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Abstract

Several family-based approaches for testing genetic association with traits obtained from lon-
gitudinal or repeated measurement studies have been previously proposed. These approaches uti-
lize the multivariate data more efficiently by using estimated optimal weights to combine uni-
variate tests. We show that these FBAT approaches are still robust against hidden population
stratification, but their power can be heavily affected since the estimated weights might provide
poor approximation of the true theoretical optimal weights with the presence of population strat-
ification. We introduce a permutation-based approach FBAT-MinP and an equal combination ap-
proach FBAT-EW, both of which do not involve the use of estimated weights. Through simulation
studies, FBAT-MinP and FBAT-EW are shown to be powerful even in the presence of popula-
tion stratification, when other approaches may substantially lose their power. An application of
these approaches to the Childhood Asthma Management Program (CAMP) study data for testing
an association between body mass index and a previously reported candidate SNP is given as an
example.
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1 Introduction

For a genetic association study, population stratification is present when the
population is comprised of several subpopulations, and the allele frequency
of interest differs in each subpopulation (Ewens and Spielam, 1995; Risch,
2000; Lander and Schork, 1994; Pritchard and Donnelly, 2001). Although
most population stratification occurs when there are multiple races or eth-
nicities in the study population (Risch et al., 2002), significant population
stratification was reported even within an apparently homogeneous North
American population of European ancestry (Campbell et al., 2005).

Population stratification is mainly thought to be a concern for case-
control studies. Since family-based association studies are robust against
population stratification, they are often used to replicate associations found
with case-control studies. However family-based tests can lose power in
the presence of population stratification (Lewinger and Bull, 2006; He et
al., 2008), and it is therefore particularly important to address the impact
of population stratification on family-based studies in order to ensure these
studies have sufficient power to detect the target genetic association.

For studies with phenotypes measured longitudinally or repeatedly,
several family-based association test (FBAT) approaches have been intro-
duced which use population information to enhance the power (Lange et
al., 2004; Ding et al., 2009). All these approaches combine univariate tests to
construct more powerful global test, by using different estimated weights
to approximate the theoretical optimal weights. We evaluate the impact of
population stratification on the power of these FBAT approaches and find
that these estimated weights may no longer provide an appropriate approx-
imation of the optimal weights in the presence of population stratification.
We suggest that equal weights can be used to combine univariate tests to
provide an alternative testing approach, which can be robust against popu-
lation stratification. In addition, by extending the idea of combining tests of
multiple markers, we propose a permutation-based approach FBAT-Min P,
which is expected to be a more powerful approach than Bonferroni correc-
tion.

2 Methods

Suppose there are N families. For simplicity, assume we have parents with
one offspring (trios); the results can be easily generalized to other family
structures (Rabinowitz and Laird, 2000). We denote the vector containing all
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m phenotypic observations for each offspring by eYi = (Yi1; :::; Yim)T , where
Yij is the j-th phenotype for the i-th offspring. The standard biometric model
(Falconer, 1997) describing a single phenotype as a function of the genotype
is

E(YijjXi = xi) = �j + �j � xi; (1)

where �j is the genetic effect for the j-th measurement, and Xi denotes the
coding of the marker genotype of the i-th offspring. The vector containing
all traits for each offspring can be expressed as eTi = (Ti1; :::; Tim)T , where Tij
is the j-th trait for the i-th offspring. Here Tij is a function of the phenotype
Yij for example, Tij = Yij � Y�j or Yij adjusted for covariates (Lunetta, 2000).

For the j-th measurement, the univariate family-based association test
(FBAT) statistic (Rabinowitz and Laird, 2000) can be written as

Sj =
NX
i=1

Tij[Xi � E(XijPi)]; (2)

where E(XijPi) and V ar(XijPi) denote the expectation and variance of the
marker score computed under the null hypothesis (no genetic association),
conditional on the parental genotypes Pi. With large samples, the vector
containing all univariate test statistics eS = (S1; S2; :::; Sm)

T asymptotically
follows a multivariate normal distribution N(~0m;�0) under H0 (Lange et
al., 2003b). Here ~0m is an m-dimensional vector of zeroes and �0 is the
variance-covariance matrix of those univariate test statistics:

�0 = V ar(eSjH0) = NX
i=1

eTi eT Ti V ar(XijPi): (3)

Several approaches have been introduced to utilize the multivariate
data efficiently to test for genetic association in family-based studies. Lange
et al. (2004) developed the FBAT-PC approach, which is an extension of
FBAT for traits that are measured longitudinally or repeatedly over time.
Based on generalized principle component analysis, FBAT-PC uses a weighted
linear combination of the measurements to construct an overall phenotype
with maximal locus-specific heritability. To avoid biasing the significance
level of any subsequent tests, Lange and Laird (2003), Lange et al. (2003a)
proposed the Conditional Mean Model (CMM) to estimate the optimal weights
to use in FBAT-PC. In equation (1), we replace the observed marker score xi
by the expected marker score E(XijPi),

E(Yij) = �j + �j � E(XijPi): (4)
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Ding et al. (2009) introduced FBAT-PCM as a modification to FBAT-PC with
higher power, along with two other approaches: FBAT-LC and FBAT-LCC,
which have more power in some circumstances.

Furthermore, all three of these statistics can be expressed as a weighted
combination of those univariate tests Sj , with different methods to compute
the weights:

ZFBAT�LC =
eqT eSpeqT�0eq ; (5)

ZFBAT�LCC =
(��10 eq)T eSp

(��10 eq)T�0(��10 eq) ; (6)

ZFBAT�PCM =

�bV �1P
b~��T eSr�bV �1P

b~��T �0 �bV �1P
b~�� ; (7)

where eq = (
b~�

SE(b~�)), and VP = V ar(eYijXi = xi) is the phenotypic residual

variance-covariance matrix. Note that b~� is estimated by the conditional
mean model (equation 4), and all the weights used in equation (5) to (7)
are different approximation of the theoretical optimal weights (Ding et al.,
2009). Thus it is important that b~� is a good estimate of the true genetic effect
as in equation (1).

Use equal weights to combine univariate statistics: FBAT-EW

The weight vectors for FBAT-LC, FBAT-LCC and FBAT-PCM are all esti-
mated by the conditional mean model. Although the CMM will not bias
any subsequent tests, it can introduce noise, especially when there is hid-
den population substructure. Therefore one intuitive question may arise:
do we really gain by estimating those weights via the CMM; what if we
simply use some constants as our weights?

Without any previous information, the natural way of choosing the con-
stants is to let the weights be all equal. In other words, instead of using es-
timates like eq, ��10 eq and bV �1P

b~� in equations (5)-(7), we just assign the weight
vector to be e1m (a vector of ones) and name the statistic as FBAT-EW,

ZFBAT�EW =
e1Tm eSqe1Tm�0e1m : (8)
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Note that this is the same as taking the summation of each individual test
Sj as the test statistic and normalizing by its standard error. Under the al-
ternative, those weights for FBAT-LC, FBAT-LCC and FBAT-PCM should
be positively correlated with eS (Ding et al., 2009), intuitively because e� is
positively correlated with eS. Here since the weights are chosen to be vec-
tor of ones, we can no longer guarantee a positive correlation between the
weights and the univariate tests, thus FBAT-EW is a two-sided test.

Assuming that all the underlying genetic effects are equal, i.e., �1 =
�2 = � � � = �m and the phenotypic residual variance matrix VP is com-
pound symmetry, the optimal weights to combine univariate tests can be
easily shown to be approximately proportional to e1m . Therefore, when the
true genetic effects for different measurement points are nearly equal, and
the variance-covariance matrix is close to compound symmetry, FBAT-EW
is expected to work well. When using equal weights, we can avoid the
possible non-robustness of estimating the weights via the conditional mean
model. But at the same time, we make the assumption of equal genetic ef-
fects and a compound symmetry variance-covariance matrix, which may or
may not be appropriate, depending upon the underlying model. Further-
more, FBAT-EW may not be appropriate when the correlation among traits
is negative.

Permutation test based on univariate statistics: FBAT-Min P

For the univariate test statistic Sj in equation (1), we can standardize it as

Zj =
Sjp
Vj
=

PN
i=1 Tij[Xi � E(XijPi)]qPN

i=1 T
2
ij[V ar(XijPi)]

: (9)

LettingC0 be the correlation matrix corresponding to the variance-covariance
matrix �0, it is easy to show that eZ = (Z1; Z2; :::; Zm)

T asymptotically fol-
lows multivariate normal distribution, N(~0m; C0), under the null hypothe-
sis.

In order to get a one degree of freedom test and gain more power than
Bonferroni correction, we define our statistic as the most significant univari-
ate test (whose p-value is the minimum):

ZFBAT�MinP = max(jZ1j; jZ2j; :::; jZmj): (10)

Though the distribution of ZFBAT�MinP under the null hypothesis is
theoretically difficult to derive, the corresponding p-value can be easily ob-
tained via Monte Carlo permutation. First, we generate K (a sufficiently
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large number) random m-dimensional vectors eU1; :::; eUK that follow a mul-
tivariate normal distribution N(~0m; C0). Second, for each vector eUk; k =
1; : : : ; K, we find the maximum absolute value of its m elements and record
it as Ukmax = max

1�l�m
jUklj. Therefore, the set F = fU1max; U2max; : : : ; UKmaxg is a

random sample from the distribution of the standardized test statistic with
the minimum univariate p-value. Last, we determine how many Ukmax are
actually bigger or equal to ZFBAT�MinP , and then divide the number by K
to get the empirical p-value:

PFBAT�MinP =

KX
k=1

I
�
Ukmax � ZFBAT�MinP

�
=K: (11)

3 Simulation

In our simulations, the marker of interest is a bi-allelic locus. Assuming
an additive genetic model, the parental genotypes P1 and P2 are generated
by drawing from a binomial distribution B(2,p) where p is the minor allele
frequency (MAF) of the target allele in the population. The genotype X
of the offspring is obtained by simulated Mendelian transmission based on
the parental genotypes P1 and P2. For each offspring, the same type of
phenotype is measured 6 times. The 6-dimensional phenotypic vector is a
random sample from a multivariate normal distribution

eYi = (yi1; : : : ; yi6)T �MVN(e�+ (�1; : : : ; �6)TXi; VP ); (12)

where VP is the phenotypic variance-covariance matrix, e� = 15 � e16 is the
phenotypic mean and �1; : : : ; �6 are the genetic effects for measurement 1
to 6, respectively.

The simulation is repeated 10,000 times, in each replicate, 400 trios are
generated for analysis. The power of each approach is estimated by the
proportion of the number of times when the test statistic is significant at �
level=0.05 (alpha level=0.01 and 0.001 are also studied, and the results are
very similar). We only report results for MAF p=0.2, as results for other
values are very similar. Since the power of a statistical test heavily depends
upon the true underlying model, we perform our simulations under sev-
eral different models for the genetic effects �1; : : : ; �6. In all the models, the
variances at each measurement are set to �2i = 1; i = 1; : : : ; 6, while the cor-
relation matrix CP is compound symmetry with various correlation values.
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In other words, Cp =

0BBB@
1 � : : : �
� 1 : : : �
...

...
� � : : : 1

1CCCA, where � is the correlation among

different measurements for the same subject. Therefore, we have

Vp =

0BBB@
�1 0 : : : 0

0 �2
. . . ...

... . . . . . . 0
0 : : : 0 �6

1CCCA
0BBB@
1 � : : : �
� 1 : : : �
...

...
� � : : : 1

1CCCA
0BBB@
�1 0 : : : 0

0 �2
. . . ...

... . . . . . . 0
0 : : : 0 �6

1CCCA :
Other correlation structures taken from some actual data set have also been
used but are not reported in this paper since the results are quite similar to
the compound symmetry model.
Model 1: no genetic effect at any measurement point

Under the null hypothesis, there is no genetic association at all (i.e. the
genetic effect is zero for any of the six measurement points), so the pheno-
types are generated from �i = 0, i = 1; : : : ; 6.
Model 2: same genetic effects across all measurement points

In this model, we assume that �i = �h, i = 1; : : : ; 6 , where �h is the
genetic effect size that corresponds to the heritability h2 (Falconer, 1997), i.e.,

�h =
q

h2

2p(1�p)(1�h2) for an additive genetic model. In model 2 and model 3,

h2 is always set to be 0.01.
Model 3: arbitrary effects for different measurement points

Here the values of �1; : : : ; �6 are given by

�j � U(0; 2�h); (13)

where U is the uniform distribution on the interval. Since the mean of the
uniform distribution is �h, the average genetic effect here is also �h, with
the average univariate heritability equal to 0.01.
Consideration of population stratification

In order to study the influence of population stratification on the power
of these approaches, we modify our simulations to include possible popu-
lation substructure. Instead of choosing all 400 trios from the same popu-
lation of MAF p=0.2 and e� = 15 � e115 in equation (12), now we select 200
trios from subpopulation 1 and 200 trios from subpopulation 2 (p1 = 0:1,e�1 = (15 + �1)� e115 in subpopulation 1 and p2 = 0:3, e�2 = (15 + �2)� e115 in
subpopulation 2).
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For model 1, 2 and 3, we consider two extreme cases of possible popu-
lation substructure: �1 = ��h, �2 = +�h for case 1, and �1 = +�h, �2 = ��h
for case 2. For the first case, the correlation between phenotypic means and
MAF of the two subpopulations is positive, which means the false positive
results caused by population stratification are in the same direction as the
true genetic effects. On the contrary, in case 2, the correlation is negative
and the false signals caused by population stratification tend to cancel out
the true genetic effects.

Table 1: Type-I error rates of FBAT-EW and FBAT-Min P under the null

without any population stratification

Correlation 0 0.1 0.6 0.9
FBAT-EW 0.050 0.050 0.052 0.049
FBAT-Min P 0.052 0.049 0.048 0.049

positive population stratification (case 1)

Correlation 0 0.1 0.6 0.9
FBAT-PCM 0.048 0.047 0.054 0.050
FBAT-LC 0.049 0.047 0.052 0.052
FBAT-LCC 0.048 0.049 0.052 0.050
FBAT-EW 0.049 0.049 0.053 0.051
FBAT-Min P 0.050 0.043 0.048 0.052

negative population stratification (case 2)

Correlation 0 0.1 0.6 0.9
FBAT-PCM 0.048 0.050 0.051 0.046
FBAT-LC 0.049 0.046 0.050 0.043
FBAT-LCC 0.049 0.048 0.051 0.047
FBAT-EW 0.050 0.046 0.051 0.052
FBAT-Min P 0.048 0.047 0.054 0.052
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4 Results

Regardless of population stratification, the type-I error rates of FBAT-PCM,
FBAT-LC and FBAT-LCC are all well maintained (Ding et al., 2009). For
various values of the correlation �, the type-I error rates of FBAT-EW and
FBAT-Min P under the null (model 1) are also well maintained (Table 1).

When there is no population stratification, Figure 1 and 4 show the es-
timated power of FBAT approaches, under models 2 and 3, respectively.
When the variances are same, FBAT-LCC and FBAT-PCM are very similar
to each other (Ding et al., 2009), so for simplicity we do not show FBAT-
LCC. From these two figures, we see that FBAT-Min P always has higher
power than Bonferroni correction, under either model 2 or model 3. Fur-
thermore, since FBAT-Min P takes the correlation among traits into account,
its power gain over Bonferroni correction increases when the correlation
� increases. As for FBAT-EW, when the genetic effect sizes are all equal
(model 2), it is more powerful than FBAT-PCM, FBAT-Min P and Bonferroni
correction. FBAT-EW performs only slightly worse than FBAT-LC, which is
basically due to the fact that FBAT-EW is a two-sided test, while FBAT-LC is
one-sided. On the other hand, when the genetic effect sizes differ substan-
tially (model 3), FBAT-EW is no longer a very powerful approach, especially
when the correlation among traits is high.

We find that population substructure can affect the power of these ap-
proaches in either direction. In other words, population substructure can
either increase (positive population stratification, i.e., case 1) or decrease
(case 2 for negative stratification) the power, depending upon whether the
false positive results caused by population substructure are in the same di-
rection as the true genetic effects and which FBAT approach is used. In case
1, the hidden population substructure tends to increase the power of those
weighted FBAT approaches, but not some other FBAT approaches such as
FBAT-EW and FBAT-MinP. In case 2, the hidden population substructure is
expected to reduce the power of all FBAT approaches. In addition, case 2 is
the worst situation whereby population substructure can weaken the signal
of the true genetic association. Therefore, we focus on case 2 to compare the
power of these FBAT approaches under the worst case of hidden population
substructure.

Figure 2 and 5 show the estimated power of these approaches under
model 2 and model 3, respectively, when positive population stratification
(case 1) exists.

By comparing Figure 2 to Figure 1, as well as Figure 5 to Figure 4,
we find that the positive population stratification can slightly improve the
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Figure 1: Estimated power when genetic effect sizes are
same (model 2) and there is no population stratification
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Figure 2: Estimated power when genetic effect sizes are
same (model 2), under positive population stratification
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Figure 3: Estimated power when genetic effect sizes are
same (model 2), under negative population stratification

9

Ding et al.: Impact on FBAT

Published by The Berkeley Electronic Press, 2009



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phenotypic correlation

E
st

im
at

ed
 p

ow
er

Bonferonni
FBAT­PCM
FBAT­LC
FBAT­MinP
FBAT­EW

Figure 4: Estimated power when genetic effects uniformly
distribute (model 3) and there is no population stratification
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Figure 5: Estimated power when genetic effects uniformly
distribute (model 3), under positive population stratification
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Figure 6: Estimated power when genetic effects uniformly
distribute (model 3), under negative population stratification
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power of FBAT-PCM and FBAT-LC, especially under model 2. Since the
false positive results caused by population substructure are in the same di-
rection as true genetic effect, they tends to enhance the overall signal de-
tected by the weighted FBAT approaches, i.e., FBAT-PCM and FBAT-LC. On
the other hand, positive population stratification slightly reduce the power
of FBAT-EW and FBAT-MinP. This is because those univariate FBAT statis-
tics may slightly lose power due to positive population stratification.

Figure 3 and 6 show the estimated power of these approaches under
model 2 and model 3, respectively, when negative population stratification
(case 2) exists.

By comparing Figure 3 to Figure 1, as well as Figure 6 to Figure 4, we
find that the impact on the power of FBAT-PCM and FBAT-LC is substan-
tial. This is due to the fact that both FBAT-PCM and FBAT-LC use the con-
ditional mean model, which might provide poor approximation (or even
approximation in the wrong direction) of the true underlying genetic effects
with the presence of population stratification. An exception is that FBAT-
PCM consistently does well for very high values of �when the genetic effect
sizes are different (model 3). As expected, the impact of population stratifi-
cation on FBAT-Min P and FBAT-EW is very limited, since neither approach
involves the use of the conditional mean model. FBAT-Min P remains a
powerful test with the presence of population stratification, and still holds
a noticeable gain of power compared to Bonferroni correction. FBAT-EW
has the highest power among all the approaches when the genetic effect
sizes are all equal, or the correlation � is very low.

Table 2: Summary of the power of FBAT-EW and FBAT-Min P

without any with positive with negative
population stratification population stratification population stratification

FBAT has good power when �j its power is only slightly its power is only slightly
EW are all equal; but not very affected; has good power affected; the most powerful

powerful when �j are when �j are all equal, approach when either �j
different unless the but outperformed by are all equal or � is low
correlation is low FBAT-PCM and FBAT-LC

FBAT generally a powerful its power is only slightly its power is only slightly
Min P approach, especially when affected; outperformed by affected; remain powerful

effects �j vary; has FBAT-PCM and FBAT-LC under all situations
noticeable power gain over
Bonferroni correction,
especially when � is high
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When the conditional mean model fails to approximate the true genetic
model well, the FBAT approaches which use the conditional mean model
may lose power since their weights are no longer good estimates of the un-
known optimal weights. Theoretically, it is possible to adjust the conditional
mean model for population substructure with approaches such as Eigen-
strat (Price et al., 2006), suggesting that all the FBAT approaches involving
the conditional mean model can maintain their power even when popula-
tion substructure exists. However, in evaluating the impact of population
substructure, remember that we considered a ’worst possible case’, where
the correlation between allele frequency and mean phenotype worked to
negate the true phenotype-genotype association in the population. A cor-
relation in the opposite direction would increase power. In practice, it will
be difficult to predict the sign and extent of any correlation between marker
allele frequencies and traits.

5 Data analysis

We test for the association between SNP rs7566605 and 15 longitudinal mea-
sures of BMI over 48 months for 212 parent-child trios from the Childhood
Asthma Management Program (CAMP) study. SNP rs7566605 is located on
chromosome 2q14.2 near the INSIG2 gene and has been reported to be asso-
ciated with obesity in several populations (Herbert et al., 2006; Lyon et al.,
2007).

Fulker et al. (1999) suggested that the genetic effect of a quantitative
trait could be decomposed into between-family (b) and within-family (w)
components. For family-based trio data, the model can be written as

E(Yij) = �j + �bj � E(XijPi) + �wj � [Xi � E(XijPi)]; (14)

where �bj and �wj are the between-family and within-family genetic ef-
fect sizes, respectively. Note that if there is no population stratification,b�bj and b�wj are both expected to be unbiased estimates of the true un-
derline genetic effect, therefore the model reduces to equation (1). Fur-
thermore, fitting the conditional mean model should give estimates nearly
equivalent to b�bj , since E(X) and X-E(X) are orthogonal in expectation (i.e.
EfCov (E(XjP ); X � E(XjP ))g = 0) [Faloner 1997], assuming an unselected
sample). However, when sampling from a stratified population, even thoughb�wj will remains unbiased, b�bj may be biased. As shown in Table 3, between-
family estimates b�bj and within-family estimates b�wj not only differ greatly
in the values, but also hold opposite signs. In other words, the conditional

12

Statistical Applications in Genetics and Molecular Biology, Vol. 8 [2009], Iss. 1, Art. 17

http://www.bepress.com/sagmb/vol8/iss1/art17
DOI: 10.2202/1544-6115.1398



mean model is no longer a reasonable approximate of the true genetic ef-
fects.

Table 3: Estimators of genetic effect at each time point, based on Fulker
model

Model Between-family components Within-family componentsb�b s:e:(b�b) b�w s:e:(b�w)
BMI-PRE -0.63 0.94 3.15 0.92
BMI-RZ -0.43 0.96 2.98 0.94
BMI-M2 -0.40 0.98 3.15 0.95
BMI-M4 -0.43 0.99 3.08 0.96
BMI-M8 -0.45 1.04 2.88 1.02
BMI-M12 -0.47 1.06 2.89 1.03
BMI-M16 -0.14 1.08 2.81 1.05
BMI-M20 -0.25 1.12 3.01 1.09
BMI-M24 -0.18 1.15 3.09 1.12
BMI-M28 -0.17 1.15 2.80 1.12
BMI-M32 -0.11 1.19 2.90 1.16
BMI-M36 -0.19 1.20 2.76 1.17
BMI-M40 -0.29 1.25 2.69 1.21
BMI-M44 -0.27 1.30 2.47 1.27
BMI-M48 -0.76 1.30 2.39 1.26

Here BMI-PRE is BMI measured at two months before the randomization, BMI-RZ means
BMI measured at randomization, and BMI-M2, M4, � � � represent BMI measured at 2, 4,� � �
months of follow up.

For these data, FBAT-PC, FBAT-PCM, FBAT-LC and FBAT-LCC all fail
to detect the overall genetic association, while FBAT-Min P and FBAT-EW
give significant results. The computation of both FBAT-Min P and FBAT-
EW does not involve the conditional mean model at all, while all the other
approaches use it. Therefore, when hidden population substructure is a
concern, weighted FBAT approaches such as FBAT-PCM, FBAT-LC and FBAT-
LCC may lose their power to detect an existing association, while our new
approach FBAT-EW and FBAT-Min P give significant results.

6 Discussion

In this paper, we evaluate the impact of population stratification on the
family-based association studies. Because of the robustness of univariate
FBAT statistic against population stratification, the false positive rates are
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Table 4: Testing for association between rs7566605 and BMI in CAMP data

P-value
FBAT-PCM 0.58
FBAT-LC 0.99
FBAT-LCC 0.73
Bonferroni correction 0.14
FBAT-EW 0.028
FBAT-Min P 0.022

always well maintained for the longitudinal setting. But the power of FBAT
approaches to detect true genetic association can be either increased or de-
creased by the existing population stratification in the study samples, de-
pending upon the direction of the population stratification bias. For several
FBAT approaches previously introduced to enhance the power of family-
based studies with longitudinal phenotypes, we show that they can lose
their power substantially when negative population stratification tends to
cancel out the true signal of genetic effects. Here we introduce a permutation-
based test FBAT-Min P and an equally weighted combination test FBAT-EW,
both of which remain to be powerful approaches when population stratifi-
cation is present.

As shown in the simulations and the analysis of the CAMP data, both
FBAT-EW and FBAT-Min P do not need to fit the conditional mean model
and are robust against hidden population substructure, so they are very
good approaches to start with, regardless of whether there is a concern of
population stratification. Furthermore, if we expect the genetic effects for
different measurement points to be about the same, FBAT-EW is always a
simple and powerful test. When the genetic effect size differs substantially,
FBAT-PCM is very powerful when the correlation among traits is high, re-
gardless of the presence or absence of hidden population stratification un-
der our setting.

The computation of all these FBAT approaches is straightforward once
you have all the univariate FBAT test statistics. In addition, univariate
FBAT, FBAT-LC and FBAT-Min P have been implemented in the software
package FBAT and is freely available at http://www.biostat.harvard.edu/
~fbat/default.html; FBAT-PC and FBAT-PCM have been implemented in the
software package PBAT and is freely available at http://www.biostat.har
vard.edu/~clange/default.html.
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