3)

where w(t) is the minimum number of time steps (dt) that needed to elapse before the cell could
spike, λ is an upper asymptote, β determines the slope of the function, and s(t) is the cumulative
number of spikes generated by the cell by time t. This allowed for the type of spike-rate
adaptation observed for cells in CA1 (Shepherd, 2004). The spiking behavior of CA3 neurons
was modified such that successive spikes diminished the magnitudes of Vmax and Vmin linearly
as a function of the total number of spikes generated up to time t,

(4)

in order to mimic the known behavior of CA3 cells (Shepherd, 2004).

Specific values for each of the simulation parameters were fixed according to published data
(see, e.g., Amit & Brunel, 1995, 1997a,b; Shepherd, 2004, and see Appendix A for the
simulation methods). The number of cells in each region, and the relative number of excitatory
and inhibitory connections within and between regions were also set according to published
biological and simulation data.

The critical dependent variable in the simulations was the time required to reach a criterion
number of action potentials at the output end of the circuit (see Gold & Shadlen, 2007; Smith
& Ratcliff, 2004, for reviews of similar approaches). We then assumed that observable response
times (RTs) were proportional to the time to criterion for the circuit. Our critical independent
variables were those manipulated in order to simulate the effects of varying processing load
on a circuit at differential levels of integrity (atrophy). We simulated processing load by varying
the criterion number of action potentials (this corresponding to an assumption of limited
capacity for the circuit). We simulated atrophy by reducing the total number of cells in each
region.

Figure 2 plots the outcomes of all of the simulations of the model circuit, showing the
relationship between the relative increase in mean RT and the relative change in the
proportional hazards estimates. The open symbols show the effects on these two measures of
increasing atrophy at the lowest level of processing load, and the filled symbols show the effects
of load at each level of atrophy. The dashed diagonal line indicates equality of proportional
change at the levels of the hazard function and the mean. The data clearly show that proportional
change in the estimated hazard functions is always greater than proportional change in the
mean, with this being true both for changes in load and changes in circuit integrity. These
results suggest that the hazard function analyses may be superior to analyses of mean RTs in
detecting changes due to deterioration of a critical portion of the overall set of circuits
responsible for memory performance.

Connecting Theory and Data
Following from the results of the simulation, and from earlier work on similar issues in other
domains (e.g., Townsend & Ashby, 1978; Wenger & Gibson, 2004; Wenger & Townsend,
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2006), our hypotheses regarding capacity take the form of orderings on hazard functions for
individual observers in two or more conditions, defined in terms of some manipulation of
workload. For example, imagine that we have the hypothesis that individuals in the early stages
of Alzheimer's disease show a pronounced limitation in their capacity to process memory
information, with variation in the number of retrieval cues (one vs. two) being used as the
manipulation of workload. We can state this hypothesis at the level of the hazard function as

for all t > 0, where the subscripts indicate the number of retrieval cues presented. Note that this
hypothesis, by extension, implies that

with the corresponding null hypothesis being

for all t > 0.

The advantages of this measure of capacity, relative to mean RT, are both conceptual and
statistical. As discussed earlier the hazard function characterization maps onto the notion of
processing capacity in a way that is much more direct than the mapping allowed by, for
example, the mean RT (Townsend & Ashby, 1978; Townsend & Nozawa, 1995). There is also
an inferential (statistical) advantage associated with having information from the entire RT
distribution, rather than a point-estimate of central tendency (see particular Townsend, 1990;
Townsend & Ashby, 1978). Specifically, Townsend (1990) has demonstrated that an ordering
on hazard functions always implies an ordering on means, whereas an ordering on means does
not of necessity imply an ordering on hazard functions. Finally, and pragmatically, framing
hypotheses regarding capacity at the level of the hazard functions allows one to make use of a
robust and very general semi-parametric regression model known as the Cox proportional
hazards model (e.g., Allison, 1984, 1995; Collett, 1994; Cox, 1972; Therneau & Grambsch,
2000).

The standard Cox proportional hazards model is based on the assumption that the hazard
function for an observer in any experimental condition i can be written as

(5)

where xi1, xi2, … xik are a set of k independent variables or covariates (with corresponding
weights βi1, βi2, … βik), and λ0(t) is an underlying but unspecified baseline hazard.
Consequently, it is not necessary to make any assumptions about the parametric form of the
baseline hazard (thus getting past many of the technical concerns discussed by Luce, 1986;
Van Zandt, 2000, 2002, in estimating the form of individual hazard functions). For this reason,
proportional hazards models are sometimes referred to as “semi-parametric” (see, e.g., Allison,
1995; Collett, 1994; Therneau & Grambsch, 2000). All that is required of this baseline hazard
is that it not be negative.
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If it can be assumed that the hazard functions for the observer in any two experimental
conditions i and j are proportional for all values of t, then the model for the effects of the
independent variables and covariates can be simplified as follows:

(6)

(7)

Further, taking the log of this relationship results in a linear model whose parameters can be
estimated using well-understood statistical methods (e.g., maximum likelihood).

The robustness of this statistical model in the face of the known challenges associated with
analyzing RT distributions (e.g., Luce, 1986; Van Zandt, 2000, 2002) was initially explored
in a set of simulation studies (reported in detail in Wenger et al., 2006). That work involved
generating data that possessed a known proportionality relationship at the level of the hazard
function, across a set of distributional forms commonly associated with RT data, given varying
levels of sample size, and examining the ability of the proportional hazards model to both detect
reliable orderings and recover the true magnitude of the proportionality relationship. The
Weibull (1951) distribution was used as the basis for these simulations, given its ability to be
parameterized so as to produce distributional shapes that are commonly used to model and
analyze RT distributions (as in, e.g., Logan, 1992; Spieler & Balota, 1997; Spieler et al.,
2000). In addition, these simulations were performed so as to produce two types of data: one
from contexts in which enough observations are taken to allow distributional analyses at the
level of the individual observer (e.g., as in Townsend & Nozawa, 1995; Wenger & Townsend,
2001), and one from contexts in which distributional analyses consider data from multiple
observers (as is generally the case in studies of memory across the life span). This second
context allowed us to further examine extensions to the proportional hazards model (in
particular Allison, 1995, 1996; Klein, 1992; McGilchrist, 1993; Therneau & Grambsch,
2000) that take into account the unobserved heterogeneity due to multiple observations on
multiple observers.

However, these initial simulations did not address a question that is of critical interest in any
clinical application. Specifically, it may be the case that it is possible to obtain only a limited
number of observations on any single individual. Consequently, we performed an additional
set of numeric simulations to investigate the effects of varying sample size on the ability of the
proportional hazards model to recover known levels of proportionality on the hazard functions.
We generated data at four levels of proportionality or ordering (representing a range of
experimental effect sizes), for sample sizes between five and 200 observations; details of the
numeric simulations are presented in Appendix B. The results are plotted in Figure 3. Here it
can be seen that there is a liberal bias in the estimated proportionality that is amplified at small
sample sizes and with small effect sizes. In addition, the bias drops off rapidly and approaches
asymptotic levels for all effect sizes when the sample sizes exceed 30 observations. The
presence of a consistent liberal bias implies that any deleterious effects of load will be
underestimated, meaning that estimates of capacity drawn from inferred orderings will of
necessity be conservative.
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Experiment: Applying the Measures to Memory Performance
Our approach to investigating the potential for this latency-based measure of capacity involved
a modification of a well-established experimental paradigm that has demonstrated significant
utility in both basic and applied research, the free and cued selective reminding test (FCSRT,
Bushke, 1984; Grober & Bushke, 1987). Before describing the specific modification to the
FCSRT used in the present study, it is worth considering the nature of that paradigm and the
advantages it provides in the study of memory deficits.

Studies of the information involved in encoding, consolidation, retention, and expression often
focus on the relative frequency of specific types of observable events, such as items correctly
recalled or recognized. However, when such measures are used in the study of changes in
memory performance as a function of age and/or impairment, interpretation of these measures
can be complicated by a number of potentially confounding factors. In particular, as discussed
by Grober and Bushke (1987), any observed deficiencies in performance may be due to at least
two contributing effects: “apparent” memory deficits, or performance decrements that are
revealed in a test of memory but that are attributable to difficulties with processes outside of
those associated with successful encoding, consolidation, retention, and retrieval (e.g.,
perceptual or motoric processes); and “genuine” memory deficits, or performance decrements
that can be isolated to some aspect of encoding, consolidation, retention, and expression.

In order to distinguish between apparent and genuine deficits, it is necessary to show that a
decrement in performance is observable in conditions which are optimal on all possible
dimensions of processing (Bushke, 1984; Petersen et al., 1992, 1995, 1999). The necessity of
these conditions is indicated by documented age-related differences in abilities related to
encoding and immediate memory (e.g., Eysenck & Eysenck, 1979; Salthouse & Babcock,
1991; Waugh & Barr, 1982), in the extent to which both general (e.g., Larrabee, Youngjohn,
Sudilovsky & Crook, 1993) and specific information (e.g., episodic features) are retained over
time (e.g., Johnson, Leonardis, Hashtroudi & Ferguson, 1995), and in the relative effectiveness
of various types of cuing conditions (e.g., Craik, 1994; Faust, Balota & Spieler, 2001; Micco
& Masson, 1992; Smith, 1977).

The FCSRT was developed by Bushke and colleagues (Bushke, 1984; Grober & Bushke,
1987) in order to provide the conditions that would allow for discriminating between apparent
and genuine deficits in memory performance. Figure 4 presents a flow-chart summary of the
task. Initial encoding (learning) in this task is controlled by requiring semantic processing of
each of the to-be-remembered (TBR) items, for example, by requiring participants to search
for and verbally identify a picture of a particular object (e.g., “sweater”) among a set of pictures
in response to a categorical cue (e.g., “item of clothing”). Following presentation of the entire
set of TBR items, participants freely recall as many items as possible during a fixed period
(e.g., 2-3 min). After the free recall period, retrieval cues (e.g., the category labels that were
used to guide initial encoding) are provided for words that were not recalled. The total number
of items that are retrieved using both free and cued recall provides a minimum estimate of the
number of items available for retrieval. Following this, an additional set of encoding trials and
free and (if necessary) cued recalls for the remaining set of items is performed. At the outset
of each of these iterations, the orienting cues for items not recalled either freely or with cues
on the preceding iteration are provided, with participants re-performing the search for and
identification of these items, a process that acts as a form of selective reminding (Bushke,
1973).

Since the introduction of the FCSRT, its sensitivity and effectiveness in detecting age- and
pathology-related changes in memory performance have been documented in a number of
studies (e.g., Grober et al., 1988; Grober & Kawas, 1997; Grober et al., 1998, 2000; Petersen
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et al., 1995; Tuokko & Crockett, 1989; Tuokko et al., 1991). The test is easy to administer,
provides a high degree of diagnostic accuracy with respect to memory impairment (e.g., Grober
& Bushke, 1987; Grober et al., 1988; Grober & Kawas, 1997; Grober et al., 2000; Petersen et
al., 1999), and (due to the iterative nature of the procedure) allows for a reasonable number of
samples to be obtained from each participant. While it is possible to obtain measures of
response latency on the cued trials, latency data have not (to our knowledge, prior to the present
study) been systematically collected and/or reported in the literature. Given the known
sensitivity of latency measures for revealing important aspects of cognitive functioning that
are often not detectable with frequency data (see, e.g., Luce, 1986; Townsend & Ashby,
1983; Van Zandt, 2002, for general reviews), and given the potential of the latency-based
capacity measures to be sensitive to the effects of hippocampal atrophy, we augmented the
FCSRT by collecting RTs to the retrieval cues in the cued portion of the paradigm.

Method
Participants—Five groups of participants were recruited, three groups from the area in and
around South Bend, Indiana, and two groups in and around Rochester, Minnesota. The first
group (to be referred to as the CA group) included 103 healthy undergraduate students from
the University of Notre Dame; data from three of these individuals were discarded prior to
analysis for reasons unrelated to performance (e.g., equipment malfunctions, etc., with the most
common being difficulties with the lapel microphone). The second group included 107 healthy
middle-aged (25-65 years of age, to be referred to as the MA group) individuals from the South
Bend community; data from three of these individuals were discarded prior to analyses. The
third group included 104 healthy elderly individuals (over the age of 65, to be referred to as
the HE-SB group) from the South Bend community; data from seven of these individuals were
discarded prior to analyses. The fourth and fifth groups were recruited from a registry of
individuals participating in the Mayo Clinic Study of Aging (see Roberts et al., 2008, for
methodological and demographic details of this effort). Each of these two groups included 50
individuals. Individuals in one of these two groups had been previously assigned a diagnosis
of MCI (to be referred to as the MCI group), and individuals in the other were age-matched
controls (no diagnosis of MCI, to be referred to as the MCI-C group); data from two individuals
in the MCI-C group was discarded prior to analyses. All participants reported fluency with
spoken and written English, and all received financial compensation for their participation.

Materials—The items used in the memory task were 24 line-drawings from the Snodgrass
and Vanderwart (1980) norms (see Table 1). For each of these drawings, a category label and
a highly-associated instance were selected from the McEvoy and Nelson (1982) category and
instance norms. The images were drawn in black on white squares, 6.4 cm on each side, so that
at an unconstrained viewing distance of approximately 70 cm, the squares subtended
approximately 5.2° of visual angle. Stimulus presentation and data recording were done using
either a desktop (for the CA, MA, and HE-SB participants) or laptop (for the MCI-C and MCI
participants) computer. Screen resolutions in both cases were set to 800 × 600 pixels, at a
refresh rate of 17 ms. Manual responses were collected and timed using the computer
keyboards, and verbal responses were timed using a lapel microphone attached to the
computers; timing of responses in all cases was accurate to ±1 ms (Forster & Forster, 2003).

Design
The overall design was cross-sectional, with the groups (CA, MA, HE-SB, MCI-C, MCI)
defined by age and MCI status. With the exception of the FCSRT, none of the experimental
tasks—visual threshold estimation, naming time, FCSRT—involved any other between-
subjects manipulation. In the case of the FCSRT, the independent variables were number of
cues in the cued recall portion (one or two, manipulated within-subjects), and the specific type
of cue used on the single-cue trials (category label or instance, manipulated between-subjects).
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Half of all subjects in each group were randomly assigned to each of the single-cue-type
conditions.

Procedure—Testing sessions for the CA, MA, and HE-SB participants took place in a quiet,
dimly-lit room in the first author's laboratory on the campus of the University of Notre Dame.
Testing sessions for the MCI-C and MCI participants took place in the Alzheimer's Disease
Research Center, Mayo Clinic College of Medicine, in Rochester, MN. Sessions lasted between
45 and 90 min, with variations in duration due to longer sessions for the older participants.

Background data: Each session began with participants completing a background
questionnaire consisting of a total of 21 questions, covering basic demographic and health
information, along with quality-of-life items from the Health and Retirement Survey (Gustman,
Mitchell & Steinmeier, 1995). Items were presented sequentially in a fixed order in plain text
on the computer screen, and participants were given the option of either reading and entering
their responses on their own, or having the items read to them with responses entered by the
experimenter.

Visual identification thresholds: Following this, participants′ visual identification thresholds
(as a function of exposure duration) were estimated using the method of constant stimuli. This
was done in order to provide measures that could help distinguish latency-based effects specific
to memory processing from general age-related slowing. The range and specific values for the
set of seven exposure durations varied for each of the groups, with the specific values selected
on the basis of pilot testing. The exposure durations for the CA and MA participants ranged
from 17 to 119 ms in 17 ms steps. The exposure durations for the HE-SB and MCI-C
participants ranged from 34 to 238 ms in 34 ms steps,. The exposure durations for the MCI
participants ranged from 68 to 476 ms in 68 ms steps. A total of 20 trials were presented at
each level of exposure duration, and order of presentation was determined randomly for each
participant.

Trials began with a fixation stimulus, presented centrally for between 510 and 1020 ms, with
the specific duration determined by a uniform distribution over this interval (rounded to the
closest multiple of 17 ms). This was followed by the presentation of either the target ([ + ]) or
non-target ([ - ]) stimulus for the appropriate exposure duration. Participants signaled their
perception of the target stimulus by pressing either the “z” or “/” key on the computer keyboard,
using the index finger of their dominant hand, and the non-target stimulus using the middle
finger of their dominant hand. Feedback (the word “Correct” or the word “Incorrect,” presented
centrally) was provided on each trial.

Naming time: Participants then performed a simple naming-time task. This task, like the visual
identification threshold task, was included in order to help differentiate latency-based effects
specific to memory processing from generalized age-related slowing. A set of 20 three- or four-
letter words was chosen from the labels for items in the Snodgrass and Vanderwart (1980).
These words were chosen on the basis of pilot testing to be minimally confusable with the set
of items used in the FCSRT. Each word was presented once only, and the order of presentation
was determined randomly for each participant.

Trials began with a fixation screen presented centrally for between 510 and 1020 ms, with the
specific duration determined by a uniform distribution over this interval (rounded to the closest
multiple of 17 ms). This was followed by the presentation of one of the words, in upper-case
letters, with the word remaining visible until the participant responded. Participants responded
verbally, speaking at a normal (conversational) volume, triggering the software voice key. The
experimenter logged each trial as correct, incorrect, or artifact (cough, etc.). No feedback was
provided.
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FCSRT: The final task was the FCSRT. The encoding portion of this task required participants
to find a target image located in a display involving three randomly selected non-target images
on the basis of both a category cue and a related instance cue. The cues were presented in
sentence form at the top of each display of four images, and took the form “Find the category
label that is related to instance.” The location of the target image was determined randomly
on each encoding trial. Participants responded by pointing to the target item, and the display
remained available until the participant responded. Each encoding trial was initiated and
terminated by the experimenter.

Once the entire list of target items had been presented, participants were asked to recall,
verbally, as many of the encoded items as possible, with no requirement for serial recall. The
experimenter logged the items correctly recalled, then initiated the cued recall trials. Each cued
recall trial began with the presentation of either one or two cues at the top of the screen. On
the double-cue trials, the instance and category cues were separated by eight spaces and a pair
of upright brackets centered in those eight spaces. The specific location of each of the cues
was determined randomly on each trial, and the number of single- and double-cue trials was
set to be approximately equal for each participant on the basis of the number of words available
for cued recall following the first free recall. The cue(s) were available until the participant
responded. Participants responded verbally, triggering a software voice key. The RT for the
trial was the time from the onset of the retrieval cue(s) to the onset of the participant's vocal
response. Following each response, the experimenter logged the response as being correct,
incorrect, or an artifact (cough, etc.). Each of the items that had not been recalled in the free
recall trials was cued once, with order determined randomly. If items remained not-recalled
following the cued recall trials, those items were used in another set of encoding, free recall,
and cued recall trials. This sequence was repeated either until all of the items were recalled, or
a total of six replications of the sequence were completed.

Results
Unless otherwise indicated, all analyses used an α of 0.05. We begin with a summary of the
basic characteristics of individuals in each group (including visual identification thresholds
and mean naming times), then consider the frequency- and latency-based measures of memory
performance, including (for a subset of the participants) a consideration of the relationship
between these measures and measures of hippocampal integrity.

Participant characteristics
Table 2 presents a summary of a relevant subset of the information reported on the background
questionnaire. At least 93% of all participants in each group reported being native speakers of
English and, overall, the percentage of total age during which participants reported speaking
English was at least 97% for all groups. In addition to the results reported here and in the
sections following, we performed analyses in which we excluded (a) participants reporting
head injury, (b) participants reporting depression, and (c) all females. The qualitative results
did not differ in any way from those obtained using all of the participants' data. In addition,
we estimated pairwise correlations among a subset of the demographic and individual
difference variables (age, years of eduction, years of spoken English, visual identification
threshold) and a subset of the critical dependent measures (cumulative free recall, cumulative
cued recall, total change in recall, mean RT on cued recall, and the individual estimate of
capacity) within each group. None of these correlations reached criterion for statistical
reliability.

Visual identification thresholds
Thresholds for each individual were estimated by fitting a two-parameter Weibull cdf
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(8)

to identification accuracy as a function of exposure duration (t), then finding the value of t for
which the parameterized function was equal to 0.79. Figure 5(a) and (b) present the group
means and individual estimates as a function of age for the entire sample. Individual estimates
were analyzed using a one-way analysis of variance (ANOVA), with age as the single factor.
This analysis revealed a reliable effect due to group status, F(4, 397) = 34.70, MSE = 5994,
with the temporal thresholds for the CA (64 ms) and MA (87 ms) participants being reliably
shorter than those for the HE-SB (177 ms), MCI-C (143 ms), and MCI (165 ms) participants,
and there being no reliable differences (based on Tukey post-hoc tests) between the CA and
MA participants, or among the HE-SB, MCI-C, and MCI participants.

Naming times
Panels (c) and (d) of Figure 5 present the group means and individual means on the naming as
a function of age for the entire sample. Individual means were analyzed using a one-way
ANOVA, with group as the single factor. This analysis revealed a main effect for group, F(4,
397) = 29.77, MSE = 208008, with naming latencies being reliably shortest for the CA
participants (489 ms), followed by the MA (562 ms) and HE-SB (617 ms) participants, with
mean latencies for the MCI-C (716 ms) and MCI (731 ms) being the longest, with there being
no reliable differences within each grouping (MA vs. HE-SB, and MCI-C vs. MCI).

FCSRT: Free and cued recall
Participants in all five groups completed recall by, at the latest, the fourth pass through the
procedure (see panel (a) of Figure 6), with the majority of the improvement occurring between
the first and second pass. Consequently, we analyzed all of the data from the FCSRT with
respect to differences between initial and asymptotic levels of performance.

The data for change in cumulative free recall (initial to asymptotic) were analyzed using a 5
(group: CA, MA, HE-SB, MCI-C, MCI) × 2 (single-cue condition: category, instance)
ANOVA, collapsing across total number of cues. The only effect to reach the criterion level
for reliability was the main effect of group F(4, 389) = 10.85, MSE = 13.96: participants in the
MCI group on average increased cumulative free recall by an amount (1.8 items) that was
reliably greater than that for individuals in the CA (0.6 items), MA (1.0 items), HE-SB (1.1
items) or MCI-C (0.6 items) groups, with there being no reliable differences among these latter
four groups. Post-hoc examination of the group means showed all of the increases in cumulative
free recall to be reliably different from 0.0, all ts > 4.74, all ps < .001.

A similar result was obtained in the analysis of the data for change in cumulative cued recall
(collapsing across number of cues), which were analyzed using a 5 (group: CA, MA, HE-SB,
MCI-C, MCI) × 2 (single-cue condition: category, instance) ANOVA. As with the cumulative
free recall data, the only effect to reach criterion for reliability was the main effect for group,
F(4, 389) = 14.19, MSE = 0.35. Participants in the MCI group increased their cumulative cued
recall by 0.7 items (on average), reliably more than was the case for participants in the CA (0.1
items), MA (0.2 items), HE-SB (0.2 items), or MCI-C (0.2) items, with there being no reliable
differences among the latter four groups. In addition, only the increase for the MCI participants
was reliably different from 0, t = 4.78, p < .001, all other ts < 1.77, all other ps > .09.

Unsurprisingly, then, the analysis of the data for change in cumulative total (free plus cued)
recall revealed the same basic result. These data were analyzed using a 5 (group: CA, MA,
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HE-SB, MCI-C, MCI) × 2 (single-cue condition: category, instance) ANOVA. As in the
preceding analyses, only the main effect of group reached the criterion level for reliability, F
(4, 389) = 16.36, MSE = 20.52, with the overall increase for participants in the MCI group (2.5
items) being reliably greater than was the case for participants in the CA (0.7 items), MA (1.2
items), HE-SB (1.3 items), or MCI-C (0.8 items) groups, with there being no reliable
differences among the latter four groups, and with all five of the means being reliably greater
than 0. Our data are, then, at this level of analysis, consistent with established findings in the
literature with respect to differences in performance on the FCSRT—particularly deficits on
the initial pass with associated increases on subsequent passes—being reliable indicators of
MCI (e.g. Grober et al., 2000; Kelley & Petersen, 2007; Petersen, 2007; Petersen & Negash,
2008).

FCSRT: Cued recall, mean RT
Systematic effects at the level of overall speed of processing were examined by way of mean
RTs on the cued recall trials. Prior to analyses, all RTs less than 200 ms were deleted, as were
all RTs associated with incorrect responses. Median RTs were calculated for each participant
at each level of cuing (one vs. two), and the data (means of those medians) were then analyzed
using a 5 (group: CA, MA, HE-SB, MCI-C, MCI) × 2 (single-cue condition: category, instance)
× 2 (number of cues: one vs. two) ANOVA, with group and single-cue condition being between-
subjects variables, and number of cues being a within-subjects factor. The data are summarized
in the three panels of Figure 7.

The analyses of these data are summarized in Table 3. Critically, the three-way interaction of
group, single-cue condition, and number of cues was reliable. To understand the form of this
interaction, we calculated the following interaction contrast (Maxwell & Delaney, 2004) for
the interaction of single-cue condition and number of cues, separately for each group:

(9)

The subscripts indicate the type of cue used on the single-cue trials (category, C, or instance,
I) and the number of cues present on the trial (one or two). Thus,  and  are the mean
RTs for single- and double-cue trials for those individuals who were presented with category
cues on the single-cue trials. The values of the interaction contrast are plotted in panel (d) of

Figure 7. The first difference on the right-hand side of Equation 9  was generally
small and negative, reflecting little in the way of cost of adding an instance cue to a category
cue (see panel (a) of Figure 7). The exception was the MCI group, which showed a reliable
benefit of adding an instance cue to the category cue. The second difference on the right-hand

side of Equation 9  was generally negative, but larger in magnitude than the first
difference (see panel (b) of Figure 7), indicating an overall cost of adding a category cue to an
instance cue. In contrast, the difference for the MCI group was quite large. Taken together the
interaction contrast indexes the extent to which the cost of adding a category cue to an instance
cue exceeded either the cost or the benefit adding an instance cue to a category. As can be seen
in panel (d) of Figure 7, this cost was largest for the MCI group.2

FCSRT: Effect of load on capacity
To estimate the effects of varying the number of cues (workload) on cued recall RT, we fit the
proportional hazards model to the correct RTs for each observer for each combination of group
status and single-cue condition separately, with number of cues as the predictor.3 The results
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of these analyses are presented in Table 4 and Figure 8. Consistent with the analyses of the
mean RTs, adding a category cue to an instance cue produced a reliable reduction in capacity
for participants in all five groups. However, only the MCI group showed a reliable effect of
adding an instance cue to a category cue, in this case producing a reliable increase in capacity.
Thus, at this level of analysis, participants in the MCI condition appear to be much more
sensitive to the effect of varying processing load, showing both negative and positive effects
for increasing the number of cues.

Relative diagnostic utility
The analyses of the mean RTs and the capacity estimates suggest that the latency information
may be of equal if not more importance in distinguishing the MCI group from the others.
Specifically, it was the case that the RT data revealed an effect of cuing that was not evidenced
in the free and cued recall frequency data. Consequently, we sought to evaluate the relative
diagnostic utility of the latency measures by using discriminant function analysis (DFA, e.g.
Rao, 1973). DFA uses one or more predictor (independent) variables to estimate a function
that is used to assign each observation to one or more categories (values of the dependent
variable). The specific goal of this analysis was to determine how well the capacity measures
would do, relative to the acknowledged ability of the free and cued recall measures, in correctly
classifying participants as to their MCI status.

We considered the data only for the HE-SB, MCI-C, and MCI groups for this analysis.4 We
evaluated the relative ability of models formed by five different combinations of three predictor
variables to correctly categorize individuals as to their MCI status. The three predictor variables
were each observer's (a) total change in free recall (initial to asymptotic), (b) mean RT on the
cued recall trials (collapsing across cue type and number), and (c) absolute value of the change
in capacity as a function of adding a second cue. Preliminary analyses indicated that the overall
mean RT produced model fits that were statistically no different from those obtained using
means specific to cue number and type. The absolute (versus signed) value of the estimate
capacity change was used given the differential effect of the two types of cues.

These three predictor variables were used to parameterize five different DFA models, with the
relationships among the models illustrated schematically in Figure 9. The models were fit to
the data assuming a linear form for the discriminant function, and the quality of the fit of each
obtained model was assessed in two ways, first with respect to a general set of measures of
model performance, and second using a set of measures of diagnostic sensitivity and utility.
Both methods of assessment used the predicted set of categorization frequencies and
probabilities as their basis.

The quality of each model's fit to the data was first quantified by calculating the log likelihood

(10)

2A reviewer astutely noted that the two cuing conditions differ in one potentially critical way, other than in terms of workload. Specifically,
it is possible that presentation of the instance cues recruited processing of memory for sensory features, while presentation of the category
cues recruited processing of memory for functional or abstract features (following, e.g., Rosch, Mervis, Gray, Johnson & Boyesbraem,
1976). Consequently, it is possible that adding a demand to process abstract features has more of an impact than does adding a demand
to process sensory features. Critically, this possibility allows for a very easy experimental test (also suggested by the reviewer), involving
two category cues that vary in the extent to which they tap instance-, basic-, or superordinate-level representations.
3We also estimated models that included visual identification thresholds, mean naming times, and age as predictors. However none of
these variables produced parameter estimates that were reliably different from 0 in any of the cases. The relative estimates for the effect
of number of cues did not change in their orderings with and without the additional predictors.
4We also ran the DFA analyses using only the data for the MCI-C and MCI groups, and obtained qualitatively identical results.
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where fij was the observed frequency of individuals with known MCI status j being assigned
status i (i, j = 0, 1), and P (Ri|Sj) was the overall probability of the model assigning MCI status
i to an individual with MCI status j. The log likelihood was used to compare the relative
performance of the five models, following a strategy outlined by Thomas (2001). Models that
differed in terms of the total number of predictor variables were compared using

(11)

where Lr is the log likelihood for the model with the smaller number of predictor variables (the
restricted model) and Lg is the log likelihood for the model with the larger number of predictor
variables (the general model). The degrees of freedom for the comparison is given by the
difference in the number of predictor variables for the two models under consideration. Models
that had the same number of predictor variables were compared using the Akaike Information
Criterion

(12)

(Akaike, 1983; Ashby & Lee, 1991), where ν is the total number of predictor variables for the
model under consideration. The model with the smallest value of the AIC was selected as
providing the best account of the data. Table 5 summarizes this analysis. Among the single-
variable models, the one based on the capacity measure provided the superior account of the
data, while between the two two-variable models, the one that combined the capacity measure
with total change in recall provided the best account of the data. Finally, the model that
combined the capacity and total recall measures provided a statistically superior account of the
data, relative to the models that relied on either of these two measures alone.

We also contrasted the performance of the five sets of predictor variables using a set of
measures reflecting diagnostic (or choice) accuracy, sensitivity, and bias (see Table 6). For the
purposes of these comparisons, we coded the rate of correct and incorrect categorizations for
each predictor as follows. A “hit” was defined as correctly classifying an individual with a
diagnosis of MCI, with a “miss” being the associated error. A “correct rejection” was defined
as correctly classifying an individual who did not have a diagnosis of MCI, and a “false alarm”
was the associated error.

The results of the DFA are summarized in panels (a)-(c) of Figure 10, and show that, generally,
the capacity measure when used either alone or in combination with total change in recall,
performed well with minimal bias. With respect to diagnostic sensitivity and specificity (Figure
10(a)), the capacity measure alone performed as well as the total change in recall in terms of
sensitivity (true positive), and outperformed total change in recall in terms of specificity (true
negative). The best performance on both measures was obtained when the capacity and recall
measures were combined. This same pattern held for the relationship between the measures of
positive and negative predictive value (Figure 10(b)). Finally, the superior categorization
performance of the model that combined change in total recall with capacity can be seen in the
values of d′ and c ((Figure 10(c)): this model gives the highest value for the sensitivity
parameter with minimal levels of bias.

Capacity estimates and hippocampal volumes
Structural MRI scans, obtained within one month of the behavioral testing, were available for
total of 36 individuals in the MCI-C (17) and MCI (19) groups. Of these, data for two
individuals (both in the MCI-C group) were excluded, as their behavioral data was incomplete
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(see the “Participants” section above). For the remaining 34, we obtained estimates of total
hippocampal volume in order to determine the potential relationship of each of our dependent
measures with a measure of hippocampal atrophy.

Hippocampal volumes were estimated using voxel-based morphology methods, as part of a
larger ongoing research effort; parameters for image acquisition and analysis are provided in
reports pertinent to that work (e.g., Whitwell et al., 2008b), with a brief summary reported
here. In order to quantify total hippocampal volume, the borders of the left and right hippocampi
were traced sequentially from posterior to anterior. In-plane hippocampal anatomic boundaries
were defined to include the CA1 through CA4 sectors of the hippocampus proper, the dentate
gyrus, and subiculum. The posterior boundary was determined by the oblique coronal anatomic
section on which the crura of the fornices were identified in full profile. The inferior boundary
of the hippocampus was determined by the gray-white interface formed by the subiculum and
underlying parahippocampal gyrus.

Simple linear correlations were calculated between total hippocampal volume, each
participant's age, and each of the predictor variables considered in the DFA. The results are
summarized in Table 7. Here it can be seen that the only correlations to be reliably different
from 0 were those for total change in recall and for the capacity estimate, and then only in the
case of the individuals in the MCI group. In addition, the magnitude of the correlation between
capacity and hippocampal volume was reliably greater than the correlation between total recall
and hippocampal volume (Z = 2.12, p < .05). The correlation between change in recall and
hippocampal volume is consistent with the findings, here and in a range of other studies,
suggesting that changes in FCSRT performance can reliably distinguish individuals with a
diagnosis of MCI from those without. And the correlation between the capacity measure and
hippocampal volume, particularly given the lack of a reliable correlation for the mean RT
measures, suggests the potential importance of considering the effects of atrophy in terms of
capacity rather than speed of processing.

Discussion
The motivation for the present investigation was the question of whether a measure of
processing capacity (Townsend & Ashby, 1978) could offer advantages in distinguishing
individuals with a diagnosis of MCI from those without. We considered this question in the
context of known findings regarding hippocampal atrophy, and used a computational model
of the hippocampal circuit to demonstrate that measures of capacity showed more change with
degeneration than did measures of speed of processing.

In order to test the ability of measures of capacity to identify individuals with a diagnosis of
MCI, we modified a behavioral task that has repeatedly demonstrated its utility in
distinguishing memory impairment from normal age-related changes in memory, the FCSRT.
Specifically, we collected RTs on cued recall trials, using a voice key to allow for verbal
responses. In addition, we also collected visual identification thresholds (as a function of
exposure duration) and mean naming times, in order to provide a set of covariates that could
help us distinguish deficits in recall from more general slowing of processing.

At the level of free and cued recall, we replicated standard findings in the literature. Participants
in the MCI group showed a deficit in recall on the initial pass of the task, and consequently
showed the largest change from initial to final levels of recall. The analysis of mean RTs in
the cued recall task also showed differences specific to participants in the MCI group, with the
impact of increasing recall cues from one to two being most pronounced (in terms of both
facilitation and inhibition) for participants in the MCI group. Importantly, this effect of cuing
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was not observed in the recall frequency data, suggesting that the latency data may be relatively
more sensitive in refining the characterization of specific deficits in MCI.

The effects of adding recall cues (increasing load in cued recall) with respect to processing
capacity was assessed by estimating proportional changes in the hazard function of the RT data
for each participant. These analyses documented that the manipulation of load had reliable
positive and negative impacts on processing capacity, selective to participants in the MCI
group. Having demonstrated that the capacity measures can be used in this context, and that
they are selectively sensitive to differences in performance, we then compared the capacity
measures to a set of alternative predictors of MCI status, and demonstrated the general
superiority of the capacity measures, in terms of sensitivity, specificity, and minimal selection
bias. Finally, we also showed that the capacity measures alone showed a reliable relationship
to total hippocampal volume, with this being specific to the individuals diagnosed with MCI.

We find these outcomes to be very promising, though admittedly preliminary. The approach
taken in the present study was easily implemented on a lap-top computer, and as a consequence
could be taken into the community. The capacity estimates were done at the level of the
individual participant, with that participant providing their own baseline data. This allows the
effect of load to be distinguished from age-related slowing. This also allows the potential for
positively-biased estimates of proportionality due to small sample size to be in some sense
“canceled out” at the level of the individual. Finally, the diagnostic sensitivity and specificity
of the capacity estimates, and the reliable relationship between the capacity measures and
hippocampal volume, relative to the effects at the level of mean RT, are consistent with the
hypothesis drawn from the computational simulations, that hippocampal atrophy is expressed
most strongly in behavior in terms of processing capacity (“bandwidth,” or information
processed per unit time) rather than in terms of overall speed of processing.

Much, of course, can be done to follow-up on these preliminary findings. The numerical
simulations reported in the introduction suggest the need to create experimental and diagnostic
situations in which larger sample sizes can be obtained. This can easily be done by increasing
list length. The sample size (for the MCI-C and MCI) groups were small for this initial
investigation, and the results should be replicated with much larger groups. The differential
effects of cuing condition need to be systematically investigated, with particular stress on cuing
conditions that differentially require episodic information (e.g., Davachi & Wagner, 2002;
Davachi, Mitchell & Wagner, 2003). Finally, it seems important to validate the relationship
between changes in hippocampal volume and changes in processing capacity in a longitudinal
design.

Characterizing processing capacity in a disciplined, theoretically-motivated manner, has been
repeatedly suggested as being foundational to understanding the foundational characteristics
of human information processing (Townsend & Ashby, 1978, 1983; Townsend & Nozawa,
1995; Townsend & Wenger, 2004a,b). We hope to have demonstrated here the critical role that
characterizing capacity can have in one specific application, and as a consequence
demonstrated how foundational theory in human information processing can naturally inform
applied research.
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Appendix A: Simulation Methods, Model of the Hippocampal Circuit
The model circuit represented in Figure 1 was parameterized using published values in the
literature (specifically Shepherd, 2004), including those used in previous simulations of similar
architectures (specifically Amit & Brunel, 1995,1997a,b). Thus, the only free parameters were
the total number of cells in each of the regions (dentate gyrus, CA3, and CA1) and the criterion
number of spikes at the output end of the circuit needed to infer completion of processing.
Table 8 lists all of the parameters and their values. Each trial of the simulation involved a 200
ms presentation of input, followed by 200 ms of no input. Equations 1 and 2 describe the
(discrete-time) sub-threshold dynamics for each neuron in each region, and Equations 3 and 4
describe spike-dependent modifications for CA3 and CA1 neurons, respectively.

Each trial in each replication, at each level of load and each level of atrophy, began by first
setting the values of the synaptic efficiency matrix J using independent samples from normal
distributions with means Jij and standard deviations σ(j). Sparseness was introduced in each
matrix by setting all values less than s to 0. External inputs (from entorhinal cortex to each of
the other regions) were randomly set on each trial using independent samples from normal

distributions with mean  and standard deviation . The input was stepped from 0 to
the specific value of  for each cell i at the beginning of each trial, and remained on for t+
ms, with the trial continuing for another t− ms. Cumulative counts of total spikes at the output
end of the circuit (subiculum) were recorded at each value of t, and the time required to reach
the criteria γL and γH were recorded.

Appendix B: Numeric Methods, Effects of Sample Size and Effect Size on
Proportional Hazards Estimates

In order to assess the level of bias in estimates of proportionality obtained using the Cox
proportional hazards model, we simulated samples RT measurements that varied in size and
in the magnitude true proportional relationship (r) between the underlying hazard functions

We assumed a two-parameter Weibull distribution in all cases, with cumulative distribution
function

and hazard function

(Blumenfeld, 2001), where α and β are shape and scale parameters, respectively. For each level
of proportionality
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where h0(t) was parameterized as the reference distribution, and h1(t) was parameterized to
give the desired value of r, we generated n observations, and repeated this N times. The
simulated data were then submitted to the Cox proportional hazards analysis to obtain an
estimate of the proportionality r ̂. Bias of the estimate was calculated as r ̂ − r for each replication,
and the bias estimates were averaged over replications. Table 9 lists all simulation parameters
and their values.
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Figure 1.
Schematic representation of the architecture of the computational model of the hippocampal
circuit.
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Figure 2.
Effects of increasing atrophy and load (at each level of atrophy) on proportional change in the
mean and the hazard function, for the computational model of the hippocampal circuit.
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Figure 3.
Bias in estimates of proportionality at the level of the hazard function, as a function of sample
size, for four levels of known proportionality (r).
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Figure 4.
Flow-chart representation of the free and cued selective reminding task (FCSRT).
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Figure 5.
Group means (a) and individual estimates (b) of visual identification threshold. Group means
(c) and individual means (d) for naming times. Error bars indicate the width of the 95%
confidence intervals.
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Figure 6.
(a) Cumulative total recall by pass for each of the five groups; (b) mean change (final - initial)
in free and cued recall for each of the five groups; (c) final free recall for all participants as a
function of age; (d) final cued recall for all participants as a function of age; (e) mean total
change in recall for each of the five groups; (f) total change in recall for all participants as a
function of age. Error bars indicate 95% confidence intervals.
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Figure 7.
(a) Mean RTs for single- and double-cue cued recall trials, given that the single cue was a
category cue; (b) mean RTs for single- and double-cue cued recall trials, given that the single
cue was an instance cue; (c) mean RTs overall per participant as a function of age; (d) interaction
contrast (see Equation 9) for the interaction of single-cue condition and number of cues for
each group, relative to the overall mean RT for that group.

Wenger et al. Page 30

J Math Psychol. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Effects of increasing cues on capacity, as estimated using the proportional hazards model, for
each combination of group and single-cue condition. Error bars are 95% confidence intervals
on the parameter estimates.
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Figure 9.
Relations among five models for predicting MCI status on the basis of three predictor variables.
Numbers in parentheses indicate the number of predictor variables in each model, with those
variables listed in the lower portion of each box. Single-headed arrows indicate relationships
among models differing in the nunmber of predictor variables, double-headed arrows indicate
relationships involving the same number of predictor variables
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Figure 10.
Measures of diagnostic sensitivity, accuracy, and bias, based on the outcomes of the
discriminant function analyses. Note: ΔRcl = total change in recall, RT = mean cued recall RT.
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Table 3

Mean RT for cued recall trials, summary of the ANOVA.

Factor df F MSE

Group (G) 4 185.47 ‡ 324786

Single-cue condition (SC) 1 0.05 324786

Number of cues (NC) 1 60.00 ‡ 104847

G × SC 4 3.90 † 324786

G × NC 4 2.91 * 104847

SC × NC 1 66.91 ‡ 104847

G × SC × NC 4 8.47 ‡ 104847

Note:

*
p < .05

†
p < .01

‡
p < .001.
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Table 5

Evaluation (top section) and comparison (bottom section) of the five models for MCI status, based on the
discriminant function analyses.

Model ln(L) ν AIC

1 −37.864 2 79.728

2 −34.587 2 53.174

3 −54.775 1 111.550

4 −57.964 1 117.928

5 −44.499 1 90.998

Restricted
Model

General
Model df χ  2

3 1 1 33.822‡

3 2 1 60.376‡

4 1 1 40.200‡

5 2 1 39.824‡
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Table 6

Measures of diagnostic accuracy, sensitivity, and bias based on the frequencies of hits (H), misses (M), correct
rejections (CR), and false alarms (FA), obtained from the discriminant function analyses. Note: z(HR), z(FR) =
inverse normal transformation of the hit and false alarm rates.

Measure Form

Diagnostic sensitivity (hit rate, HR) H
H + M

Diagnostic specificity CR
FA + CR = 1 − FR

Positive predictive value H
H + FA

Negative predictive value CR
CR + M

2AFC d′ (sensitivity) 1
2

z(HR ) − z(FR )

2AFC c (bias) 1
2 2

z(HR ) + z(FR )
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Table 7

Correlations between individual predictors and total hippocampal volume, for MCI-C and MCI participants in
each of the two single-cue conditions.

MCI-C MCI

Measure Category Instance Category Instance

Age .052 −0.427 −0.008 −0.050

Total change in recall −.411 −0.020 −0.759* 0.636*

Mean RT, cued recall .034 −0.042 −0.267 −0.181

Capacity .194 0.062 0.845† 0.775*
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Table 8

Parameters, their roles, and values in the numeric simulations of the hippocampal circuit.

Parameter Role Values

dt simulation time step 1 ms

t + time, input on 200 ms

t  − time, input off 100 ms

NE total excitatory cells, each region 3,000

NI total inhibitory cells, each region 1
5 × NE

N 0̸ total cells receiving no input 1
6 × (NE + NI )

a proportion of cells in each region deleted, atrophy 0.10 to 0.50 by 0.10

NS max synapses from any cell i to any other cell j 35

τ  α membrane time constant 5 ms

V 0 resting value, membrane potential 5 mV

Vmax maximum value, membrane potential (spike) 25 mV

Vmin minimum value, membrane potential 1 mV

γ spiking threshold 20 mV

λ asymptotic inter-spike (waiting) time 100 ms

β slope, spike-rate adaptation function 200

Jij, i, j ∈ E mean synaptic efficiency, excit./excit. connections 0.20

Jij, i ∈ E, j ∈ I mean synaptic efficiency, inhib./excit. connections 0.30

Jij, i ∈ I, j ∈ E mean synaptic efficiency, excit./inhib. connections 0.60

Jij, i, j ∈ I mean synaptic efficiency, inhib./inhib. connections 1.00

σ(J) standard deviation, synaptic efficiency (all cases) 0.10

s sparseness parameter, synaptic efficiencies 0.25

δ i,j transmission delay between cells 1 ms within a given region
1 ms between EC and DG
2 ms between EC and CA3, CA1

Ii
ext mean external input 20

σ(Iiext) standard deviation, external input 1
4 × Ii

ext

γL, γH criterion number of output spikes, low and high load 1000, 2000

NR number of replications at each level 5,000
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Table 9

Parameters, their roles, and values in the numeric simulations used to assess the bias in estimates of
proportionality, as a function of sample size and effect (true level of proportionality).

Parameter Role Values

α Shape parameter, Weibull distribution 1.90

β Location parameter, Weibull distribution 600

r Proportionality, two samples 0.25 to 1.00 by 0.05

n Sample size 5 to 200 by 5

N Replications at each level 10,000
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