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Abstract
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hood ratio test has provoked some contradictory accounts in the literature. In this paper we con-
firm that some previous results are not correct by deriving the asymptotic distribution in one spe-
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the likelihood ratio test statistic in constrained testing problems. It is shown that this method is
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relating to one-sided tests in variance components linkage analysis are discussed.
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1. Introduction 
There are numerous statistical applications for which one-sided tests may be 
justified. Indeed, any quick search of the literature on one-sided tests or 
constrained tests will reveal applications in clinical studies, pharmacokinetics, 
genetic epidemiology and many other fields. This paper is motivated by a 
variance component testing problem that occurs in multivariate linkage analysis. 
In most one-sided situations we have a very simple hypothesis to test, such as 

0 : 0H μ =  vs : 0aH μ > . Here, something like the one-sided t-test is sufficient. 
However, sometimes the one-sided hypothesis is more complex, such as can be 
expressed as special cases of 0 1:H ∈Ωθ  vs 2:aH ∈Ωθ . The statistics available 
for this kind of test  (Silvapulle and Sen 2005) do not necessarily follow simple 
asymptotic distributions. Perhaps the most obvious choice of statistic is the 
constrained maximum likelihood ratio test (CLRT) statistic discussed below. 
Numerous authors, such as Self and Liang (1987), have shown that in some cases 
this statistic asymptotically follows a mixture of chi-squared distributions, while 
in other cases the distribution is more complex. In this paper we discuss some 
results for constrained hypothesis testing that are relevant to multivariate linkage 
analysis.  

In section 2 we briefly review some of the literature on the CLRT. In 
section 3 we suggest a simple and efficient approach to calculating the asymptotic 
significance levels of the CLRT even when the null distribution cannot be 
described as a mixture of chi-squared distributions. We demonstrate that our 
method has a strong computational advantage over another known method when 
small p-values are involved. We then show that the asymptotic distribution may 
be reduced to a hyperspherical integration problem. In section 4, we demonstrate 
our method for the multivariate variance component linkage analysis problem 
(Amos, de Andrade et al. 2001). This model has a particularly complex 
asymptotic distribution. The general consensus seems to be that “this issue 
warrants further detailed attention” (Marlow, Fisher et al. 2003), and, “there is an 
urgent need to characterize the asymptotic distribution associated with these 
multivariate tests” (Evans, Zhu et al. 2004). In a recent paper, Han and Chang 
(2008) have challenged the correctness of several relevant results in the literature. 
They also suggest a fairly simple way of simulating from the asymptotic null 
distribution. In this paper we confirm some of the findings of Han and Chang by 
showing that, under certain restrictive assumptions, analytical results are available. 
When these assumptions are not met, we show that much faster simulation 
methods are available. In section 5 we discuss some philosophical points 
concerning constrained testing in the variance component linkage setting, and 
review our results. 
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2. Asymptotics under Nonstandard Conditions 
By definition, a cone C  with its vertex at 0θ  is a set such that, if C∈x , then 

( )0 0a C− + ∈x θ θ  for all 0a ≥ . We say that a cone ( )0,C Ω θ  approximates a set 

Ω  at 0θ  if: 
( )

( )
0

0,
inf

C
x y o y

Ω
− = −

θ
θ  y∀ ∈Ω  and ( )0inf x y o x

Ω
− = −θ  

( )0,x C∀ ∈ Ω θ . A function ( )f z  is said to be ( )o z  if ( )
0

lim / 0
z

f z z
→

= . The 

above definition of approximating cones was introduced by Chernoff (1954). 
Geyer (1994) has discussed its relation to other approximating cones. The primary 
intuition behind the approximating cone is that, near 0θ , there is a similar shape 
for both ( )0,C Ω θ  and Ω .  We know from the (typical) consistency of the 
maximum likelihood estimate that, with a large enough sample size, estimates of a 
parameter θ  will be very close to the true value 0θ . At this point we may 
substitute ( )0,C Ω θ  for the parameter space Ω . The beauty of a cone is that no 
matter how close we zoom in on the vertex, it looks the same. One fact that falls 
easily out of the definition of an approximating cone is that all cones approximate 
themselves. Furthermore, it is quite obvious that the space of positive semi-
definite matrices is a cone with vertex at the zero matrix (if M  is positive semi-
definite, then so is aM  for all 0a ≥ ). Indeed, the parameter spaces that are 
relevant to the present work are already cones and they do not need to be 
approximated.  

Chernoff (1954) produced one of the original works on this subject. 
Perhaps the most well known work in this area was by Self and Liang (1987). It 
has been shown (Geyer 1994) that the regularity conditions used by Self and 
Liang are not sufficient to guarantee all the results given, but the results still hold 
with corrected regularity conditions. There have been numerous reformulations of 
the basic results presented below under relaxed regularity conditions (Geyer 1994; 
Vu and Zhou 1997; Delmas and Foulley 2007). The results have been extended to 
include the non-identically distributed case (Vu and Zhou 1997; Delmas and 
Foulley 2007). A thorough review of the literature on constrained testing is given 
by Silvapulle and Sen (2005) . 

When some of the parameters lie on the boundary of the parameter space, 
the asymptotic distribution of the CLRT quickly becomes complicated. We first 
reproduce the main result from Self and Liang (1987) and Chernoff (1954). 
However, we assume the regularity conditions used in Theorem 4.4 of Geyer 
(1994). Let θ  be a vector with p elements containing all model parameters, and 
let 0θ  be the actual parameters for the generating distribution of y . Let ( );l θ y  be 
the log-likelihood for the data. Let us define the Fisher information 
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as ( ) ( )2

2 ;E l∂
∂
⎡ ⎤= − ⎣ ⎦θ

f θ θ y . Suppose we are performing a hypothesis test such that 

under the null hypothesis 0∈Ωθ , and under the alternative hypothesis 1∈Ωθ . 
The CLRT statistic is defined as: 

( ) ( )
1 0

2 sup ; sup ;l lλ
∈Ω ∈Ω

⎡ ⎤= −⎢ ⎥⎣ ⎦θ θ
θ y θ y . 

We have the following well-known result: 
 

Theorem 1: Let Z be a multivariate normal (MVN) random variable with 
mean 0θ  and variance ( )1

0
−f θ .  Let 0Ω  and 1Ω  be sets with non-empty 

approximating cones ( )1 0,C Ω θ and ( )0 0,C Ω θ . Then, under certain 
regularity conditions, the asymptotic null distribution of the CLRT is the 
same as the distribution of the likelihood ratio test of ( )0 0,C∈ Ωθ θ versus 

the alternative ( )1 0,C∈ Ωθ θ  based on a single realization of Z. 
 
To restate Theorem 1, the asymptotic distribution of the CLRT statistic is 

equivalent to the distribution of a function of a multivariate random variable ( Z ):  

 ( ) ( ) ( )( ) ( ) ( )( )
0 1

0 0inf infT T

C C
g

θ θΩ Ω∈ ∈
= − − − − −Z Z θ f θ Z θ Z θ f θ Z θ . (1) 

This can be simplified somewhat. Let 1/2f be a matrix such that  1/2 1/2 =f f f  and let 
Z�  be a MVN random variable with mean 0 and variance the identity matrix. 
Theorem 1 then implies that the asymptotic distribution of the CLRT statistic is 
the same as that of: 

 
( ) ( )0 0 1 0

2 2

, ,
( ) inf inf

C C
g

θ θ∈ Ω ∈ Ω
= − − −

θ θ
Z Z θ Z θ

� �
� � �� , (2) 

where ( ) ( ) ( ){ }1/2
0 0 0, | ,i iC CΩ = − ∈ Ωθ f θ θ θ θ� . Note that ( )0,iC Ω θ�  is a cone 

with vertex at the origin. Also note that ( )g i  and ( )g� i  are related by the simple 

identity ( )1/2
0( )g g −= +V f V θ� . 

In many cases the asymptotic distribution turns out to be a mixture of chi-
squared distributions. It is fairly easy to understand this nice behavior when ( )g Z  
involves projections onto a set of flat surfaces in ( )0,iC Ω θ . In fact, it can be 
shown that when testing a hypothesis of the form 0 0:H =θ θ  vs 0 1:H ∈Ωθ , 
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where ( )1 0,C Ω θ  is a piecewise smooth convex cone, the asymptotic distribution 
under the null hypothesis will always be a mixture of chi-squared distributions 
(Takemura and Kuriki 1997). However, deriving the mixing proportions is often a 
difficult task. Furthermore, many realistic situations violate these conditions. For 
example, in variance component linkage analysis it is desirable to use a non-
convex space as the alternative hypothesis. This space is illustrated in Figure 1.b. 
Also, the existence of nuisance parameters may cause the hypothesis to be of a 
different form. In this paper we suggest that a direct derivation or estimation of 
mixing proportions is not necessary. To calculate statistical significance it is easy 
to implement efficient algorithms that do not assume the asymptotic distribution 
is a mixture of chi-squared random variables.  

3. Calculating Statistical Significance  
Method 1: Simple Simulation 
As discussed earlier, the asymptotic distribution may be represented as a function 
( ( )g Z�� ) of standard normal variables. Suppose that f is the distribution function of 
Z� , and S is a likelihood ratio statistic. Then the p-value for S is:  

 ( )
( )

( ) ( )
g S

P g S f d
>

> = ∫
z

Z z z�� . (3) 

The simplest possible approach to finding the asymptotic p-value would 
be to sample from Z�  and find the fraction of samples for which ( )g S>Z�� .  
Various authors have suggested this (Silvapulle and Sen 2005, pp. 78-81). In 
multivariate linkage analysis this has been suggested by Han and Chang (2008). 
With very small p-values, often necessary to allow for multiple comparisons, 
accurate estimates require a large number of simulation samples. 

Other simulation methods have been suggested that calculate mixing 
proportions (Silvapulle and Sen 2005 p 78-81).  However, such methods are not 
applicable when the distribution is not a mixture of chi-squared distributions. 

Method 2: Direction and Length Decomposition 
We now suggest a more computationally efficient method.  We can decompose 
the MVN distribution into two pieces: a directional p-vector /=V Z Z� �  and a 

scalar Z� . Thus =Z Z V� � . V  can be visualized as a point on the unit 

hypersphere, while Z�  is the Euclidian length of Z� . It can be shown that 
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2 2~ dχZ� , where d is the number of elements in θ  and V  has a uniform 
distribution on the surface of a unit hypersphere.  

The function ( )g z�  has some very interesting properties, including being 
continuous. Let ( )0,i iC C= Ω θ� � . The one property that we wish to exploit follows 
(in line 3 below) from the definition of a cone: 

 

0 1

0 1

0 1

2 2

2 22 2

2 22 2

2

( ) inf inf

inf / inf /

inf inf

( ).

C C

C C

C C

g a a a

a a a a

a a

a g

θ θ

θ θ

θ θ

∈ ∈

∈ ∈

∈ ∈

= − − −

= − − −

= − − −

=

z z θ z θ

z θ z θ

z θ z θ

z

� �

� �

� �

�

�

 (4) 

Let dF  be the cumulative distribution function of 2
dχ . Also, define 

( )/ 0 1dF S =  for 0S >  and ( )0 / 0 0dF = . Using this notation, we can express the 
p-value as: 

 

( ) ( )
( )

( )
( )

2

2

( )

( )

( ) ( )

( )

( ) | ( )

1 ( ) .

g

g d

P g S P g S

P g S

E P g S g

E F S g

≥ = ≥

= ≥

= ≥

= −⎡ ⎤⎣ ⎦

V

V

Z Z V

Z V

Z V V

V

� �� �

� �

� � �

�

 (5) 

The following simulation can be performed to calculate the p-value: 

1. Simulate a d-vector from a multivariate normal distribution with mean 0, 
then divide it by its norm to obtain a sample from V . 
2. Calculate ( )1/2

0( )g g= +V f V θ� . Note: this will usually be the most 
computationally demanding step. 
3.  Repeat steps 1 and 2 n times. 
4.  Find the estimated p-value: 

 ( )1ˆ 1 ( ) .n d in
i

p F S g= − ∑ V�        (6) 
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Implementing the simulation in this way can involve significant 
computational gains. Let us denote ( )1 dF S−  as Up  for the unconstrained p-value 
and let p denote the actual p-value.  We point out the following inequality which 
is shown in Appendix A:  

  ( ) ( )ˆ U
n

p p p
Var p

n
−

≤ .    (7) 

As a crude estimate of what we gain in efficiency, we looked at the ratio of the 
variances achieved by using Method 2 (designated ˆnp ) versus that using Method 1 
(designated np� ) : 

 ( ) ( ) 1ˆ / Up p
n n pVar p Var p −

−≤� . (8) 

Now note that ( ) ( )( ) ( )( )1 0Up S p S p S− − →  as S →∞ . In other words, for 

very small p-values (and large S), ( )ˆ nVar p  is a tiny fraction of ( )nVar p� . This 
improvement is purchased at virtually no increased computational expenditure. 

Consider the special case of testing 0 0:H =θ θ  versus  1:aH ∈Ωθ  where 

Ω  is sufficiently regular to define the non-trivial cone ( )1 0,C Ω θ� . In this case we 
may improve upon (8) somewhat. We show in Appendix A that: 

 ( ) ( )
( )1

1 1 2
ˆ / 1 .

1
d

n n

F F p
Var p Var p

p

−⎡ ⎤−⎣ ⎦≤ −
−

�  (9) 

Equation (9) shows again that for very small p-values ( )ˆnVar p  is a tiny fraction 

of ( )nVar p� . These equations, however, show only worst case scenarios and in 
actual practice the benefits of Method 2 may be even greater. In section 4 we 
show an empirical evaluation of the relative variance of the two estimators in 
several situations. 

One potential way to speed up the simulation is this: for each new iV  we 
can use i−V  as another observation. This leads to a negative correlation among 
the observations, thus reducing the variance. Another modification of the basic 
procedure is to implement a stopping rule to determine how many simulations to 
perform. In general, very large p-values do not need to be estimated accurately. 
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Method 3: Numerical Integration Approach 
It is possible to avoid completely the use of Monte Carlo simulation. V  can be 
represented in a hyperspherical coordinate system (Blumenson 1960). This 
involves a transformation from a series of d-1 angles to the d elements of V . So: 

 

( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

11

1 22

1 2 33

1 2 2 11

1 2 2 1

cos
sin cos

sin sin cos
,

sin sin ...sin cos

sin sin ...sin sin

p pp

p p p

v
v
v

v

v

ϕ
ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

− −−

− −

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= =
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

V ##  (10) 

where 1pϕ −  goes from 0 to 2π, and 1ϕ  through 2pϕ −  go from 0 to π. The Jacobian 

for this transformation is: ( ) ( ) ( )2 3
1 2 2sin sin ...sinp p

pJ φ φ φ− −
−= . Using this 

transformation it is possible to evaluate the integral numerically: 

 
( ) ( )( ) 1

( )

1 1
( )

g d

d
p

SP g S E F
g

SF Jd
S g

⎡ ⎤⎛ ⎞
> = −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞

= −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫

VZ
V

V

��
�

�ϕ
ϕ

. (11) 

Here ( )/22 / / 2d
dS dπ= Γ  is the surface area of a d dimensional hypersphere of 

radius 1. We use the integral representation in our proof of theorem 2 below.  

Nuisance Parameters 
Suppose that we divide the parameter space into q parameters to be tested and d-q 
nuisance parameters: T T T⎡ ⎤= ⎣ ⎦θ ψ λ . Similarly, we partition the Fisher 
information matrix as: 

 ( )
T

ψψ ψλ

ψλ λλ

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

f f
f θ

f f
. (12) 
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We wish to test a hypothesis of the form { }0 0 *: :H and∈Ω = = ∈Ωθ θ ψ b λ  

versus { }1 *: :a aH and∈Ω = ∈Ω ∈Ωθ θ ψ λ . We define { }:bΩ = =θ ψ b  for 
notational convenience. In other words, we allow for the nuisance parameters to 
have constraints imposed upon them. This may be reasonable, for example, in the 
variance component setting. The first problem with having a large number of 
nuisance parameters is that the function ( )g Z  involves optimizing two quadratic 

forms each with 2d  terms. Lemma 1, below, states two conditions under which 
we may reduce these quadratic forms to have only 2q  terms. Let 

( ) 1
0

T
ψψ ψλ λλ ψλ

−= −M θ f f f f  be the Schur complement of the block λλf of f , and 

( )
( ) ( )

( )
( ) ( )

, ,
( ) inf inf

b a

T T

C C
h

∈ Ω ∈ Ω
= − − − − −

ψ b ψ b
Y Y ψ M Y ψ Y ψ M Y ψ . Also, define 

( ) ( )

2 2

, ,
( ) inf inf

b aC C
h

∈ Ω ∈ Ω
= − − −

ψ b ψ b
Y Y ψ Y ψ

� �
� � � � . 

 
Lemma 1: If either (a) ( )0 0ψλ =f θ  or (b) ( )* 0, d qC −Ω =θ \ , then 

( ) [ ]( )P h S P g S≥ = ≥⎡ ⎤⎣ ⎦Y ZY Z , where Y  and Z are MVN variables with 

means b  and 0θ  and variances M  and f , respectively. 
 
Proof of Lemma 1 is given in Appendix A. Note that only one of the two 

conditions must be met for the results to follow. One situation where condition (a) 
is met is in the normal variance component setting where the fixed effects are 
being tested. In this situation, the part of the Fisher information corresponding to 
the covariances between the estimators of the main effects and the variance 
components is usually 0 and, as a result, enforcing constraints on variance 
components has no effect on the asymptotic distribution of the test. Note that if 
condition (a) is met, then we may set ψψ=M f . Condition (b) requires that any 
constraints on the nuisance parameters disappear asymptotically.  Condition (b) is 
satisfied when λ  is an interior point of *Ω . 

A second problem with nuisance parameters is that using Theorem 1 and 
Lemma 1 requires us to know the actual parameter values ( 0θ ). One natural 
approach would be replace 0θ  and f in ( ) ( ) ( )( )0 0 0 1 0; ; , , ,g C CΩ ΩZ f θ θ θ  with 

some consistent estimate ( θ̂ , f̂ ). Unfortunately, this will not always work because 
( ) ( )( )0 0 1 0; ; , , ,g C CΩ ΩZ f θ θ  is not a continuous function of 0θ . The 

approximating cone ( )0,C θΩ  may behave badly as a function of 0θ . As a simple 

example, consider the space { }| 0θ θΩ = ≥ . If 0 0θ > , then ( )0,C θΩ = \ ; but 
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if 0 0θ = , then ( ) { }0, | 0C θ θ θΩ = ≥ . This problem has been discussed from a 
different point of view by Wolak (1991). Under the null hypothesis discussed 
above, ψ  is specified and does not need to be estimated, while λ  must be 
estimated. However, ( ),bC Ω b  and ( ),aC Ω b  are not functions of λ  and hence 
the bad behavior of the approximating cone may be avoided when the conditions 
for Lemma 1 hold. Let ˆ

nf be an estimate of ( )0f θ , 1ˆ ˆ ˆ ˆˆ T
n n n n nψψ ψλ λλ ψλ

−= −M f f f f , 

( ) ( ){ }1/2ˆ | ,jn n jS C= − ∈ ΩM θ b θ b  and 
2 2

( ) inf inf
bn an

n S S
h

∈ ∈
= − − −

ψ ψ
Y Y ψ Y ψ� � � � . Also, 

suppose that nLR is an observed test statistic. 
 
Theorem 2: Suppose that ( )0

ˆ P
n ⎯⎯→f f θ  under 0H .  If (a) ( )0 0ψλ =f θ   or  

(b) ( )* 0, d qC −Ω =θ \ , then for all ( )( )0 1 0P gα≤ < − =Z��  

 ( ){ }ˆ ,n n n nP P h LR LR α α⎡ ⎤≥ ≤ →⎣ ⎦Y Y f�
� �   (13) 

where the elements of Y�  are distributed as independent standard normal 
random variables. 
 
A sketch of the proof for Theorem 2 is deferred to Appendix A. Hence 

simulating from ( )nh Y� �  is equivalent asymptotically to simulating from ( )g Z�� . 
This approach has been criticized by some (Silvapulle and Sen 2005, p. 153) 
because the asymptotic distribution may be quite sensitive to the nuisance 
parameters. However, as we show below, there are at least some situations where 
the asymptotic distribution is relatively insensitive to the actual values of the 
nuisance parameters. 
 

4. Multivariate Variance Component Linkage 
Analysis 
Some Model Properties 
First, we present the basic model for multivariate variance component linkage 
analysis (Amos, de Andrade et al. 2001). Let there be t traits (variates), kn  
individuals in the kth pedigree, and K pedigrees. Let kiy  be a 1t×  vector of trait 

values for individual i in pedigree k, and let 1 2 k

TT T T
k k k kn⎡ ⎤= ⎣ ⎦y y y y" . The 
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commonly used genetic model for quantitative traits assumes that kiy  is formed 
by adding together a set of independent random effects. For example, there may 
be a random environmental (including measurement error) effect and a random 
polygenic effect (i.e. the cumulative effect of alleles in many genes acting 
together additively). Because family members share on average a certain 
proportion of their alleles there will be some correlation between the random 
polygenic effects of family members. In linkage analysis, we are interested in 
testing whether a particular locus in the genome is linked to the traits of interest, 
and so we also have a random effect for a single gene of interest. Using genetic 
marker data we may calculate the proportion of alleles shared identical by descent 
(IBD) (Haseman and Elston 1972) for each pair of relatives at a particular 
genomic location. While there are many variations and additional random effects 
suggested in the literature, we will consider only these three random effects: 
linked locus, polygenic and environmental. First we define the following: 

kΠ  specifies the proportion of alleles shared identical by descent for each 
pair of relatives at a particular genomic location. 

kΦ   is a matrix of kinship coefficients. 

kI   is an k kn n×  identity matrix. 
A   represents the covariance matrix for the additive component of variance. 
P   represents a polygenic covariance matrix and  
E   represents an environmental (including measurement error) covariance 

matrix. 
Note that A , P  and E are each t t× covariance matrices containing parameters, 
while kΠ , kΦ  and kI  are k kn n×  matrices containing observed properties of the 
pedigree. In the multivariate variance component model, it is assumed that, given 
the number of alleles shared identical by descent for the pairs of members in each 
pedigree, ky  follows a MVN distribution with covariance matrix  

 k k k k= ⊗ + ⊗ + ⊗C Π A Φ P I E , (14) 

where ⊗  represents the Kronecker product.  
In general, we wish to test for linkage using the model above. This is a 

hypothesis test of the form 0 : 0H =A  vs :a aH ∈ΩA . For example, in the 
univariate case ( 1t = ) we have 0 : 0H a =  vs : 0aH a >  because we expect 
variances to be positive. However, in the multivariate case there are several 
options for aΩ . As we point out in the discussion, each of these options is valid if 
decided upon a priori. First, we may set { }| 0aΩ = ≥A A  where 0≥A  means 
that A  is positive semi-definite. We will refer to this as constraint 1. Constraint 1 
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may be justified by the fact that covariance matrices must be positive semi-
definite by definition. Second, we may choose { }|T t

aΩ = ∈φφ φ \  which we will 
refer to as constraint 2 (Todorov, Vogler et al. 1998; Amos, de Andrade et al. 
2001; Marlow, Fisher et al. 2003). This is equivalent to constraining all the cross-
trait correlations to be 1± . Constraint 2 may be justified when the polymorphisms 
at a given genomic location responsible for the trait are effectively diallelic. Third, 
we may have ( ){ }| 0T

a t ta aΩ = >1 1 , where t1 is a column t-vector of ones (Evans, 

Zhu et al. 2004). This kind of  constraint may be reasonable for repeated measures 
if we believe the gene will have the same effect on all measurements. Each of 
these constraints is illustrated in Figure 1. Wang (2003) and Amos et al. (2001) 
present some other possible constraints. A number of similar tests of variance 
components have been presented in contexts other than linkage analysis (Stram 
and Lee 1994; Stram and Lee 1995). 

 
(a) (b) (c) 

  
Figure 1: Geometric view of the alternative hypothesis in the bivariate case. (a) 
Constraint 1: { }| 0aΩ = ≥A A , (b) Constraint 2: { }|T t

aΩ = ∈φφ φ \ , (c) 

Constraint 3: ( ){ }| 0T
a t t a aΩ = >1 1 . 

 
Under the third constraint, the asymptotic distribution is  a 1 1

2 2:  mixture 
of 2

0χ  and 2
1χ , where 2

0χ  represents a point mass at 0 (Evans, Zhu et al. 2004). 
To our knowledge, the literature does not directly address the asymptotic null 
distribution under constraint 1. However, constraint 2 has prompted some 
confusion and even contradiction within the literature. As mentioned earlier, Han 
and Chang  (2008) have challenged several claims in the literature regarding 
constraint 2.  
 Although pedigrees come in various structures and sizes, it is still possible 
to force the variance component models discussed in the introduction into an 
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independent identically distributed context. We assume that there is an infinite 
population of non-overlapping pedigree structures from which we randomly 
sample. Although the whole human population can be considered as a single 
pedigree, in practice the way pedigrees are sampled can ensure that they are non-
overlapping (Ginsburg, Elston et al. 2006). Thus, the probability ( ), ,k k kP nΠ Φ  is 
not a function of the variance component parameters, and the likelihood function 
is of the form ( ) ( )| , , , ,k k k k k k kk

P y n P n∏ Π Φ Π Φ . In the likelihood ratio, the 

factor ( ), ,k k kP nΠ Φ  will cancel out. We have not proven in this work that the 
multivariate variance component model meets the regularity requirement for 
Theorems 1 and 2. However, our simulation results show the usefulness of our 
approach. In fact, the regularity requirements given by Geyer (1994) require 
global optima. The likelihood that needs to be optimized for our model is not 
convex, and it would be difficult to prove that the global maximum was truly 
achieved. Instead, we depend on the heuristic approach of using multiple starting 
points. 

We have chosen below to enforce the constraint that P  and E  are positive 
definite under both the null and alternative hypotheses. However, we assume that 
the true parameters P  and E do not lie on the boundary of the parameter space, 
and hence these constraints disappear asymptotically. Thus conditions (a) and (b) 
in Theorem 2 are both satisfied. 

We are now ready to define a set of conditions: 
(C1) P  and E do not lie on the boundary of the parameter space. 
(C2) Given the pedigree structure, the data generating process actually 

follows a MVN distribution with ( )k k k kVar = = ⊗ + ⊗y C Φ P I E  

and ( )kiE =y μ . 
(C3) The random variables Π  and Φ  may only take on a finite number of 

possible values. 
Next we define the following space: 

 
( ) ( )min, { | ,

}

for all

and

ε η λ ε

η

Γ = ⊗ + ⊗ + ⊗ ≥

≤

θ Π A Φ P I E Π Φ

θ
 (15) 

Lemma 2: If  (C1) through (C3) are met, then for constraints 1 and 2  
Theorem 1 and 2 may be applied to the variance component likelihood 
ratio test for linkage. Here the likelihood ratio test is defined for arbitrarily 
large η  and for 0ε >  arbitrarily close to 0, and the test statistic is     

( )
( )

( )
( )

1 0, ,
2 sup ; sup ;l l

ε η ε η
λ

∈Ω ∩Γ ∈Ω ∩Γ

⎡ ⎤
= −⎢ ⎥

⎣ ⎦θ θ
θ y θ y . 
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We have not rigorously proven Lemma 2, but a very brief discussion of 
how these conditions may be related to the regularity conditions given by Geyer 
may be found in Appendix B. In fact, the regularity requirements given by Geyer 
(1994) require global optima. The likelihood function for our model is not convex, 
and it would be difficult to prove that the global maximum was truly achieved. 
Instead, we depend on the heuristic approach of using multiple starting points. 
Our simulation results show the usefulness of our approach. 

It is convenient to reparametrize the covariance structure to be 
( ) *

k k k k k= − ⊗ + ⊗ + ⊗Σ Π Φ A Φ P I E , where * = −P P A . Let 

[ ]T T
ij i j j i If j i= + ≠B e e e e , where ie  is the unit vector of length t in the ith direction, 

and let [ ]If i be the indicator function, In this case we can easily derive that, 
conditional on kΠ  and the pedigree structure, the Fisher information for A  and 
the cross parameter information between A  and P* and that between   A  and E  
are respectively: 

 

( )( ) ( )( )

( ) ( )( )

( ) ( )( )

1 1

1 2 1 21 2 1 2

1 1

1 2 1 21 2 1 2

1 1

1 2 1 21 2 1 2

1

1

1

ˆ

ˆ

ˆ .

i i j j

i i j j

i i j j

a a k k k i i k k k j jK
k

p a k k i i k k k j jK
k

e a k k i i k k k j jK
k

tr

tr

tr

− −

− −

− −

⎡ ⎤= − ⊗ − ⊗⎣ ⎦

⎡ ⎤= ⊗ − ⊗⎣ ⎦

⎡ ⎤= ⊗ − ⊗⎣ ⎦

∑

∑

∑

f C Π Φ B C Π Φ B

f C Φ B C Π Φ B

f C I B C Π Φ B

 (16)  

However, [ ] 0k kE − =Π Φ  and therefore 
1 2 1 2

ˆ
i i j jp af  and  

1 2 1 2

ˆ
i i j je af  will converge in 

probability to 0.  
The above formulas show the Fisher information conditional on kΠ  and 

pedigree structure, but 
1 2 1 2

ˆ
i i j ja af  will converge in probability to some value 

1 2 1 2i i j ja af  

that is dependent on the pedigree structures in the population. It may also be of 
interest to know some typical values for 

1 2 1 2i i j ja af . Assume we have a population of 

families containing only a father, mother and two siblings each with a fully 
informative marker. For this population, letting 3 4 4 3

T T= +Δ e e e e , where ie  is the 
unit vector in the ith direction of length 4, the Fisher information is: 

 ( ) ( )1 2 1 21 2 1 2

1 11
8i i j ja a i i j jtr − −⎡ ⎤= ⊗ ⊗⎣ ⎦f C Δ B C Δ B  (17)  
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Alternative Hypothesis Constraint 1 
Constraint 2, as pictured in Figure 1, requires that A  be positive semi-definite. 
Such a constraint is defensible because variances must be positive. To our 
knowledge there is no work suggesting an asymptotic distribution for the 
multivariate linkage model under this constraint. In Theorem 3 we show that in 
one special case the asymptotic distribution is available. We first define one more 
condition: (C4) γ=P E  for some positive scalarγ . 

 
Theorem 3: If  (C1) through (C4) are met, then for an arbitrary number of 
traits the null asymptotic cumulative distribution function (CDF) of the 
multivariate linkage analysis CLRT statistic under constraint 1 is a 
mixture of chi-squared random variables with mixing proportions 
derivable by the recursion given in Kuriki (1993). 
 
Theorem 3 follows immediately from Lemma 2 and Lemmas 3 and 5 in 

Appendix B and the work of Kuriki (1993). In Table 1 we give some of the 
mixing proportions derivable from the recursive formulas in Kuriki (1993). 

Of course, it is not reasonable to assume that γ=P E , and so we might 
expect the asymptotic distribution derived in Theorem 3 to be of only theoretical 
interest.  However, we may still use the methods suggested in section 3 if γ≠P E . 
Our approach requires us to replace the nuisance parameters P  and E with 
consistent estimates. As mentioned earlier, if the distribution is strongly 
dependent on P  and E , then this approach may be subject to some criticism for 
finite samples. We briefly investigate this in Figure 2. We recalculated the 
asymptotic CDF under different possible values for r , where 

 
1

1
r

P
r
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and 
1

1
r

E
r

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

.  (18) 

The results in Figure 2 were obtained from 200,000 simulation samples 
using Method 2 in section 3. We implemented this method in MATLAB and used 
the cutting-plane algorithm suggested by Shaw and Geyer (1997) for the 
optimization. As can be seen, in the cases investigated, the asymptotic distribution 
using different values for P  and E appear to be nearly indistinguishable. While 
these results seem to indicate that Theorem 3 has some practical value, we have 
no guarantee that P  and E will have such a small effect on the asymptotic 
distribution for other pedigree structures, numbers of traits or population 
parameter values. Therefore, we can only recommend using Theorem 3 as a first 
pass approximation. 
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Figure 2: Comparison of the asymptotic distribution of the CLRT statistic for  a 
population of pedigrees containing only a father, mother and two sibs when P  and 
E are parameterized as in equation (18). The CDFs were calculated based on Method 2 
in section 3. (a)  CDF under constraint 1. (b) CDF under constraint 2. (c)  This 
comparison is for constraint 1. The x-axis represents a p-value from the analytical 
formula derived in Theorem 3; The y-axis represents the p-value calculated as in (a). 
(d) This comparison is for constraint 2. The x-axis represents a p-value from the 
distribution derived in Theorem 4; The y-axis represents the p-value calculated as in 
(b). 
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Table 1: Mixing Proportions for Constraint 1 
DF t=1 t=2 t=3 

0 12−  ( ) 1
12 2 2

−
− − ( ) 1

22 2π
−

− −  

1 12−  ( ) 1
2 2

−
 ( )22 2 1− −  

2 0 ( ) 1
2 2

−
 ( ) 1

2π
−

 

3 0 ( ) 1
12 2 2

−
− − 1 1/ 2−  

4 0 0 ( ) 1
2π

−
 

5 0 0 ( )22 2 1− −  

6 0 0 ( ) 1
22 2π

−
− −  

 

Alternative Hypothesis Constraint 2 
Constraint 2, as pictured in Figure 1, requires that A  be of the form Tφφ  
(Todorov, Vogler et al. 1998; Amos, de Andrade et al. 2001; Marlow, Fisher et al. 
2003). This is equivalent to constraining all the cross-trait correlations to be 1± . 
In the bivariate case, Evans (2002) seems to have claimed that the asymptotic 
distribution is 2 21 1

1 22 2χ χ+  while Amos et al. (2001) have claimed that the 
asymptotic distribution is 2 2 21 1 1

0 1 24 2 4χ χ χ+ + . In fact, both of these claims are 
incorrect, although the distribution suggested by Evans closely approximates the 
true asymptotic distribution in the tails for some values of 0θ . Theorem 4 gives 
the asymptotic distribution in one special case, and Figure 3 displays a graphical 
comparison of the two previous suggestions and the true distribution in this 
special case.  
 
 

Theorem 4: If  (C1) through (C3) are met, then the null asymptotic CDF of 
the bivariate ( 2t = ) linkage analysis statistic under constraint 2 is: 

( ) ( ) ( )( ) [ ]/22 2 0zF z z e z If z−= Φ − Φ >  .  

 
Here ( )xΦ  represents the CDF of the standard normal distribution and 

If [.] is the indicator function. Proof of Theorem 4 is discussed in Appendix B. 
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Note that the asymptotic distribution in Theorem 4 does not appear to be a 
mixture of chi-squared random variables. This is precisely what we would expect, 
because the alternative hypothesis is not convex. Figure 3 shows that using the 
distribution suggested by Amos et al. (2001) may be asymptotically quite liberal 
in terms of type 1 error, as may be expected from the simulation results given by 
Amos et al. (2001). This also confirms the work of Han and Chang  (2008). 

As with constraint 1, we investigated the sensitivity of the asymptotic 
distribution to the values of P  and E . Figure 2 shows that the models 
investigated have nearly identical asymptotic distributions. Hence P  and E have 
very little effect, as we may have suspected from the simulation work of Amos et 
al. (2001). 
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Figure 3: Comparison of some suggested distributions to the true asymptotic 
distribution. (a) Plot of the CDF function. (b) The x-axis of this plot represents a 
p-value from one of the suggested distributions; the y-axis represents the p-value 
that would have been calculated using the distribution in Theorem 4. 
 

Empirical Evaluation of Method 2 versus Method 1 
In equation (9) we gave an upper bound for the relative variances of estimation 
Methods 1 and 2. We now give an empirical evaluation of the relative variances. 
Consider the situation that 2= =P E I . We may use the formulas derived in 
Appendix B to easily find the Fisher information in this case. We simulated 
100,000 samples of  V as in Method 2, and in each case we evaluated 
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( )1 ( )dF S g− V�  at a large number of possible values for S.  At each of those 
values for S we estimated the associated p-value and its variance for Methods 1 
and 2. Figure 4 shows the results. As may be seen, the relative variance is much 
better than the upper bound, and for small p-values Method 2 is much better than 
Method 1.  
 

 
Figure 4: Empirical evaluation of the benefit of Method 2. The y-axis is the 
relative variance ( ( ) ( )ˆ /n nVar p Var p� ). The x-axis is the estimated p-value. The 
upper bound is as derived in (9). The lines for constraints 1 and 2 are based on 
100,000 simulations using Method 2.  
 

Simulation Study of Convergence 
To see how large a sample is needed for the statistic to approach the asymptotic 
distribution under the null hypothesis, we performed a small simulation study. 
Pedigrees with 2 parents and 2 siblings were simulated. A fully informative 
marker was assumed. The data were simulated to follow the actual variance 
component model. All simulations were performed using a program written in 
MATLAB release 2007b. For likelihood maximization, A , P and E  were 
constrained to be positive semi-definite using the Cholesky method (Marlow, 
Fisher et al. 2003). 
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For our first set of simulations, we assumed that  2=E I  and P  was either 

2I  or 0 . We let the sample sizes be 25, 50, 100 and 250 pedigrees. We simulated 
200,000 replicates for each situation. Note that when =P 0 , the assumptions used 
in this paper are violated because the nuisance parameters are not allowed to be 
on the boundary of the parameter space. Figure 5 shows the empirical type 1 error 
rates when Theorems 3 and 4 are used to calculate statistical significance. As can 
be seen, when 2=P I  the asymptotic distribution nicely approximates the 
empirical distribution with only around 100 pedigrees. However, when =P 0  the 
type I error rate is unreasonably conservative. We give some additional comments 
on this problem in the discussion. 

In a second set of simulations we parameterized P  and E  as in equation 
(18). for differing values of r. We then calculated the p-values using Method 2 in 
section 3. As stopping rule, for each simulation we tested whether the p-value was 
statistically different from 0.001 at an alpha level of 0.01. To our knowledge, the 
simulation algorithm failed to yield a p-value only once, probably due to a failed 
optimization. Missing values were ignored. For each parameter setup we used 
50,000 simulated replicates. Table 2 shows the results. As can be seen, when r 
comes close to 1, the statistic approaches its asymptotic distribution more slowly. 
Again we see that using the asymptotic method described in this paper leads to 
conservative results when the nuisance parameters are near the boundary. We give 
some additional comments on this problem in the discussion. 

 
Table 2: Type I error rates for various genetic models 
parameterized as in equation (18) when α = 0.001. A value of 1 
represents the theoretically correct Type 1 error. Each cell is 
estimated from 50,000 simulated replicates. 

  Type I  Error 

Constraint Sample 
Size r=0 r=0.25 r=0.5 r=0.75 r=0.95 

1 50 0.32 0.36 0.20 0.20 0.36 
 100 0.38 0.36 0.40 0.32 0.20 
 250 0.82 0.84 0.50 0.28 0.44 
 1000 1.18 1.06 1.18 0.50 0.40 
  

2 50 0.18 0.24 0.44 0.58 0.48 
 100 0.52 0.30 0.46 0.24 0.10 
 250 0.90 0.66 0.64 0.50 0.44 
 1000 1.02 1.06 0.84 0.50 0.50 
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Figure 5: Empirical Type I error for different samples sizes assuming the statistic 
follows the distribution given in Theorems 3 and 4 for: (a) Constraint 1 and 

2= =P E I , (b) Constraint 2 and 2= =P E I , (c) Constraint 1 and 2=E I , =P 0  and 
(d) Constraint 2 and 2=E I , =P 0 . 
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5. Discussion 
There are two possible motivations for a one-sided test. First, we may only be 
interested in the results of the study if the deviation from the null hypothesis is in 
a specific direction. In this case we really have a compound null hypothesis such 
as 0 : 0H μ ≤  vs : 0aH μ > . Second, we may be convinced that the parameter 
could fall on only one side of the null hypothesis. It is this second reason that 
justifies the use of a one-sided test in the variance component setting. We test 

0 : 0H a =  against : 0aH a >  because we have a strong a priori commitment to 
the notion that a , as a variance, must be positive. In the univariate tests 
mentioned above, the one-sided p-value will be half the two-sided p-value if the 
parameter estimate is positive. Hence, one-sided tests cannot be performed after 
peeking at the data. We must justify the one-sided constraint by substantive 
knowledge, and not because it produces a lower p-value. Looking at the estimated 
covariance matrix before choosing a test is not an acceptable statistical procedure. 
In terms of type I error, any alternative hypothesis is defensible when decided 
upon a priori, although it may result in lower power. It is this last point that we 
wish to emphasize in the rather confusing set of possible alternative hypotheses. 

We must make one additional cautionary note about one-sided tests in 
linkage analysis. While each of the constraints suggested above seems intuitively 
reasonable, we cannot say that A  must always be positive semi-definite. It is only 
the total variance that is mathematically constrained to be positive semi-definite, 
and not the individual components of variance. Some bizarre scenarios are 
remotely possible. For example, suppose that there is a gene for contrarianism 
(i.e., family members intentionally seek to differentiate themselves). In such a 
situation, many behavioral traits would have a negative familial correlation 
induced by the locus for contrarianism. We would not be able to detect the 
linkage due to such behavioral traits using a one-sided test.  There are also 
examples where environmental factors such as competition could result in 
negative familial correlations (Verbeke and Molenberghs 2003), but in such cases 
the one-sided test of linkage may still be valid. We also point out that estimation 
and testing are distinct issues. Within the context of estimation it may not be 
advisable to restrict variances to be positive because the accumulation of such 
results across studies may result in upwardly biased estimates (Lynch and Walsh 
1998 pp. 563-564). 

In this paper we have shown that it is possible to evaluate asymptotic 
significance levels using fairly simple methods, even in the absence of analytical 
results. While others (Silvapulle and Sen 2005, pp. 78-81) have discussed similar 
methods, our results are unique in that they are both efficient and applicable even 
to non-convex spaces. Our method may be easily transformed into a numerical 
integration problem. We have also shown that replacing the information matrix 
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with a consistent estimate is sometimes reasonable. With regard to variance 
component linkage analysis, we have shown that analytical formulas for the 
distribution function may be derived that can be used to obtain a first pass 
approximation to the statistical significance. However, we recommend that 
Method 2 above should generally be used and not the analytical formulas. 

In this paper we have investigated a multivariate variance component 
likelihood ratio test that enforces constraints on the nuisance parameters. We do 
not recommend that this statistic be routinely used in practice for two reasons. 
First, when nuisance parameters are too near the boundary convergence to the 
asymptotic distribution may be very slow. A similar observation has been made in 
the univariate case (Shugart, O'Connell et al. 2002). However, in all cases 
simulated, the statistic was conservative. The most natural approach to deal with 
this problem is to stop enforcing constraints on the nuisance parameters. This 
may lead to increased computational difficulties, but it would improve the 
performance of the methods we have suggested. Second, tests of variance 
components that make use of the normal likelihood are not necessarily robust to 
the multivariate normal assumption. This is a well known problem in the 
univariate case (Allison, Neale et al. 1999). Our simulations assumed that the 
multivariate normal variance component model was actually correct. In reality, 
we expect a mixture distribution and many other sources of non-normality. 
Fortunately, there are many ways to make the variance component framework 
robust to the normality assumption (Chen, Broman et al. 2005). In future work we 
plan to address both these concerns by developing a robust score test that does not 
enforce constraints on the nuisance parameters. The asymptotic approach 
developed in this paper may also be used with these robust score tests. 

Appendix A 
Explanation of Equation (7): 
Notice first that: 

 
( )1 0

2

,
inf 0

Cθ∈ Ω
− ≥

θ
V θ

�
 (19) 

because distance measures are greater than 0. Also: 

 
( )0 0

2 2

,
inf 0 1

Cθ∈ Ω
− ≤ − =

θ
V θ V

�
, (20)   

 because ( )0 0,C∈ Ω0 θ� . Putting (19) and (20) together we obtain: 
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 ( ) ( )0 0 1 0

2 2

, ,
( ) inf inf

1.

i C C
g

θ θ∈ Ω ∈ Ω
= − − −

≤
θ θ

V V θ V θ
� �

�
 (21) 

Furthermore, it is clear that 
( ) ( )1 0 0 0

2 2

, ,
inf inf

C Cθ θ∈ Ω ∈ Ω
− ≤ −

θ θ
V θ V θ

� �
, under the very 

general assumption that ( ) ( )0 0 1 0, ,C CΩ ⊂ Ωθ θ� � .  As a result,  

 0 ( ) 1ig≤ ≤V� . (22) 

Now notice that ( )1 dF S x−  is an increasing function because it is a decreasing 

function composed with a decreasing function. Note also that ( )1 0 0dF S− =  by 

definition and ( ) ( )1 1 1d dF S F S− = − . Therefore, from (22) and the fact that 

( )1 dF S x−  is increasing in x: 

 ( ) ( )0 1 ( ) 1d i dF S g F S≤ − ≤ −V� . (23) 

We note that the variance of each simulated distribution is at its maximum 
when all its probability is concentrated at either end of the limits described above.  
That is, its variance is as large as possible when it is distributed as a point mass at 
0 and a point mass at Up . We let ζ  be the amount of probability concentrated at 

Up . Then [ ]ˆn UE p p pζ= = . So / Up pζ = , and 

 ( ) ( )( ) ( ) ( )2 21 0
ˆ .U U

n

p p p p p p
Var p

n n
ζ ζ− − + − −

≤ =  (24) 

Explanation of Equation (9): 
Consider the cone ( )1 0,C Ω θ�  that has vertex at 0. Because it is nontrivial, there 

exists some non-zero vector ( )1 0,C∈ Ωe θ� . We define the cone { }2 | 0a aΩ = >e . 

Define 
2

2 2*( ) infg
θ∈Ω

= − −V θ V θ� . Clearly  ( )2 1 0,CΩ ⊆ Ω θ�  and therefore 

( )2 1 0

2 2

,
inf inf

Cθ θ∈Ω ∈ Ω
− ≥ −

θ
V θ V θ

�
. Thus 

 
( )2 1 0

2 2 2 2*

,
( ) inf inf ( ).

C
g g

θ θ∈Ω ∈ Ω
= − − ≤ − − =

θ
V θ V θ θ V θ V

�
� �  (25) 
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But, because ( )1 dF S x−  is increasing in x, ( ) ( )*1 ( ) 1 ( )d dF S g F S g− ≤ −V V� � . 
Thus  

 ( ) ( )*1 ( ) 1 ( ) .d dE F S g E F S g p⎡ ⎤− ≤ − =⎡ ⎤⎣ ⎦⎣ ⎦V VV V� �  (26) 

However, the test statistic for 0 : 0H =θ  versus  2:aH ∈Ωθ  is asymptotically 

distributed as 2 21 1
0 12 2χ χ+  , and therefore ( ) ( )( )* 1

121 ( ) 1dE F S g F S⎡ ⎤− = −⎣ ⎦V V� . 

Combining this with (26) we get that  ( )( )1
12 1 F S p− ≤  and thus ( )1

1 1 2S F p−≥ − . 
We then have  

 ( ) ( )( )1
11 1 1 2 .U d dp F S F F p−= − ≤ − −  (27) 

Equation (9) then follows by combining (27) with (8). 

  (28) 

Proof of Lemma 1: 
Define ( ) ( )( ) ( )( )1 1

2 2 1 2 1

TT TQ λλ ψλ λλ λλ ψλ
− −= − + − − + −θ Z λ f f Z ψ f Z λ f f Z ψ  and let 

( ) ( ) ( )1 1 1
TQ = − −ψ Z ψ M Z ψ , where 1 2

TT T T⎡ ⎤= ⎣ ⎦Z Z Z  . It is easily verified that 

( ) ( ) ( ) ( )1 2
T Q Q− − = +Z θ f Z θ ψ θ . Thus we see that 

( ) ( ) ( ) ( )
* *

1 2,
inf inf inf

i i

T

C C C C
Q Q

∈ ∈ ∈ ∈

⎡ ⎤− − = +⎢ ⎥⎣ ⎦ψ λ ψ λ
Z θ f Z θ ψ θ , (29) 

where ( )0,i iC C= Ω θ . Under condition (a), ( )2Q θ  is only a function of λ , so 

( ) ( ) ( ) ( )
* *

1 2,
inf inf inf

i i

T

C C C C
Q Q

∈ ∈ ∈ ∈
− − = +

ψ λ ψ λ
Z θ f Z θ ψ θ . Under condition (b) 

( ) ( ) ( )
*

1,
inf inf

i i

T

C C C
Q

∈ ∈ ∈
− − =

ψ λ ψ
Z θ f Z θ ψ . Thus under either condition (a) or (b) 

( ) ( )1h g=Z Z . It is a well known property of the Schur complement ( M ) of the 

block ΨΨf  of f  that 1−M  is the first block entry of 1ˆ−f .  Thus the distribution of 
the first q entries of 1/2

0
− +f Z θ� , where Z�  is a vector of independent standard 

normal random variables, is identical in distribution to that of 1/2− +M Y b�  where 
Y�  is a vector of independent standard normal random variables. Therefore  
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( ) ( )
( )
( )

1/ 2

1/ 2
0

.

P h S P h S

P g S

P g S

−

−

⎡ ⎤≥ = + ≥⎡ ⎤⎣ ⎦ ⎣ ⎦
⎡ ⎤= + ≥⎣ ⎦

= ≥⎡ ⎤⎣ ⎦

Y Y

Z

Z

Y M Y b

f Z θ

Z

�

�

�

� . (30) 

Proof of Theorem 2: 
First we prove that ( ) ( )1/2ˆ

n nh h −= +Y M Y b� � �  is a continuous function of ˆ
nf . Note 

that ˆ
nM  is a continuous function of ˆ

nf  because the matrix inverse is a continuous 

mapping (Lange 2004, p. 31). Also, suppose 1/2ˆ
nM  is the Cholesky decomposition, 

which is also a continuous mapping of  ˆ
nM  (Schatzman and Taylor 2002, p. 295). 

It can be easily shown that 2inf
∈Ω

−
Ψ

x AΨ  is a continuous function of x  and A . 

So 

 ( ) ( ) ( )
2 21/2 1/2 1/2ˆ ˆ ˆinf inf

b a
n n nC C

h −

∈ ∈
+ = − − − − −

Ψ Ψ
M Y b Y M Ψ b Y M Ψ b� � �   (31) 

is a continuous function of ˆ
nf .  

Let ( ) ( ) ˆ, ,n n n nl P h LR LR lβ ⎡ ⎤= ≥ = =⎣ ⎦YB Y f B�
� � . By inspection of equation 

(11), we have ( ) ( )( )( )1/2, 1 /p pl F l h Jd Sβ −⎡ ⎤= − +⎢ ⎥⎣ ⎦∫B M B Y b�
ϕ

ϕ / . Let 

( ) ( ), ,i il l→B B  be a convergent sequence with 0l >  and 0>B . Note that 

( )0 1pF x≤ ≤ , so, by the dominated convergence theorem, ( ) ( ), ,i il lβ β→B B  
and β  is thus continuous for 0l >  and 0>B . A discontinuity at 0l = occurs 
because by our definition ( )/ 0 1pF S =  for 0S >  and ( )0 / 0 0pF = . To fix this 
discontinuity define: 

 ( ) ( )
( )

ˆ0 , 0
,

, 0

n n nP h LR l l
l

l l
γ

β

⎧ ⎡ ⎤> = = ≤⎪ ⎣ ⎦= ⎨
>⎪⎩

Y Y f B
B

B

�
� �

. (32) 

But ( ), lγ B  is fairly clearly a continuous function for 0>B and l∈\ . Also 

( )L
nLR h⎯⎯→ Y� � and ( )0

ˆ P
n ⎯⎯→f f θ .  From Slutsky’s Theorem, 
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( ) ( )( )0
ˆ , , ( )L

n nLR hγ γ⎯⎯→f f θ Y� � . Theorem 2 follows from the definition of 

convergence in distribution. 

Appendix B 
Discussion of Lemma 2: 
For sufficiently large η  and sufficiently small ε  the true parameter will be an 
interior point of ( ),ε ηΓ  and hence this constraint will asymptotically disappear. 

For { }0,1i∈ , ( ),i ε ηΩ ∩Γ is a compact space with bounded derivatives for the 
likelihood up to the 3rd derivative. As mentioned earlier, our problem fits into the 
independent identically distributed framework if we consider pedigree structure 
and IBD values to be random. Geyer (1994) gives four regularity conditions 
(excluding the Chernoff regularity of the cone, which is clearly satisfied in our 
case) for establishing theorem 1. See Theorem 4.4 and the remark at the end of 
section 4 in Geyer (1994). The first regularity condition is the existence of a local 
quadratic approximation of the likelihood. This appears to be obviously satisfied 
in our case. The second condition is termed stochastic equicontinuity. This 
condition is more difficult to verify, but it appears that an application of the 
Equicontinuity Lemma on p. 150 of Pollard (1984) could be used. The third 
regularity condition is the existence of a central limit theorem for the first 
derivative, and this again seems to be fairly obviously satisfied. The final 
condition is the use of a consistent root-K minimizer. Consistency may be 
established for example by Theorem 17 of Ferguson (1996), and the root-K 
minimizer is guaranteed by how we have defined the likelihood ratio. 
 

Let [ ]11 1 21t t t ttvec a a a a× =A " "   and 

[ ]11 1 22t t t ttvech a a a a× =A " "  as defined for example in (Henderson and 
Searle 1979). There exists matrices G  and H  such that vec vech=A G A  and 
vech vec=A H A , again defined for example in Henderson and Searle (1979).  

 
Lemma 3: If 0=A  and γ=P E  for some positive scalar γ ,  then 

( )1 1Tκ − −⎡ ⎤= ⊗⎣ ⎦M G E E G , where M  is the Schur complement of the 

block ΨΨf  of f and κ is some constant dependent upon the population. 
 

Proof of Lemma 3: 
Let τ  represent a random pedigree structure sampled from a population. The 
covariance structure for a given τ  is ( )τ τ τ τ τγ= ⊗ + ⊗ = + ⊗C Φ P I E Φ I E . Let 
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τ τ τ= −ΦΔ Π and [ ]T T
ij i j j i If j i= + ≠B e e e e , where ie  is the unit vector of length t 

in the ith direction. Then: 

( ) ( )
( ) ( )

( ) ( )

1 1

1 2 1 21 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 1 1 1

1 1

1 1 ,

i i j ja a i i j j

i i j j

i i j j

T

i i i i

E E tr

E E tr

tr

vec vec

τ

τ

τ τ τ τ τ

τ τ τ τ τ τ τγ γ

κ

κ

− −

− − − −

− −

− −

⎡ ⎤= ⊗ ⊗⎣ ⎦
⎡ ⎤= + + ⊗⎣ ⎦

⎡ ⎤= ⎣ ⎦

= ⊗

Π

Π

f C Δ B C Δ B

Φ I Δ Φ I Δ E B E B

E B E B

B E E B

   (33) 

where ( ) ( )1 1E E tr
ττ τ τ τ τ τ τκ γ γ− −⎡ ⎤= + +⎣ ⎦Π Φ I Δ Φ I Δ . Line 4 above follows from 

line 9 of Henderson and Searle (1979). Applying the same algebraic steps and 
using the fact that 0E

τ τ =Π Δ , we obtain 
1 2 1 2

0
i i j ja p =f  and 

1 2 1 2
0

i i j ja e =f . Note that  

[ ]11 1 22t ttvec vec vec vec=G B B B B" " . Lemma 3 follows immediately. 
 
Lemma 4: If M  can be factored as ( )1 1T − −⎡ ⎤⊗⎣ ⎦G T T G  and P  and E  are 

not on the boundary of the parameter space, then the asymptotic null 
distribution of the variance component CLRT statistic (λ ) for 0 : 0H =A  

vs. : 0aH ≥A  is equivalent to the distribution of ( ) 2*

1
max ,0

t

i
i

bλ
=

= ⎡ ⎤⎣ ⎦∑ . 

Here ib  represents the eigenvalues of a symmetric random matrix t t×Z� , 
and the elements Z�  are independent with distribution ( )0,1N  on the 

diagonals and ( )1
20,N  on the off diagonals. 

 
 
 

Proof of Lemma 4: 
Let X  and θ  be t t×  symmetric matrices with vech=Z X distributed as a MVN 
random variable with mean 0 and variance 1−M . Then 

27

Morris et al.: Asymptotic Distribution of the Constrained Likelihood Ratio Test

Published by The Berkeley Electronic Press, 2009



( ) ( ) ( ) ( ) ( )
( ) ( )

( )

1 1

1 1

21/ 2 1/ 2 1/ 2 1/ 2 .

T T

T

vech vech vec vec

vec vec

tr

− −

− −

− − − −

− − = − ⊗ −

⎡ ⎤= − −⎣ ⎦
⎡ ⎤= −⎢ ⎥⎣ ⎦

X θ M X θ X θ T T X θ

X θ T X θ T

T XT T θT

 (34) 

Let 1/2 1/2− −=X T XT� .  Note that ( )1 T− = ⊗M H T T H . This may be easily 
verified using line (24) and (20) of Henderson and Searle (1979). Note also that 

( )1/2 1/2vech vech− −= ⊗X H T T G X� . Hence  vechX�  is distributed as MVN with 
mean 0 and variance 

( ) ( ) ( ) ( )1/2 1/2 1/2 1/2var T T T

T

vech − − − −= ⊗ ⊗ ⊗

=

X H T T GH T T H G T T H

HH

�
. (35)  

But THH  is a diagonal matrix with 1 corresponding to the diagonal elements of 
X�  and ½ for the off diagonal elements. 

{ } { }1/2 1/2: 0 : 0S for some− −= = ≥ = ≥θ θ T θT θ θ θ� � � � � . From Theorem 1 and 2, λ  has 

the same asymptotic distribution as: 

( ) ( ) ( ) ( ) ( )

( )
0

22

inf

inf .

T T

S

g vech vech vech vech

tr tr

θ

θ

≥

∈

= − − −

⎡ ⎤⎡ ⎤= − −⎣ ⎦ ⎢ ⎥⎣ ⎦

Z X M X X θ M X θ

X X θ
� �

�� �
 (36) 

Lemma 4 then follows from Theorem 8 in Chapter 2 of Dimedenco (2005). 
Note that Lemmas 3 and 4 show the asymptotic distribution to be identical 

to the traditional multivariate variance component model in one special case.  
 
Lemma 5: If M  can be factored as ( )1 1T − −⎡ ⎤⊗⎣ ⎦G T T G , where 0>T , 

then the asymptotic null distribution of the CLRT statistic ( λ ) for a 
variance component linkage model, testing 0 : 0H =A  vs. : 0aH ≥A , is 

equivalent to the distribution of: ( ) 2*
1max ,0bλ = ⎡ ⎤⎣ ⎦ . Here 1 tb b≥ ≥…  

represent the eigenvalues of a symmetric random matrix t t×X� , and the 
elements Z�  are independent with distribution ( )0,1N  on the diagonals 

and ( )1
20,N  on the off-diagonals. 
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Proof of Lemma 5: 
Define { } { }1/2 1/2 | |T t T tS − −= ∈ = ∈T φφ T φ φφ φ� \ \ . Following the same steps as 
in Lemma 3, we have: 

( ) ( ) ( )( )
( )( ) ( )

22

2 42 4

1

2

1

inf sup

sup supsup

sup 0 .

t

t

T T T

S

T T T

r

T
T

T

g tr tr tr tr

r r

I

θ∈ ∈

=∈

=

⎡ ⎤ ⎡ ⎤= − − = − ⎣ ⎦⎢ ⎥⎣ ⎦

= − = −

⎛ ⎞
⎡ ⎤= >⎜ ⎟⎣ ⎦

⎝ ⎠

φ

Vφ

V

X X X θ Xφφ φφ φφ

φ Xφ φ φ V XV V

V XV V XV
V V

� �
\

\

�� � � ��

� �

� �

. 

Lemma 5 follows from this. 
 

Sketch of Proof for Theorem 4: 
By using Lemmas 3 and 5 we may conclude that the asymptotic distribution is a 
function of the maximum eigenvalue of a random matrix. The eigenvalue 
distribution has been given in numerous places, such as Amemiya, Anderson et al. 
(1990). The distribution function for 2t =  is:  ( ) ( )2 21

1 2 1 22exp / 2b b b b π⎡ ⎤− − +⎣ ⎦ . 

It is a fairly straightforward application of calculus to derive the distribution in 
Theorem 4 using a symbolic computational system such as Mathematica. 
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