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Abstract

The term “epistasis” is sometimes used to describe some form of statistical interaction be-
tween genetic factors and is alternatively sometimes used to describe instances in which the effect
of a particular genetic variant is masked by a variant at another locus. In general statistical tests for
interaction are of limited use in detecting ”epistasis” in the sense of masking. It is, however, shown
that there are relations between empirical data patterns and epistasis that have not been previously
noted. These relations can sometimes be exploited to empirically test for ”epistatic interactions”
in the sense of the masking of the effect of a particular genetic variant by a variant at another locus.
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Introduction 
 
Writing in 1909, Bateson used the term “epistasis” to describe instances in which 
the effect of a particular genetic variant was masked by a variant at another locus 
so that variation of phenotype with genotype at one locus was only apparent 
amongst those with certain genotypes at the second locus (Bateson, 1909).  In 
recent papers, Cordell (2002, 2009) has argued that the statistical tests that are 
often used to assess interactions (Ritchie et al., 2001; Hahn et al., 2003; Moore, 
2004; Chung et al., 2007; Purcell et al., 2007; Zhang and Liu, 2007; Ferreira et al., 
2007; Gavan et al., 2008) are of limited use in elucidating the type of biologic 
interaction that Bateson had originally conceived.  Recent developments have 
extended interaction tests for case-control design to settings of case-only designs 
(Piegorsch et al., 1994; Khoury and Flanders, 1996; Yang et al., 1999; Weinberg 
and Umback, 2000) and to family-based association studies (Cordell and Clayton, 
2002; Cordell et al., 2004; Laird and Lange, 2006; Martin et al., 2006; Kotti et al., 
2007; Lou et al., 2008; Hoffmann et al., 2009); however, these developments are 
arguably also subject to Cordell’s critique (2002).  In this paper, it is argued that 
there are relations between empirical data patterns and epistasis in the sense of 
masking that have not been previously noted and that can sometimes be exploited 
to empirically test for epistasis as originally conceived by Bateson. 
 
Empirical Tests for Epistasis 
 
Under Bateson’s original conception, epistasis would be said to be present if 
variation of phenotype with genotype at one locus was only apparent amongst 
those with certain genotypes at the second locus.  Those with other genotypes at 
the second locus would show no effect at the first.  Consider first a setting in 
which genotypes at both loci can effectively be considered binary as in Table 1; 
below we will consider more general settings.  
 
 
Table 1. Example of a table of phenotypes for a particular individual for the 
effects of different genotypes at two loci exhibiting epistasis under Bateson’s 
(1909) original definition 
     Genotype at locus B 
Genotype at locus A   b/b or b/B   B/B 
a/a or a/A    0    0 
A/A     0    1 
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Table 1 describes a potential phenotype pattern for a particular individual such 
that the effect of genotype at locus A is only present for the B/B variant; if the 
genotype at locus B is not B/B then the effect of variation at locus A is not 
apparent.  The effect of genetic variation at locus A can be masked by that at 
locus B and we might say that that locus B is epistatic to locus A.  By symmetry 
in this example, it is also the case the effect of genotype at locus B is only present 
for the A/A variant so the effect at locus B can be masked by that at locus A and 
we might thus also say that that locus A is epistatic to locus B (Cordell, 2002). 

In this simple setting in which the genotype at these two loci can 
effectively be considered binary, one way to conceive of epistasis then is whether 
there are any individuals for whom the response pattern follows that in Table 1.  
In populations with heterogeneity and for complex traits with non-Mendelian 
inheritance, the response patterns may vary between individuals but we may be 
interested whether there are any individuals whose phenotype response patterns 
manifest such epistasis. Let X1 be a binary indicator for genotype at locus A (in 
the example, X1=0 for genotype a/a or a/A and X1=1 for genotype A/A); let X2 be 
a binary indicator for genotype at locus B (in the example, X2=0 for genotype b/b 
or b/B and X2=1 for genotype B/B).  Let D be a binary indicator of phenotype, 
indicating the presence of some dichotomous trait.  For each individual in the 
population let Dij denote what the trait would have been if X1 were i and if X2 
were j.  For each individual we could thus consider D11, D10, D01 and D00 i.e. what 
would have happened to the individual under the presence or absence of each of 
the two factors.  An epistatic interaction, in Bateson’s original sense of masking, 
would be present if there were an individual for whom Table 1 describes the 
phenotype response pattern for that individual.  In others words, an epistatic 
interaction would be present if there were an individual for whom: 
 
D11=1 but D10=0, D01=0, D00=0.             (1) 
 
Another way of asking whether there are individuals for whom relation (1) is 
satisfied is to ask whether there are individuals for whom 
 
D11 - D10 - D01 - D00 > 0.              (2) 
 

In general, we may not be able to infer what all of D11, D10, D01, D00 would 
be for a particular individual.  However, in a genetic association study we might 
hope to be able to estimate the values of D11, D10, D01, D00 on average for a 
population by careful control for confounding by stratification and admixture.  If 
we let C denote a genetic marker for population substructure based on many loci 
(Pritchard and Rosenberg, 1999; Pritchard, 2000; Satten et al., 2001; Hoggart et 
al., 2003; Price et al., 2006) then if control for the marker suffices to control for 
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confounding then we can estimate the average likelihood of the outcome D when 
X1=i and X2=j for those with genetic marker C=c by: 
 
P(Dij=1|C=c) ≈ P(D=1|X1=i,X2=j,C=c).            (3) 
 
If marker C suffices to control for confounding, then the average effects of 
genetic factors X1 and X2 on D can be estimated with data and (3) will hold 
(Hernán, 2004). We could thus test whether there are any individuals with C=c 
whose response patterns satisfy (2) (i.e. for whom the response pattern is that in 
Table 1) by testing: 
 
p11c - p10c - p01c - p00c > 0                (4) 
 
where pijc = P(D=1|X1=i,X2=j,C=c).  Provided the genetic marker C suffices to 
control for confounding by stratification and admixture so that relation (3) holds, 
then if for some value of the genetic marker we find that p11c - p10c - p01c - p00c > 0 
then there must be some individuals with C=c for whom the response pattern is 
given by Table 1 i.e. for whom an epistatic interaction, in the sense of Bateson, is 
present.  Condition (4) is not the usual statistical test for interaction but it can be 
tested empirically from data to draw conclusions about whether there are at least 
some individuals with an epistatic response pattern.  We will discuss below the 
relationship between condition (4) and the usual statistical tests for interactions.  
Note that the implication described above is one-way; if condition (4) is satisfied 
then there are individuals for whom D11=1 but D10=0, D01=0, D00=0; however, if 
condition (4) is not satisfied we cannot necessarily conclude that there are no 
individuals for whom D11=1 but D10=0, D01=0, D00=0.  Condition (4) is a sufficient 
condition for an epistatic interaction but not a necessary condition. 

Using the same logic as that given above, we could empirically test for 
other epistatic response patterns.  We could test whether there are individuals for 
whom D00=1 but D11=D10=D01=0 by testing p00c - p11c - p10c - p01c > 0; we could test 
whether there are individuals for whom D10=1 but D11=D01=D00=0 by testing p10c - 
p11c - p01c - p00c > 0; finally, we could test whether there are individuals for whom 
D01=1 but D11=D10=D00= 0 by testing p01c - p11c - p10c - p00c > 0. 
 
Tests under Additional Assumptions 
 
In some cases, we might be willing to assume that genotype X1=1 (as compared 
with X1=0) never prevents the outcome so that if D00=1 then it is also the case that 
D10=1 and if D10=0 then it must also the case that D00=0 and similarly, if D01=1 
then it is also the case that D11=1 and if D11=0 then it must also the case that 
D01=0. In such cases, X1=1 (as compared with X1=0) is never preventive in that it 
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has either a neutral or causative effect on all individuals. Such cases of no 
preventive effects are sometimes referred to as monotonicity relationships.  Stated 
more succinctly, we may say that X1 has a monotonic effect on D if for all 
individuals in the population, D1j≥ D0j for j=0,1.  Similarly, we say that X2 has a 
monotonic effect on D if for all individuals in the population, Di1≥ Di0 for i=0,1.  
Monotonicity is a strong assumption and will often not hold.  For X1 to have a 
monotonic effect on D, it must be the case that X1=1 (as compared with X1=0) is 
either neutral or causative of the outcome D=1 for all individuals in the 
population i.e. X1=1 (as compared with X1=0) never prevents the outcome. For X2 
to have a monotonic effect on D, it must be the case that X2=1 (as compared with 
X2=0) is either neutral or causative of the outcome D=1 for all individuals in the 
population i.e. X2=1 never prevents the outcome.  Whenever a particular genetic 
variant is such that it makes the outcome more likely in some populations but less 
likely in others, this monotonicity relation will not hold.  In some cases, 
monotonicity of X1 or X2 might hold within certain strata of a genetic marker C 
but not in others. 

When monotonicity assumptions do hold, we can test for epistatic 
interactions by testing a condition weaker than that given in (4) above.  Suppose 
for example that X1 had a monotonic effect on D then if it were the case that D10 
were 0 then it must also be the case that D00 is 0.  Thus if X1 had a monotonic 
effect on D and there were individuals for whom D11=1 and D10=D01=0 then we 
could also conclude for such individuals that D00=0 by monotonicity and thus that 
relation (1) held for such individuals, i.e. that an epistatic interaction as given in 
Table 1 was present.  If some genetic marker C suffices to control for 
confounding by stratification and admixture then we could test whether there 
were individuals for whom D11=1 and D10=D01=0 within stratum C=c by testing 
 
p11c - p10c - p01c > 0               (5) 
 
Note that condition (5) is a weaker condition than condition (4); condition (5) 
does not require subtracting p00c.  When we can assume that the effect of X1 on D 
is monotonic (i.e. never preventive) then we can test this weaker condition 
instead.  By symmetry, it is also the case that if X2, rather than X1, has a 
monotonic effect on D, then condition (5) can be used to test whether there are 
individuals with a response pattern like that given in Table 1.  We seen then that if 
either X1 or X2 has a monotonic effect on D then we can use the weaker condition 
(5), rather than condition (4), to test for epistasis in the sense of Bateson (1909).  
Once again, however, condition (5) does not correspond to a standard statistical 
test for interaction. 
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Finally suppose that both X1 and X2 have monotonic effects on D.  
Suppose X1=1 (as compared with X1=0) never prevented the outcome for any 
individual and X2=1 (as compared with X2=0) never prevented the outcome for 
any individual.  Stated another way, we are supposing that Dij is non-decreasing in 
i and j.  In the appendix we show that if some genetic marker C suffices to control 
for confounding by stratification and admixture then we could test whether there 
were individuals for whom D11=1 and D10=D01=D00=0 within stratum C=c by 
testing 
 
p11c - p10c - p01c + p00c > 0              (6) 
 

Note that condition (6) is weaker than both conditions (4) or (5) because 
now we are adding back the term p00c.  Condition (6) is how interaction is often 
ordinarily assessed in statistical models; condition (6) essentially examines 
whether the effects of X1 and X2 combined are greater than the sum of the effects 
of X1 and X2 considered separately.  However, condition (6) will only imply 
individuals with the epistatic response pattern in Table 1 if it can be assumed that 
both X1 and X2 have monotonic effects on D.  In other words, if there are any 
individuals with C=c for whom the outcome would be present if X1=0 but for 
whom it would not be present if X1=1 (or similarly for whom the outcome would 
be present if X2=0 but for whom it would not be present if X2=1) then the 
monotonicity conditions would be violated and one could not use condition (6) to 
test for epistatic response patterns.  We have seen above that even if these 
monotonicity assumptions are violated then condition (4) or (5) could be used to 
test for epistasis in the sense of masking; however, condition (6) which is the 
usual test for interaction, only gives a test for epistasis, in the sense of masking, 
under strong monotonicity assumptions for both genetic factors. 
 
More General Settings 
 
Consider now the more setting in which at loci A and B there are three distinct 
relevant genotypes: a/a, a/A and A/A at locus A and b/b, b/B and B/B at locus B.  
Now let V1 and V2 be variables with three levels indicating the genotype at loci A 
and B respectively (e.g. V1=0 for a/a, V1=1 for a/A, V1=2 for A/A and V2=0 for 
b/b, V2=1 for b/B, V2=2 for B/B). Once again, let D be a binary indicator of 
phenotype, indicating the presence of some dichotomous trait. For each individual 
in the population let Dij denote what the trait would be if V1 were i and if V2 were 
j.  Again let C denote a genetic marker for population substructure and suppose 
that the marker suffices to control for confounding by stratification and admixture 
so that P(Dij=1|C=c) ≈ P(D=1|V1=i,V2=j,C=c). 
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As before we will let pijc = P(D=1|V1=i,V2=j,C=c).  We can then consider a 
variety of response patterns that would constitute instances of epistasis.  For 
simplicity now assume that the effects of V1 and V2 on D are monotonic so that 
whenever i≥i’ we have Dij≥ Di’j and whenever j≥j’ we have Dij≥ Dij’.    Consider 
the response pattern in Table 2.   
 
 
Table 2. Example of a table of phenotypes for the effects of genotypes at two loci 
exhibiting epistasis, with three relevant genetic variants at each locus 
     Genotype at locus B 
Genotype at locus A  b/b   b/B   B/B 
a/a     0   0   0 
a/A    0   0   0 
A/A    0   0   1 
 
 
By arguments similar to those given above, there must be individuals with genetic 
marker C=c who have response patterns given by Table 2 if it is the case that 
 
p22c - p21c - p12c + p11c > 0              (7) 
 
Note that for the response pattern given in Table 2, the effect of genetic variation 
at locus A is only apparent when the genotype is B/B at locus B (similarly, the 
effect of genetic variation at locus B is only apparent when the genotype is A/A at 
locus A).  Thus the response pattern in Table 2 would be another instance which 
would be considered epistasis under Bateson’s original conception.  If control for 
genetic marker C suffices to control for confounding by stratification and 
admixture and if condition (7) holds then there must be some individuals with 
genetic marker C=c who have response patterns given by Table 2.  We can once 
again test for epistasis empirically. 

A number of other response patterns constituting instances of epistasis are 
also possible.  Consider, for example, the response pattern in Table 3.  
 
Table 3. Example of a table of phenotypes for the effects of genotypes at two loci 
exhibiting epistasis, with three relevant genetic variants at each locus 
     Genotype at locus B 
Genotype at locus A  b/b   b/B   B/B 
a/a     0   0   0 
a/A    0   0   1 
A/A    0   0   1 
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There must be individuals amongst those with genetic marker C=c who have 
response patterns given by Table 3 if it is the case that 
 
p12c - p21c - p02c + p01c > 0.              (8) 
 
 
Table 4. Example of a table of phenotypes for the effects of genotypes at two loci 
exhibiting epistasis, with three relevant genetic variants at each locus 
     Genotype at locus B 
Genotype at locus A  b/b   b/B   B/B 
a/a     0   0   0 
a/A    0   0   0 
A/A    0   1   1 
 
 
There must be individuals amongst those with genetic marker C=c who have 
response patterns given by Table 4 if it is the case that 
 
p21c – p12c – p20c + p10c > 0.              (9) 
 
 
Table 5. Example of a table of phenotypes for the effects of genotypes at two loci 
exhibiting epistasis, with three relevant genetic variants at each locus 
     Genotype at locus B 
Genotype at locus A  b/b   b/B   B/B 
a/a     0   0   0 
a/A    0   1   1 
A/A    0   1   1 
 
 
There must be individuals amongst those with genetic marker C=c who have 
response patterns given by Table 5 if it is the case that 
 
p11c – p21c – p12c + p00c > 0.            (10) 
 

The tests represented by conditions (7)-(10) presupposed that the effects of 
V1 and V2 on D were monotonic (i.e. never preventive).  In the appendix, we 
consider tests for the epistatic interactions given in Tables 2-5 without 
monotonicity assumptions or when only one of V1 or V2 have a monotonic effect 
on D.  We also consider tests when one factor has two levels and the other has 
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three levels.  The basic point here is that the approach described in the previous 
section to empirically test for epistasis can be employed even when genotypes are 
considered to have three possible relevant variants rather than two. 
 
Relation to Statistical Models 
 
In this section we will briefly relate the empirical tests for epistasis to standard 
tests for interactions in statistical models.  For simplicity we will again return to 
the setting in which the relevant genotypes can effectively be considered binary as 
in Table 1.  Similar remarks apply to the more general settings described in the 
previous section.  When two binary genetic variants are considered, a statistical 
model of the following form is sometimes used to test for a statistical interaction: 
 
P(D=1|X1= x1,X2= x2) = α0 + α1x1 + α2x2 + α3x1x2         (11) 
 
To control for confounding by stratification and admixture, one can fit a separate 
model like (11) within each stratum C=c of some genetic marker. Statistical 
interaction is then often assessed by testing whether α3>0.  Testing whether α3>0 
corresponds to a test of condition (6).  We saw above that condition (6) can be 
used to test for epistasis in the sense of masking only under the strong assumption 
that both X1 and X2 have monotonic effects on the outcome.  However, we also 
saw that even if these monotonicity assumptions do not hold, we could still test 
for epistatic response patterns; however, we would have to use more stringent 
conditions like (4) or (5).   

We can also express conditions (4) and (5) in terms of the coefficients of 
the statistical model in (11).  We saw above that we could use condition (5) to test 
for epistasis in the sense of masking if at least one of X1 or X2 has a monotonic 
effect on the outcome. Condition (5) can expressed in terms of the coefficients of 
statistical model (11) as α3> α0.  Thus if at least one of X1 and X2 had monotonic 
effects on the outcome then we could test for such epistasis by testing whether 
α3> α0.  Even if neither X1 nor X2 had monotonic effects (i.e. we make no 
assumptions about monotonicity) we could still test for epistasis in the sense of 
masking by testing condition (4). Condition (4) can be expressed in terms of the 
coefficients of statistical model (11) as α3> 2α0.   Thus even without making any 
assumptions about monotonicity we could test for such epistasis by testing 
whether α3> 2α0.  These are non-standard tests for interaction but, when satisfied, 
allow for conclusions to be drawn not just about statistical interaction but about 
epistatic response patterns.  As noted above, these tests are sufficient conditions 
for epistasis in the sense of masking, but not necessary.  If the conditions are 
satisfied then there are at least some individuals with response patterns 
manifesting epistasis in Table 1.  If the conditions are not satisfied then there may 
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or may not be individuals with response patterns exhibiting epistasis; we cannot 
tell from the data. 
 
Multiple Uses of the Word “Epistasis” 
 
Cordell and Clayton (2005) note that although Bateson conceived of epistasis in 
terms of the masking of the effect of one genetic factor by another, the term 
“epistasis” soon began to take on a variety of meanings.  They note that not long 
after Bateson, Fisher (1918) used the term “epistacy” to refer to a statistical 
interaction in the sense of deviation from additive effects such as α3>0 in the 
statistical linear model given above.  Cordell and Clayton further argue that 
Fisher’s “epistacy” quickly evolved into “epistasis” so that in the modern genetics 
literature the two uses of the word coexist creating ambiguity.  Cordell (2002, 
2009) argues that epistasis in the statistical sense does not in general imply 
epistasis in original sense of Bateson, the sense of the masking of the effect of one 
genetic factor by another.  

We have seen here, however, that the two uses of the word “epistasis” are 
not entirely unrelated.  In particular, in some very special circumstances epistasis 
in the statistical sense (α3>0) implies epistasis in the sense of the masking the 
effect of one genetic factor by another (D11=1 but D10=D01=D00=0).  More 
specifically, epistasis in the statistical sense (α3>0) implies epistasis in the sense 
of the masking the effect of one genetic factor by another only when it can be 
assumed that both X1 and X2 had monotonic effects on the outcome.  This is a 
very strong assumption and one which in many contexts will not hold.  When it 
does not hold, statistical epistasis does not imply epistasis in the sense of 
masking.  However, we have also seen in this section, that there are further 
relationships between statistical models and data patterns on the one hand and 
epistasis in the sense of masking on the other; these relations have been 
previously unrecognized.  We have seen that if at least one of X1 or X2 have a 
monotonic effect on the outcome then we can test for epistasis in the masking 
sense (D11=1 but D10=D01=D00=0) by testing whether α3> α0.  Even without any 
monotonicity assumptions, we can test for epistasis in the masking sense by 
testing whether α3> 2α0.  Again, these are stronger conditions than regular tests 
for statistical interactions. 

In a recent review article, Phillips (2008) also discusses the ambiguity in 
the term “epistasis” and he distinguishes what he considers as three distinct forms 
of epistasis.  Phillips used “statistical epistasis” to refer to a departure from 
additive effects in a statistical model (or more generally a departure from 
independent effects on some scale of measurement).  Phillips introduced the term 
“compositional epistasis” to refer to epistasis in Bateson’s original sense of the 
term, i.e. the masking of the effect of an allele at one locus by an allele at another 
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locus.  Finally, Phillips used “functional epistasis” to describe the physical 
molecular interactions between various proteins (and other genetic elements). 
Compositional epistasis, as defined by Phillips, need not necessarily imply 
“functional epistasis” but compositional epistasis is nevertheless arguably a more 
biological form of interaction than mere “statistical epistasis.” The tests described 
in the previous sections constitute empirical tests for what Phillips referred to as 
“compositional epistasis.” 
 
Testing for Epistatic Interactions in Case-Control Studies 
 
Many analyses of interaction use data from a case-control study. In such case-
control studies risks like p11c, p10c, p01c, and p00c cannot in general be estimated but 
odds ratios for the effects of genetic factors can be estimated.  Thus in such 
studies, logistic regression is often used which for interaction analyses may take 
the form of: 
 
logit { P(D=1|X1= x1,X2= x2) } = β0 + β1x1 + β2x2 + β3x1x2        (12) 
 
Model (12) to can be used to calculate odds ratios comparing the odds of the 
outcome when both X1 and X2 are present to when both are absent (denoted by 
OR11), the odds when X1=1 and X2=0 to when both are absent (denoted by OR10) 
and the odds when X1=0 and X2=1 to when both are absent (denoted by OR01).  
When the outcome is rare these odds ratios approximate the corresponding 
relative risks, denoted by RR11, RR10, RR01.  Although we cannot test conditions 
(4) or (5) or (6) above directly using risks we could divide these conditions by 
p00c.  Condition (4) becomes 
 
RR11c - RR10c - RR01c - 1 > 0.            (13) 
 
Condition (5) becomes  
 
RR11c - RR10c - RR01c > 0.            (14) 
 
Condition (6) becomes  
 
RR11c - RR10c - RR01c + 1 > 0.            (15) 
 

Under the assumption that the outcome is rare, these conditions could be 
tested using the odds ratios from a logistic regression.  Thus even in a case-
control study one can potentially test for epistasis in settings in which the 
outcome is rare.  The quantity RR11c - RR10c - RR01c + 1 is sometimes described as 

10

Statistical Applications in Genetics and Molecular Biology, Vol. 9 [2010], Iss. 1, Art. 1

http://www.bepress.com/sagmb/vol9/iss1/art1
DOI: 10.2202/1544-6115.1517



the “relative excess risk due to interaction” or RERI (Rothman, 1986).  The three 
conditions given above could thus be written respectively as RERI>2, RERI>1, 
RERI>0.  Statistical tests and confidence intervals for this quantity, RERI, are 
given elsewhere (Richardson and Kaufman, 2009).  In a case-control study with a 
rare outcome, epistasis could be tested by testing RERI>0 if both X1 and X2 can 
be assumed to have monotonic effects, by testing RERI>1 if one of X1 or X2 can 
be assumed to have a monotonic effect, and by testing RERI>2 if no monotonicity 
assumptions are made.  Alternatively, it can also be shown (see the appendix) that 
if the outcome is rare then (4), (5) or (6) will be satisfied, respectively, if for the 
coefficients in logistic model (12), we have β3>log(3), β3>log(2), or β3>0 
provided that the main effects β1 and β2 are non-negative.  Similar results hold 
when one or both factors have three levels; see the appendix for additional 
discussion. 
 
Relation to Sufficient Causation 
 
The tests described above for epistatic response patterns bear a certain relation to 
tests for synergism in the sense conceived of by Rothman (1976).  Rothman 
conceptualized causation as a series of mechanisms for the outcome each of 
which involved the conjunction of various factors such that whenever all the 
factors for a particular mechanism were present the outcome would occur.  Such 
mechanisms or “sufficient causes” might require the absence of presence of two 
or more particular factors of interest, X1 and X2, along with other possibly 
unknown factors.  Rothman conceived of synergism being present whenever there 
was a sufficient cause that required both X1 and X2 to operate.  VanderWeele and 
Robins (2007, 2008) formalized Rothman’s sufficient cause framework and 
introduced the notion of a sufficient cause interaction.  A sufficient cause 
interaction is present if there are individuals who have a response pattern such as 
that given in Table 6 i.e. if there are individuals for whom D11=1 and D10=D01=0; 
D00 can be either 1 or 0.  VanderWeele and Robins (2008) showed that a sufficient 
cause interaction implied synergism as conceived of by Rothman. 
 
 
Table 6. Example of a table of phenotypes for two factors, X1 and X2, exhibiting a 
sufficient cause interaction, implying synergism as conceived by Rothman (1976) 
      Value of X2 
Value of X1    0    1 
0     ?    0 
1     0    1 
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 The notion of an epistatic response pattern such as that given in Table 1 is 
stronger than that of a sufficient cause interaction because the response pattern in 
Table 1 requires that D00=0.  If at least one of the two genetic factors has a 
monotonic effect on the outcome D then the concepts of an epistatic interaction 
(“compositional epistasis”) and a sufficient cause interaction between two factors 
coincide.  If neither of the two factors has a monotonic effect on the outcome, 
then an epistatic interaction is a stronger condition than a sufficient cause 
interaction. Statistical tests for sufficient cause interactions have been described 
elsewhere (VanderWeele and Robins, 2007; Vansteelandt et al., 2008; 
VanderWeele, 2009, VanderWeele et al., in press) and these statistical tests could 
also be used for epistatic interactions if at least one of the two factors has a 
monotonic effect on the outcome.   
 
Discussion 
 
Bateson’s original conception of epistasis was that the effect of a gene at one 
locus would be masked for certain values of the genotype at a second locus.  In 
this paper we have derived conditions that can be tested empirically for detecting 
whether there are individuals whose response patterns manifest epistasis in the 
sense of masking originally conceived by Bateson.  It was shown that only under 
some very strong assumptions would tests for regular statistical interactions 
correspond to epistasis in the masking sense of the term.  We have, however, 
further seen that even without such strong assumptions one can still test whether 
there are individuals for whom the effect of a gene at one locus would be masked 
for certain values of the genotype at a second locus.  The empirical conditions 
described above for detecting epistasis are quite strong but the conclusions which 
tests of these conditions allow (conclusions concerning “compositional epistasis”) 
may be of interest in a wide range of studies. 

The tests derived required control for a genetic marker, denoted in this 
paper by C, to control for control for confounding by stratification and admixture 
so that the associations observed between the genes of interest and the outcome at 
least approximately correspond to the true effects of these genes.  The tests will 
be valid only to the extent that this approximation holds.  Other genetic or 
environmental factors could be included in C to attempt to better control for 
confounding.  When C contains multiple factors, more sophisticated statistical 
techniques may be desirable to allow for multivariate control. 

In many studies, identified genetic risk factors will be in linkage 
disequilibrium with the true causal genetic factor; in such cases of linkage 
disequilibrium the genetic risk factor in the study might be conceptualized as a 
misclassified version of the true causal factor.  Future research will examine the 
extent to which conclusions about epistasis concerning the true causal genetic 
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factors can be drawn from identified genetic risk factors in linkage disequilibrium 
with the true causal factors. 

This paper has focused on epistasis for two genetic factors by considering 
the response pattern tables that exhibit epistasis as conceived of by Bateson.  The 
tests described in this paper may also be of interest, however, in assessing gene-
environment interactions.  In particular, the tests that have been described could 
also be used to detect individuals with particular gene-environment interaction 
response patterns corresponding to Tables 1-5; we might refer to such response 
patterns as instances of “compositional” gene-environment interaction.  As 
described in this commentary, these will only correspond to the ordinary tests for 
statistical interactions between genetic and environmental factors in very special 
cases. 

It is hoped that the contributions in this commentary have clarified some 
of the conceptual relationships between epistasis as conceived of by Bateson and 
statistical tests using data.  It is further hoped that the empirical tests for epistasis 
derived in this paper will be employed in future analyses of genetic data. 
 
Appendix 
 
Proof that relation (6) suffices for epistasis under monotonicity 
 
Here we prove that under the assumption that both X1 and X2 have monotonic 
effects on D then p11c - p10c - p01c + p00c > 0 implies there is an individual for whom 
D11=1 and D10=D01= D00=0. Suppose that both X1 and X2 have monotonic effects 
on D so that Dij is non-decreasing in i and j i.e. for no individual does X1=1 (as 
compared with X1=0) ever prevent the outcome and for no individual does X2=1 
(as compared with X2=0) ever prevent the outcome.  Under these monotonicity 
assumptions if there is an individual for whom D11=1 and D10=D01=0 then it is also 
the case for that individual that D00=0.  Suppose there were no individual for 
whom D11=1 and D10=D01=0; then whenever D11=1 then we must have that either 
D10=1 or D01=1.  We also have that D10≥ D00 and that D01≥ D00.  Thus if for some 
individual it is not the case that D11=1 and D10=D01=0 then we must have that D11 - 
D10 - D01 + D00 ≤ 0.  Thus if there is no individual in some subpopulation with C=c 
such that D11=1 and D10=D01=0 then it must be the case that for all individuals 
with C=c that D11 - D10 - D01 + D00 ≤ 0.  From this it would follow that if some 
genetic marker C suffices to control for confounding by stratification and 
admixture then if there were no individuals with C=c and with D11=1 and 
D10=D01=0 then we would have  
 
p11c - p10c - p01c + p00c  ≤ 0. 
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From this it follows that if we were to find  
 
p11c - p10c - p01c + p00c > 0 
 
then there must be some individuals with C=c such that D11=1 and D10=D01=0 and 
by monotonicity it would also be the case for these individuals that D00=0.  Thus 
these individuals would have an epistatic response pattern. 
 
Further tests for epistasis when the genetic factors have three levels 
 
Here we will consider further tests for epistatic response patterns in which, at each 
locus of interest, there are three distinct relevant genotypes. As in the paper we 
will let V1 and V2 denote variables with three levels indicating the genotype at 
loci A and B respectively (e.g. V1=0 for a/a, V1=1 for a/A, V1=2 for A/A and V2=0 
for b/b, V2=1 for b/B, V2=2 for B/B). Once again, let D be a binary indicator of 
phenotype, indicating the presence of some dichotomous trait. For each individual 
in the population, Dij denotes what the trait would be for that individual if V1 were 
i and if V2 were j.  We again let C denote a genetic marker for population 
substructure and suppose that control for the marker suffices to control for 
confounding by stratification and admixture so that P(Dij=1|C=c) ≈ 
P(D=1|V1=i,V2=j,C=c).  As in the text, we will let pijc = P(D=1|V1=i,V2=j,C=c). 

In the main text we considered tests for response patterns exhibiting 
epistasis such as those in Tables 2-5; tests were derived that assumed that both V1 
and V2 had monotonic effects on D i.e. that Dij was non-decreasing in i and j.  
Here we describe tests for such epistatic response patterns when only one or 
neither of the genetic factors has a monotonic effect on D. 

Suppose first that only V1 has a monotonic effect on D so that Dij is non-
decreasing in i (but possibly not j) for all individuals.  Using arguments similar to 
those in the text, it can be shown that there will be individuals with C=c and with 
response patterns like those in Table 2 if it is the case that: 
 
p22c - p21c - p20c - p12c > 0.        
 

Essentially, if p22c - p21c - p20c - p12c - p02c > 0 then there must be individuals 
for whom D22=1 but for whom D21=D20=D12=0.  But for such individuals if D21=0 
then it must also be the case that D11=0 and D01=0 by the monotonicity of V1; 
similarly by the monotonicity of V1, if D20=0 then it must also be the case that 
D10=0 and D00=0; finally, by the monotonicity of V1, if D12=0 then it must also be 
the case that D02=0   We thus have that if p22c - p21c - p20c - p12c > 0 then there must 
be individuals for whom D22=1 but for whom D21=D11=D01=D20= 
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D10=D00=D12=D02=0 i.e. for whom the phenotype response pattern is given by that 
in Table 2. 

By similar reasoning it can be shown that if V1 has a monotonic effect on 
D then there are individuals with response patterns like those in Table 3 if it is the 
case that: 
 
p12c - p21c - p20c - p02c > 0. 
 

It is not in general possible to test for epistatic response patterns like those 
in Tables 4 and 5 if it can only be assumed that V1 has a monotonic effect on D.  
This is because it is not possible to test for individuals for whom it is the case that 
both D22=1 and D21=1 without making monotonicity assumptions about V2. 

Now consider the case in which it can be assumed that V2 has a monotonic 
effect on D but for which it may not be reasonable to suppose that V1 has a 
monotonic effect on D.  By similar reasoning to that above it can be shown that if 
V2 has a monotonic effect on D then there are individual with response patterns 
like those in Table 2 if it is the case that: 
 
p22c - p12c - p02c - p21c > 0. 
 
Likewise, if V1 has a monotonic effect on D then there are individual with 
response patterns like those in Table 4 if it is the case that: 
 
p21c - p12c - p02c - p20c > 0. 
 

It is not in general possible to test for epistatic response patterns like those 
in Tables 3 and 5 if it can only be assumed that V2 has a monotonic effect on D.  
This is because it is not possible to test for individuals for whom it is the case that 
both D22=1 and D12=1 without making monotonicity assumptions about V1. 

Now consider the case in which no monotonicity assumptions are made.  
In such settings, it is not in general possible to test for response patterns like those 
in Tables 3-5.  One can still test for response patterns like that given in Table 2.  
However, to conclude that there are individuals with response patterns like those 
in Table 2 without making any monotonicity assumptions one would need to test: 
 
p22c - p21c - p20c - p12c - p11c - p10c - p02c - p01 - p00c > 0. 
 
If this condition were satisfied and if it could be assumed that genetic marker C 
suffices to control for confounding by stratification and admixture then it could be 
concluded that there were individuals with response patterns like those in Table 2 
even without making any monotonicity assumptions. 
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Tests for epistasis when one factor has two levels and one factor has three 
 
Suppose now that V1 has two levels and V2 has three levels indicating the 
genotype at loci A and B respectively (e.g. , V1=0 for genotype a/a or a/A and 
V1=1 for genotype A/A and V2=0 for b/b, V2=1 for b/B, V2=2 for B/B). Let D 
denote an indicator for dichotomous trait, Dij denote what the trait would be for an 
individual if V1 were i and if V2 were j, and C denote a genetic marker for 
population substructure.  The effect of V1 or V2 on D is said to be monotonic if Dij 
is non-decreasing in i or j respectively.  We suppose that control for the marker 
suffices to control for confounding by stratification and admixture so that 
P(Dij=1|C=c) ≈ P(D=1|V1=i,V2=j,C=c).  We again let pijc = P(D=1|V1=i,V2=j,C=c). 

Epistasis, in the sense of masking, would be present if there were 
individuals for whom 
 
D12=1 but D11=0, D10=0, D02=0, D01=0, D00=0. 
 
Using arguments similar to those above, if the effects of V1 and V2 on D are both 
monotonic then there are individuals with the epistatic response pattern above if  
 
p12c - p11c - p02c + p01c > 0. 
 
If only the effect V1 on D can be assumed to be monotonic then there are 
individuals with the epistatic response pattern above if  
 
p12c - p11c - p10c - p02c > 0. 
 
If only the effect V2 on D can be assumed to be monotonic then there are 
individuals with the epistatic response pattern above if  
 
p12c - p11c - p02c > 0. 
 
If neither the effect of V1 or V2 can be assumed to be monotonic then there are 
individuals with the epistatic response pattern above if  
 
p12c - p11c - p10c - p02c - p01c - p00c > 0. 
 
Epistasis, in the sense of masking, would also be present if there were individuals 
for whom 
 
D12= D11=1 but D10=0, D02=0, D01=0, D00=0. 
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Using arguments similar to those above, if the effects of V1 and V2 on D are both 
monotonic then there are individuals with the epistatic response pattern above if  
 
p11c - p10c - p02c > 0. 
 
If only the effect V1 on D or if neither the effect of V1 or V2 can be assumed to be 
monotonic then it is not possible to detect this second epistatic response pattern 
simply using observed outcome probabilities. 
 
Tests for epistasis in case-control studies using logistic models 
 
Suppose that the outcome is rare so that odds ratios approximate risk ratios.  
Consider model (12) in the text: 
 
logit { P(D=1|X1= x1,X2= x2) } = β0 + β1x1 + β2x2 + β3x1x2 
 
Suppose it is known a priori that the main effects β1 and β2 are non-negative.  The 
fact that β3>0 implies condition (6) holds at least approximately and that 
β3>log(2) implies condition (5) holds at least approximately have been shown 
elsewhere (VanderWeele, 2009). To see that β3>log(3) implies condition (13), 
RR11c - RR10c - RR01c - 1 > 0, and hence condition (4), p11 - p10 - p01 - p00 > 0, note 
that: 
 
RR11c - RR10c - RR01c - 1  
≈OR11c - OR10c - OR01c - 1  
=exp(β1 + β2 + β3) - exp(β1) - exp(β2) - 1 
=(1/3)exp(β1+β2+β3)-exp(β1)+(1/3)exp(β1+β2+β3)-exp(β2)+(1/3)exp(β1+β2+β3)-1 
=exp(β1)((1/3)exp(β2+β3)-1)+exp(β2)((1/3)exp(β1+β3)-1)+((1/3)exp(β1+β2+β3)-1) 
 

If β3>log(3) and also the main effects β1 and β2 are non-negative, then 
each of the terms, ((1/3)exp(β2 + β3) - 1) and ((1/3)exp(β1 + β3) - 1) and 
((1/3)exp(β1 + β2 + β3) - 1) will be positive and thus we will have that RR11c - 
RR10c - RR01c - 1 > 0 and consequently also p11 - p10 - p01 - p00 > 0 i.e. condition (4) 
will be satisfied. 

Using similar arguments and the results of VanderWeele (in press), similar 
relations can be obtained when one or both of the two exposures have three levels.  
In such cases, what VanderWeele (in press) defined as “definite interdependence” 
will correspond to an epistatic response pattern if at least one of the two factors 
have a monotonic effect on the outcome; otherwise definite interdependence is a 
weaker condition than an epistatic response pattern.  
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Suppose V1 has two levels and V2 has three levels and we use the 
regression model: 
  
logit {P(D=1|V1= v1,V2= v2)} = β0 + β1x1 + β2x2 + β3x3 + β4x1x2 + β5x1x3 
 
where X1=1 if V1= 1 and 0 otherwise, X2=1 if V2∈{1,2} and 0 otherwise and 
X3=1 if V2=2 and 0 otherwise.  Suppose further that the outcome is rare and that 
P(D=1|V1= v1,V2= v2) is non-decreasing in v1 and v2.  Then there are individuals 
with epistatic response pattern D12=1 and D11=0, D10=0, D02=0, D01=0, D00=0 if (i) 
β5>0 and both V1 and V2 have monotonic effects on D or if (ii) β5>log(2) and just 
V2 (the factor with three levels) has a monotonic effect on D or if (iii) β5>log(3) 
and just V1 (the variable with two levels) has a monotonic effect on D or if (iv) 
β5>log(5) and it is not assumed that either V1 and V2 have monotonic effects on 
D. 

Similarly, it is the case that there are individuals with epistatic response 
pattern D12= D11=1 and D10=0, D02=0, D01=0, D00=0 if (i) β4-β3>0 and both V1 and 
V2 have monotonic effects on D or if (ii) β4-β3>log(2) and just V2 has a monotonic 
effect on D.  If only V1 has a monotonic effect on D or neither V1 nor V2 have a 
monotonic effect on D then it is not in general possible to detect this second type 
of epistatic response pattern. 

Suppose V1 and V2 have three levels and we use the regression model: 
  
logit {P(D=1|V1= v1,V2= v2)} = β0 + β1x1 + β2x2 + β3x3 + β4x4  

+ β5x1x3 + β6x1x4 + β7x2x3 + β8x2x4 
 
where X1=1 if V1∈{1,2} and 0 otherwise and X2=1 if V1=2 and 0 otherwise and 
similarly X3=1 if V2∈{1,2} and 0 otherwise and X4=1 if V2=2 and 0 otherwise. 
Suppose further that the outcome is rare and that P(D=1|V1= v1,V2= v2) is non-
decreasing in v1 and v2.  Then there are individuals with the epistatic response 
pattern of that in Table 2 if (i) β8>0 and both V1 and V2 have monotonic effects on 
D or if (ii) β8>log(3) and either V1 or V2 have a monotonic effect on D or if (iii) 
β8>log(8) and it is not assumed that either V1 and V2 have monotonic effects on 
D. 

There are individuals with epistatic response pattern of that in Table 3 if 
(i) β6-β7-β2>0 and both V1 and V2 have monotonic effects on D or if (ii) β6-β7-
β2>log(3) and V1 has a monotonic effect on D.  There are individuals with 
epistatic response pattern of that in Table 4 if (i) β7-β6-β4>0 and both V1 and V2 
have monotonic effects on D or if (ii) β7-β6-β4>log(3) and V2 has a monotonic 
effect on D.  There are individuals with epistatic response pattern of that in Table 
5 if β5-β4-β2>0 and both V1 and V2 have monotonic effects on D. 
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Alternatively, with case-control data with a rare outcome, one could test 
the conditions in the previous two sections of the appendix somewhat more 
directly.  Each of the conditions in the previous two sections of the appendix 
could be divided by p00 to express the conditions in terms of risk ratios; because 
the outcome is rare, the risk ratios will be approximated by odds ratios which can 
be obtained from the logistic regression models.  This approach was described in 
the text for two binary genetic factors but applies also to settings in which one 
factor has two levels and the other three or to settings in which both factors have 
three levels. 
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