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Abstract

Methods for gene set analysis test for coordinated changes of a group of genes involved in
the same biological process or molecular pathway. Higher statistical power is gained for gene set
analysis by combining weak signals from a number of individual genes in each group. Although
many gene set analysis methods have been proposed for microarray experiments with two groups,
few can be applied to time course experiments. We propose a unified statistical model for analyz-
ing time course experiments at the gene set level using random coefficient models, which fall into
the more general class of mixed effects models. These models include a systematic component
that models the mean trajectory for the group of genes, and a random component (the random
coefficients) that models how each gene’s trajectory varies about the mean trajectory.

We show that the proposed model (1) outperforms currently available methods at discriminating
gene sets differentially changed over time from null gene sets; (2) provides more stable results that
are less affected by sampling variations; (3) models dependency among genes adequately and pre-
serves type I error rate; and (4) allows for gene ranking based on predicted values of the random
effects. We describe simulation studies using gene expression data with “real life” correlations
and we demonstrate the proposed random coefficient model using a mouse colon development
time course dataset. The agreement between results of the proposed random coefficient model
and the previous reports for this proof-of-concept trial further validates this methodology, which
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provides a unified statistical model for systems analysis of microarray experiments with complex
experimental designs when re-sampling based methods are difficult to apply.

KEYWORDS: microarray, gene expression, mixed models, pathway analysis, gene set analysis,
statistical significance



1. INTRODUCTION 
 
To understand the temporal nature of gene regulatory mechanisms, time course 
microarray experiments have been used to monitor mRNA transcript abundance 
of many genes over time. To identify genes that are differentially expressed over 
time, a variety of statistical models have been proposed for analysis at the single 
gene level (Luan et al. 2004; Park et al. 2003; Storey et al. 2005). To help with 
interpretation of the results, following analyses for each gene, Fisher’s exact test 
is often used to test whether differentially expressed genes are significantly 
overrepresented in a priori defined functional groups. A popular example for the 
functional groups is the GO categories defined in the Gene Ontology (Ashburner 
et al. 2000) database, which are structured controlled vocabularies (ontologies) 
that describe gene products in terms of their biological processes, cellular 
components and molecular functions. For simplicity we use the terms “pathways”, 
“biological processes”, and “gene sets” interchangeably for these gene groups, 
although they may not be strictly equivalent. The Fisher’s exact method is 
implemented in several software packages such as GENMAPP (Dahlquist et al. 
2002), ONTO-TOOLS (Draghici et al. 2003), WebGestalt (Zhang et al. 2005), 
GOTM (Zhang et al. 2004) and JMP Genomics (http://www.jmp.com/genomics). 
Because each gene is analyzed individually first and information from all genes in 
the gene set is then combined, this approach has been called a “bottom-up” 
approach (Liu et al. 2007). Despite the popularity of “bottom-up” approaches, 
they have some limitations: the assumption that genes are independent may not be 
tenable for tightly co-regulated gene sets; the selection of significant genes is 
often based on an arbitrary cutoff; and information is lost by not using continuous 
information in p-values measuring differential expression.     
 In contrast, a “top down” approach for pathway analysis requires no 
threshholding of gene-wise significance levels; the gene expression values from a 
group of genes are combined to estimate a test statistic for the gene set. By 
borrowing information and combining weak signals across genes in the same gene 
set, improved power is gained for pathway-based analysis methods.  
 For experiments with two groups, many top-down methods have been 
proposed  (Barry et al. 2005; Chen et al. 2008; Goeman et al. 2004; Kim et al. 
2005; Mootha et al. 2003); however, few methods can be used to analyze time 
course microarray experiments, especially those with multiple groups and 
covariate information. Recently, in an interesting paper, Hummel et al. (2008) 
proposed the GlobalANCOVA test which uses a permutation test coupled with 
gene-wise linear models to identify gene sets associated with time while 
accounting for the experimental design. Although the global null hypothesis: 
 
 H0G: no gene in the group exhibits differential expression over time 
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is certainly useful, in practice we have found it may be rejected for too many gene 
sets for some microarray experiments. For example, in our application of the 
GlobalANCOVA test to a mouse colon development time course experiment 
(Section 3.2), when 10,000 permutations were used, among the 522 GO terms 
tested, there were 287 GO terms with permutation p-value of 0. Among the gene 
sets tested, larger gene sets were in particular more likely to be rejected for H0G 
because they are more likely to include at least one differentially expressed gene. 
Furthermore, in situations where a significant gene belongs to multiple gene sets, 
the results may be difficult to interpret because nearly all these categories will be 
rejected for the global null hypothesis.  
 To address this difficulty, in this paper, we propose a parametric approach 
for testing the central null hypothesis:   
 
 H0C: the average gene expression of a gene group is not differentially 
  expressed over time. 
 
We test  H0C via a class of statistical models called random coefficient models 
(Littell et al. 2006). These models estimate a common mean trajectory over time 
for all genes in the gene set and fall into the more general mixed models 
framework. Mixed models have been shown to be a very effective tool for the 
analysis of microarray experiments; see for example (Chu et al. 2002; Wang et al. 
2008; Wolfinger et al. 2001). 
 In Section 2, we provide details for the proposed random coefficient 
models, including our proposals for modeling the heterogeneous correlations 
between genes using random effects, and the ranking of individual genes on their 
contributions to the gene set signal using empirical BLUP (Best Linear Unbiased 
Prediction) shrinkage estimation under the mixed models framework. In addition, 
to compare the proposed random coefficient models with currently available 
methods in terms of false positive rate, power, and stability, we describe the 
design of a simulation experiment using real microarray data where genes have 
“real life” correlations. In Section 3, we show (1) our random coefficient models 
outperform GlobalANCOVA and Fisher’s exact test at discriminating gene sets 
changed over time from null gene sets in terms of sensitivity and specificity; (2) 
the proposed models account for dependency among genes adequately and 
preserve the type I error rate for testing the central null hypothesis; (3) statistical 
inference based on these models is less affected by sampling variations. We apply 
the proposed random coefficient model to a mouse colon development time 
course microarray dataset in which gene expressions were measured in two strains 
of mice daily from embryonic day E13.5 to E18.5. In addition to identifying 
biologically meaningful GO categories that are differentially expressed over time, 
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we also illustrate ranking of individual genes on their contributions to the gene set 
signal. In Section 4, we provide some concluding comments.  
 
2 METHODS 
 
2.1 The Random Coefficient Model 
 
The first step in pathway analysis is to link gene identifiers in expression dataset 
with pre-defined biological processes or pathways such as those defined by Gene 
Ontology, so that genes are grouped into different gene sets according to GO 
terms. After pre-processing gene expression values (see details in Section 3.2), we 
obtain one value for each gene. To identify gene sets differentially expressed over 
time, for each GO term, we construct a random coefficient model: 
   Model 1: 0 0 1 1 j 1( ) ( ) ...ijk i i k i pi ijkY b b time Array r rβ β ε= + + + + + + + +  
where  

ijkY = log transformed value for gene i  from array k at time j ;  
p = is the rank of the gene-gene covariance matrixΣ ; 

0 1,β β  are fixed effects that model the mean intercept and slope for the group of 
genes defined by the same GO term, they describe the mean trajectory for the 
group. The central null hypothesis tests 0 1: 0H β = ; 

( )0 1, ~ ( , )t
i ib b N 0 G is a vector of random effects, they model how the intercept 

and slope for ith gene deviates from intercept and slope of the mean trajectory. 
These are the random coefficients; we assume an unstructured covariance matrix 

2
0 01

2
01 1

σ σ
σ σ
⎛ ⎞
⎜ ⎟
⎝ ⎠

G =  for the random intercept and slope deviations, allowing an 

arbitrary correlation between random intercept and slope. In this paper, since we 
are mainly interested in monotonic changes in groups of genes, only linear terms 
are specified here. However, Model 1 can be easily augmented with additional 
quadratic or cubic polynomial terms;  

2
1 2, ,...,  independent (0, )

arrayN aArray Array Array N σ are random effects that 
model sample variations, allowing inferences to be made to the entire population 
of samples from which the observed samples arise;  

2
1,..., ~  independent (0, )p rr r N σ  are random effects included to account for the 

heterogeneous covariance structure between genes (see details in Sec 2.2) and 
2~ (0, )ijk Nε σ  represent variations due to measurement error.  

 Because both fixed and random effects are included, the random 
coefficient model falls into the more general class of linear mixed effects model. 

∼
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Parameters in the linear mixed model are estimated using restricted maximum 
likelihood (REML) along with appropriate standard errors (Littell et al, 2006).  
 
2.2 Modeling the Covariance Structure between Genes 
 
One important but challenging issue in modeling gene expression from a group of 
genes such as those belonging to the same GO category is accommodating the 
dependency among genes. We propose modeling the heterogeneous covariance 
structure between genes using random effects { }; 1,...,k arrayArray k N= and 

{ }1,..., pr r
 
in Model 1. Note that a general representation of the linear mixed 

model is  

 
~ N( )
~ N( )

Cov[ ]

= + +Xβ Zu e
u 0,G
e 0,R

u,e = 0

Y

 

where X Z, are design matrices for the fixed and random effects, β u, are vectors 
of parameters for the fixed and random effects, and e is the error term. The 
marginal model for Y is then ~ ( , )tN +XβY ZGZ R . 
 In Model 1, for each Array random effect, the corresponding column in 
the design matrix Z is constructed as the indicator variable for the array, so that 
the array random effect accounts for the homogeneous covariance among all 
observations in the same array. The random effects 1,..., pr r  were included to 
account for different amount of dependencies between pairs of genes within a 
geneset. The design matrix  corresponding to the random effects 1,..., pr r is 
motivated by the theorem on Spectral Decomposition (Jolliffe 2002) which states 
that under regularity conditions, for any symmetric matrixΣ  (with rank p), we 
have  
  1 1 2 2 ...t t t

p pλ λ λ= + + +Σ 1 2 pαα αα αα ,  
where lα and lλ  (l = 1, …, p) are l-th eigenvector and eigenvalue of Σ . The 
eigenvectors and eigenvalues of Σ  are defined as vectors lα and scalars lλ such 
that , 1,...,l l l l pλ= =Σα α .  
 In Model 1, to apply the Spectral Decomposition theorem to account for 
heterogenous covariance structure between genes, let Σ be the gene-gene 
covariance matrix, we specify the column in the design matrix corresponding to 

 to belr ˆ ˆl lλ α  where ˆl =α  estimated l-th eigenvector ofΣ  and l̂λ = estimated l-th 
eigenvalue of Σ . Figure 1 illustrates the computation of the design matrix 
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corresponding to { ; 1,...,3}lr l = for a gene set with 3 genes using SAS procedure 
PRINCOMP. 
 Now let 1Z  = the sub-matrix of the design matrix Z corresponding to the 
random effects 1,..., pr r . Assume 2

1,..., ~  independent (0, )p rr r N σ  , we then have  

 1 1 2 2
ˆ ˆ ˆˆ ˆ ˆ... p pλ λ λ⎡ ⎤= ⎢ ⎥⎣ ⎦1Z α α α   

 

2

2

2

0 ... 0
0 ... 0

0 0 ...

r

r

r

σ
σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M M M M
G  

and the contributions of the 1,..., pr r to the covariance matrix of Y in the marginal 
model would be  
 2 2

1 1
ˆ ˆˆ ˆ ˆ ˆ...t t t

1 1 r r p p pσ λ σ λ= + +1Z GZ α α α α  
Next, we show the approximation of gene-gene covariance matrix Σ using 

t
1 1Z GZ based on the estimated eigenvectors and eigenvalues is asymptotically 

unbiased. To see this, note that  

 

( )
( )

( ) ( ) ( ){ }
( ){ }

ˆ ˆ ˆ 1,...,

ˆ ˆˆ ˆ ˆ( ) and  are independent (Jolliffe 2002, p48)

ˆ ˆ ˆ=

1/     (Jolliffe 2002, p48)

  as 

t
l l l

t
l l l l l

l l l l

t
l l l sample

t
l l l sample

E l p

E E

E E Var

O n

n

λ

λ λ

λ

λ

λ

=

=

+

= +

→ →∞

α α

α α α

α α α

α α

α α

 

Now letting 2 1rσ = , we then have 
 1 1( ) ...  as t t t

1 1 p p sampleE nλ λ→ + + = →∞ΣZ GZ 1 pαα αα  

In practice, to increase the goodness-of-fit of Model 1, we include 2
rσ as an 

unknown parameter and use restricted maximum likelihood to obtain its estimate. 
In addition, since Σ  is not known, we replaceΣwith its unbiased estimate Σ̂ .  
 In summary, the steps for fitting the proposed model are as follows:   
1) For each gene, to remove the mean trend, we fit the linear model 

'
0 1 j ijkijk i i kY time Arrayβ β ε= + + + where ijkY denotes log transformed value for 

gene i from array k at time j. From this model, the studentized residuals 
(Littell et al. 2006, p415), which are residuals divided by an estimate of its 
standard deviation are then computed.  
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2) Let Σ̂  be the sample gene-gene covariance matrix (an unbiased estimate ofΣ ), 
calculated based on the studentized residuals from the gene-wise linear 
models in (1). Specify the column in design matrix corresponding to lr to 

be ˆ ˆl lλ α where ˆl =α estimated l-th eigenvector of Σ̂ and l̂λ =  estimated l-th 

eigenvalue of Σ̂ .  
 Another way to model covariance between genes is to include a single 
random effect r and specify the design matrix corresponding to r using the  
studentized residuals (Littell et al. 2006, p415) from the gene-wise linear models 
directly. Then, the correlations between genes would depend on direction and 
magnitude of the difference in their observed and expected trajectories. Two 
genes are highly positively correlated if both genes deviate from their mean 
trajectories in the same direction and by a large amount. We compare sensitivity, 
specificity and type I error rates of models with 1,..., pr r  (MMevct model) or r 
(MMrstudent model) as random effects using simulation studies in Section 3.1.  
 
2.3 Ranking of Individual Gene’s Contribution to the Gene Set Signal 
 
Because gene sets are defined based on existing knowledge in biological 
processes and pathways without considering biological context such as tissue type 
or environment, when they are put into specific conditions such as those defined 
in a microarray experiment, typically not all member genes of a perturbed 
biological process or pathway are responsive to the specific conditions. For gene 
sets differentially expressed over time, it is thus helpful to identify the subset of 
genes contributing to the gene set significance. Toward this end, we define the 
influential subset of genes, which are those genes that contribute most to the gene 
set signal, to be those genes with estimated trajectory 1 1̂

ˆ
ibβ +  (Model 1 in Section  

2.1) more extreme than the estimated mean trajectory 1̂β  for the gene set. Recall in 
Model 1, 1ib models the deviation of each gene’s slope from the group mean 

slope 1̂β . For example, for gene sets with positive mean trajectory ( 1̂ 0β > ), the 

influential subset includes all genes with 1̂ 0ib > or equivalently 1 1 1
ˆˆ ˆ

ibβ β+ > . On 

the other hand, for gene sets with negative mean trajectory ( 1̂ 0β < ), the 

influential subset includes all genes with 1̂ 0ib < or equivalently 1 1 1
ˆˆ ˆ

ibβ β+ < . 
 To further identify genes for follow up experiment with alternative 
platform (e.g. real time PCR), we rank these influential genes by their estimated 
individual gene trajectories over time 1 1̂

ˆ
ibβ + . Under the mixed model framework, 

these estimates are called empirical Best Linear Unbiased Predictors (BLUPs); 
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they are shrinkage estimates that borrow information across all genes in the gene 
set and naturally fall into the hierarchical empirical Bayes framework. We 
illustrate ranking and selection of the influential genes in Sec 3.2 with a mouse 
colon development dataset. 
 
Figure 1 An illustration for the computation of the design matrix for the random 
effects { ; 1,..., }lr l p= in Model 1.  This gene set has 3 genes (variables) and the 
dataset has 12 samples (observations). Covariance Matrix = estimated gene-
gene covariance matrix Σ̂ . Under “Eigenvectors”, Prin 1 = the estimated first 
eigenvector 1α̂ of Σ̂ , and 1̂λ = 0.09802458 is the estimated first eigenvalue of Σ̂ . 

The column in design matrix corresponding to 1 1ˆis then 0.098r α , note that they 
vary according to genes, so the random effects have sub-index i in Model 1.   
 
 
The PRINCOMP Procedure 
Observations   12  
Variables       3                               
 
                    Covariance Matrix  
 
                    ENSMUSG00000026182  ENSMUSG00000028411  ENSMUSG00000049717 
ENSMUSG00000026182        0.0061719479        0.0034041364        ‐.0016351085 
ENSMUSG00000028411        0.0034041364        0.0809434336        0.0293087945 
ENSMUSG00000049717        ‐.0016351085        0.0293087945        0.0475408824 
 
            Eigenvalues of the Covariance Matrix 
 
        Eigenvalue    Difference    Proportion    Cumulative 
   1    0.09802458    0.06712217        0.7280        0.7280 
   2    0.03090241    0.02517314        0.2295        0.9575 
   3    0.00572927                      0.0425        1.0000 
                        Eigenvectors 
                           Prin1         Prin2         Prin3 
ENSMUSG00000026182      0.023129      ‐.124996      0.991888 
ENSMUSG00000028411      0.864915      ‐.495082      ‐.082558 
ENSMUSG00000049717      0.501385      0.859808      0.096660 

   
  
2.4 Design of Simulation Experiment 
 
We conducted a simulation experiment to compare the performance of the 
proposed random coefficient models with GlobalANCOVA and Fisher’s exact test 
for testing the central and global null hypotheses. To obtain genes with “real life” 
correlations, we used 12 samples of microarray data from a real time course 
experiment (Section 3.2). First, after mapping the gene expression data with the 
Gene Ontology database, we obtained 522 sets of genes corresponding to 522 GO 
terms. For each gene set, fixing the gene expression data, we then generated 

7

Wang et al.: Set Analysis of Time Course Microarray Experiments

Published by The Berkeley Electronic Press, 2009



 

values for “pseudo time” so that the status of the gene sets in Table 1 would be 
satisfied. More specifically, for gene sets 1-174, for each sample, we let pseudo 
time equal the average gene expression values of genes in the gene set, therefore, 
by design of the experiment, both global and central null hypotheses are false for 
these gene sets. For gene sets 349-522, pseudo times were generated from a 
normal distribution with the same mean as average of all genes values. Because 
these pseudo times were generated independently of the gene expression values, 
both global and the central null hypotheses are true for these gene sets. Finally, 
for gene sets 175-348, in addition to generating a pseudo time unrelated to the 
gene expression data (as in gene sets 349-522), for each gene set, we also 
generated a pseudo gene with the same value as pseudo time, and added this 
pseudo gene to the gene expression data set. Therefore, in gene sets 175-348, the 
pseudo time is related to only one gene (i.e. the pseudo gene), but not the average 
gene expression of genes in the gene set, in other words, the global null 
hypothesis is false but the central null hypothesis is true for these gene sets. 
Therefore, in this simulation study, by fixing gene expression profiles and 
generating “pseudo time”, we preserved the correlation patterns of real gene 
expression data.  
 
Table 1 Status of the Gene Sets by Design of the Simulation Experiment.  

 
True Status of Gene Sets GO terms 

(sorted 
alphabetically) 

HOG:  no gene is related 
to pseudo time 

H0C: av. gene exp is not 
related to pseudo time 

1 – 174 False False 
175 – 348  False True 
349 – 522  True True 

 
 Given the known status of the gene sets according to the experimental 
design (Table 1), for each of the four methods compared, we next calculated Area 
under the Receiver Operating Characteristic Curves (AUC). The receiver 
operating characteristic (ROC) curves show a trade-off between sensitivity and 
specificity as the significance cutoff is varied. AUC assesses the overall 
discriminative ability of the methods at determining whether a given gene-set is 
associated with time over all possible cutoffs. In addition, we calculated power 
based on a nominal p-value of 0.05, that is, the probability of declaring a gene set 
being significant at p = 0.05 for true positive gene sets. Finally, we calculated the 
test sizes of each method (the proportions of p-values less than 0.05 for null gene-
sets). Because under the null hypothesis we expect the p-values to follow a 
uniform distribution, a method with test size roughly equal to or less than the 
significance cutoff (e.g. 0.05) is desirable.  
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 While AUC, power, and test sizes evaluate critical statistical properties of 
the methods, another important aspect is the stability of the results. A different 
sample would give a different result, the difference being due to sampling 
variation. To compare stability of the methods, we took sub-samples from the 12 
original samples, and evaluated stability based on changes in rank ordering of the 
p-values for each method using Spearman correlation coefficients. More 
specifically, the above experiment was repeated 12 times, each time leaving out 
one sample in turn. Then, for each method, we have 12 sets of p-values, one for 
each repetition. In Table 2, we show for each method, the average pairwise rank 
correlations for the 12 sets of p-values.  
 
2.5 Software Implementation 
 
The R packages (http://www.r-project.org/) globalANCOVA and fisher.test 
were used for Fisher’s exact method and globalANCOVA method. The proposed 
method can be easily implemented in any common statistical software packages. 
We used SAS PROC MIXED for the random coefficient models analysis. To 
increase computational efficiency, orthogonal polynomial scores, which are linear 
transformations of the natural polynomial scores, were used to test for a linear 
time trend. To help with convergence, the PROC MIXED statement parms /ols; 
can be used when the default procedure produces poor starting values for the 
optimization process. Estimates of BLUPs for single genes were requested by 
specifying the solution option in the random statement. The eigenvectors 1,..., pr r  
were computed using SAS PROC PRINCOMP.  
 
3 RESULTS 
 
3.1 Simulation Study 
 
Table 2 shows results of the simulation experiment comparing Fisher’s  
exact test with nominal p-value of 0.05 as threshold for selecting significant genes  
(Fisher05), globalANCOVA (globalANCOVA), the random coefficient models 
with eigenvectors (MMevct) or studentized residuals (MMrstudent) as random 
effects to model the covariance structure between genes. As expected, for testing 
the global null hypothesis that no gene in the gene set is associated with pseudo 
time, globalANCOVA maintained reasonable test size (0.040) and performed best 
with highest power (74.7%) and largest AUC (0.954). The random coefficient 
models and the “bottom up” approach using Fisher’s exact test were conservative 
for testing the global null hypothesis.  
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Table 2 Results of Simulation Experiment. Gene sets = relevant gene sets used in 
the computation of evaluation measures (test size, area under ROC curve, power 
or stability); Ho Tested = the null hypothesis being tested; MMevct = mixed model 
with eigenvectors as random effects to account for the covariance structure 
between genes; MMrstudent = mixed model with studentized residuals as random 
effects; globalANCOVA = the globalANCOVA method (Hummel et al. 2008); 
Fisher05 = Fisher’s exact test with nominal p-value 0.05 as threshold for selecting  
significant genes. See text for details of the simulation experiment.  

  
Gene Sets Ho Tested MMevct MMrstudent globalANCOVA Fisher05 
Test Size 

175-522 central 0.049 0.106 0.351 0.06 
349-522 global 0.052 0.109 0.04 0.034 

      
Power 

1-174 central 0.73 0.736 0.833 0.299 
1-348 global 0.388 0.42 0.747 0.193 

      
Area Under ROC Curve 

1-522 central 0.951 0.911 0.785 0.696 
1-522 global 0.783 0.759 0.954 0.791 

      
Stability (av. pair-wise spearman rank correlations)  

1-522  0.902 0.964 0.881 0.702 
 
 On the other hand, for testing the central null hypothesis, while the mixed 
model (MMevct) and Fisher’s exact test maintained reasonable test sizes (0.049, 
0.060), globalANCOVA and the mixed model (MMrstudent) with simpler 
covariance structure did not.  In particular, globalANCOVA rejected (35%) of the 
null gene sets. Therefore, globalANCOVA is not recommended for testing shift of 
mean trajectory for a group of genes. In contrast, Fisher’s exact test was very 
conservative with 29.9% power and 0.696 AUC, because information is lost with 
thresholding significance levels of the genes. For the two random coefficient 
models, although both models had similar power (73% and 73.6%), MMevct 
performed better than MMrstudent with higher AUC (0.951 vs. 0.911). Among 
all models, MMevct had the best sensitivities across all levels of specificity 
(Figure 2). 
 Table 2 also shows the results of comparison on stabilities of the methods. 
For each group of gene sets, the “top down” approaches, globalANCOVA and the 
random coefficient models MMrstudent and MMevct, were more stable over 
changes in samples than the “bottom up” approach Fisher’s exact test.  This  
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Figure 2: ROC Curves for Testing the Central Null Hypothesis H0C: the average 
gene expression of a gene group is not differentially expressed over time. The 
receiver operating characteristic (ROC) curves show a trade-off between 
sensitivity and 1-specificity as the significance cutoff is varied. Among all models, 
the random coefficient model MMevct had the best sensitivities across all levels 
of specificity, the model rstudent performed comparably, Fisher’s exact test 
lacked sensitivity while globalANCOVA lacked specificity.  
 

  
 
shows the gene set estimate from aggregating gene expressions from a group of 
genes in the “top down” approaches is more robust to variability due to sampling 
than single gene estimates in the “bottom up” approach.  P-values from the 
random coefficient models (MMrstudent, MMevct) were more stable than the 
globalANCOVA p-values. This confirms our hypothesis that modeling the mean 
trajectory rather than maximum or minimum trajectory of a group of genes results 
in more stable p-values. Between the two random coefficient models, results of 
the simpler model MMrstudent, which uses one random effect (studentized 
residuals, Section 2.2) rather than multiple random effects (eigenvectors) as in 
model MMevct, was more stable. This is in agreement with the bias-variance 
tradeoff principal, which states that estimates from simpler models have more bias, 
but less variance while estimates from more complex models have less bias but 
more variance. In our study, results of the more complex model MMevct were 
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more accurate with larger AUC while results of the simpler model MMrstudent 
were more stable with higher correlations among sub-sample p-values.  
 In terms of computational efficiency, on a single CPU PC with a 2.00GHz 
processor and 2 GB of memory, for processing 522 genesets, computing times 
were 155 seconds for mixed model estimation and testing, 197 seconds for 
globalANCOVA with 10,000 permutations and 223 seconds for Fisher’s exact test. 
Therefore, all three methods were computationally efficient for practical use.  
 
3.2 Analysis of a Mouse Colon Development Time Course Experiment 
 
To study the regulatory genetic programs underlying the morphological changes 
during mouse colonic development from E13.5 to E18.5, we conducted a time 
course microarray study using two strains of mice, outbred CD-1 and inbred 
C57BL/6. Twelve microarray samples, one for each time by strain combination 
were used. To identify the biological processes underlying colonic development 
and maturation, we used the proposed random coefficient model.   
 C57BL/6 (Jackson Laboratories, Bar Harbor, ME) and CD-1 (Charles 
River Laboratories, Wilmington, MS) mice were used in this microarray study. 
Embryonic colon collection and RNA preparation were performed as previously 
described (Park et al. 2005). RNA samples were submitted to the Vanderbilt 
Microarray Shared Resource (VMSR, http://array.mc.vanderbilt.edu), where RNA 
was hybridized to the Affymetrix Mouse Genome 430 2.0 GeneChip Expression 
Arrays (Santa Clara, CA) according to manufacturer’s instructions. Microarray 
data were normalized using the Robust MultiChip Average (RMA) algorithm 
(Irizarry et al. 2003) as implemented in Bioconductor (Gentleman et al. 2004). 
Probe set identifiers (IDs) were mapped to Ensembl Gene IDs based on the 
mapping provided by Ensembl V49 (http://www.ensembl.org).  Median 
expression levels from multiple probe sets corresponding to the same gene were 
calculated to represent the gene expression level.  
 After this step, we were left with 15548 genes. To homogenize variances 
for all the genes included in the mixed model and to help with interpretation, we 
standardized values for each gene by subtracting their value at baseline and 
dividing by their group specific standard deviation. The standardized gene 
expression values then represent the number of standard deviations away from the 
baseline gene expression values. We next mapped these genes to gene sets 
generated based on the biological process categories of Gene Ontology. We 
focused on GO categories with 5 to 200 genes. In order to reduce the redundancy 
in GO, we removed all child-categories if corresponding parent-category was 
within the size limitation. After the above processes, we were left with 522 gene 
sets.   
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 We applied the random coefficient models to gene expression values from 
each gene set. First, to test for differential trajectory over time for the two groups 
of mice, we used the random coefficient model   
Model 2: 0 0 1 1 j 1( ) ( ) ...hijk h i h i k i pi ijkY b b time Array r rβ β ε= + + + + + + + +  
where  

hijkY =  log transformed value for gene i  from array k at time j for a mouse from 
group h;  

1,2h =  for CD-1 and C57BL/6 groups respectively and all other parameters are 
defined the same as in Model 1 (Section 2.1). For each pathway, we tested the 
null hypothesis  

0 11 12:H β β= which corresponds to a time by strain interaction effect. Rejection of 
H0 would indicate different patterns of change over time for the two strains of 
mice. After computing FDR (false discovery rate) however, all gene sets had 
adjusted p-value of 1. The 12 samples were then pooled to identify gene sets 
differentially expressed over time using Model 1 (Section 2.1) for subsequent 
analysis.  
 When we applied globalANCOVA with 10,000 permutations, there were 
287 GO terms with FDR (False Discovery Rate) adjusted p-value of 0. In 
particular, all gene sets with more than 50 genes had p-value of 0. Therefore, 
results of testing global null hypotheses were difficult to interpret for this dataset.  
 In contrast, at a 1% FDR level, the random coefficient model MMevct 
from Section 2.1 identified 60 gene sets that were significantly differentially 
expressed over time (Table 3 and Supplementary Tables), among which 20 gene 
sets showed a trend of down-regulation across the developmental time course 
whereas 40 showed a trend of up-regulation. Interestingly, almost all of the down-
regulated gene sets were related to cell proliferation and genetic information 
processing, such as cell cycle checkpoint, DNA replication, RNA splicing, and 
transcription initiation etc. On the other hand, the up-regulated gene sets were 
mostly related to metabolic process and are related to differentiated cellular 
processes (including steroid metabolic process, polyol metabolic process, 
coenzyme metabolic process, monosaccharide metabolic process, cytokine 
metabolic process, fatty acid metabolic process, sulfur metabolic process, 
glycoprotein metabolic process, pyruvate metabolic process, vitamin metabolic 
process, carbohydrate catabolic process, alcohol catabolic process), transport 
(including hydrogen transport, lipid transport, carbohydrate transport, organic 
acid transport, sodium ion transport, peptide transport, transition meta lion 
transport, inorganic anion transport), and stress response (such as response to 
extracellular stimulus, innate immune response, induction of programmed cell 
death etc). These results suggested that the embryonic colon is committed to 
growth early on. After cellular proliferation, the colon up-regulates genes 
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involved in metabolism, transport, and stress response. This is consistent with 
prior observations on embryonic colon (Park et al. 2005) and kidney (Stuart et al. 
2001). 
 
Table 3 Results of the Mixed Models Analysis of the Colon Development Dataset. 
Top five most significantly up-regulated and down-regulated GO Bio-logical 
Process Terms. Size = number of genes in gene set; raw_p = nominal p-value; 
fdr_p = FDR adjusted p-value; n_inf = number of influential genes identified; 
Influential Genes = five influential genes contributing most to gene set 
significance signal, with most influential gene ranked first. See Supplementary 
Materials for full list of significantly changed gene sets. 
 

GO Term size raw_p fdr_p Description n_inf Influential Genes (Most 
Influential First) 

Up-regulated        
GO_0006818 62 3.912E-09 3.403E-07 hydrogen transport 40 Atp1a1;Atp2c2; 

Clca3;Atp2a3;Atp6v0b; 
GO_0010324 157 3.110E-08 2.030E-06 membrane invagination 89 Cubn;Elmo3; 

Cav1;Cav2;Fcer1g; 
GO_0008202 137 1.572E-07 8.206E-06 steroid metabolic process 78 Cubn;Nr1h4; 

Atp1a1;Hsd17b2;Stard4; 
GO_0019751 38 1.798E-07 8.534E-06 polyol metabolic process 22 4833409A17Rik;Gdpd1; 

Gyk;Gpd1l;Psmb10; 
GO_0006732 140 7.984E-07 3.206E-05 coenzyme metabolic 

process 
85 Rnasel;Aldh1l1; 

Hnf4a;Folr1;Clca3; 
       
Down-regulated      
GO_0008380 140 4.001E-15 2.086E-12 RNA splicing 97 Snrpd1;Ncbp2; 

1110037F02Rik;Sfrs7;Dhx15; 
GO_0015931 58 8.301E-14 2.167E-11 nucleobase, nucleoside, 

nucleotide and nucleic 
acid transport 

35 Ncbp2;Nup62; 
Nup93;Magoh;Qk; 

GO_0006403 52 1.462E-13 2.542E-11 RNA localization 31 Ncbp2;Nup62; 
Nup93;Magoh;Qk; 

GO_0006260 137 5.296E-13 6.908E-11 DNA replication 88 Orc6l;Mcm4 
;Dut;Dbf4;Mcm6; 

GO_0000087 171 4.907E-10 5.123E-08 M phase of mitotic cell 
cycle 

105 Bub1;Tubb5; 
Cenph;Pds5a;Anapc1; 

 
 Because gene sets are defined based on existing knowledge in biological 
processes and pathways without considering specific biological context, not all 
genes in a significant gene set will follow the trend of up- or down-regulation 
during mouse colon development. It is of particular interest to identify influential 
genes that follow the main trend and rank individual genes by their contributions 
to the gene set significance. Using the method described in Section 2.3, we 
identified the subset of influential genes for each significant gene set. Tables 3 
and 4 show the total number of the influential genes within the gene set and the 
top five genes contributing most to the gene set significance signal. 
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4. DISCUSSION 
 
In this paper, we have proposed a unified strategy for systems analysis of time 
course microarray experiments at the gene set level using random coefficient 
models. Several features of the proposed models make them especially attractive 
in this setting:  
 First, in the analysis of gene sets, to avoid inflation of false positive rate, 
great care must be taken to account for correlations between genes in the same 
pathway. For testing the central null hypothesis, we have shown both theoretically 
 (Section 2.2) and empirically (Section 3.1) that the proposed random coefficient 
model adequately captures the primary covariance structure between genes and 
preserves type I error rate. On the other hand, permutation tests rely on 
exchangeability of the permuted units, careful consideration are required to 
account for data structure in complex study designs to avoid misleading results 
(Churchill et al. 2008). For example, Xu and Hsu (2007)  showed that when 
comparing mean expression levels of a set of genes between two groups of 
subjects, permutation tests based on permuting sample labels across groups may 
not preserve type I error rate, when the joint distributions of gene expression 
levels differ between the groups.  
 Second, using gene expression data with “real life” correlations, we have 
shown in comparison to currently available methods, by modeling the mean 
trajectory and testing the central hypothesis for a group of genes, the proposed 
random coefficient models yield statistical inferences for gene sets that are more 
stable (less affected by sampling variation) and more interpretable (allowing 
ranking of individual genes that contribute most to the gene set signal). In the 
analysis of the mouse embryonic colon dataset, the agreement between results of 
the random coefficient models and previous reports further validates the proposed 
method.   
 Finally, the proposed method is a general methodology that operates 
within a well-established statistical framework. This flexible, unified and practical 
approach can be easily implemented in common statistical software packages. By 
including design factors and covariate effects, the random coefficient models can 
be augmented easily to handle more complex designs with multiple sources of 
variation such as those with biological replicates or even spatial effects. For 
example, when arrays are processed in multiple batches, a batch effect can be 
added to the model to adjust for systematic effects from different batches. 
Similarly, other random effects from blocks and sites where the experiments were 
performed can also be incorporated into the model. Littell et al. (2006) provides a 
comprehensive set of examples covering a wide range of mixed models and 
related covariance structures.  
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