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Abstract

A balanced pattern in the allele frequencies of polymorphic loci is a potential sign of selection,
particularly of overdominance. Although this type of selection is of some interest in population
genetics, there exists no likelihood based approaches specifically tailored to make inference on
selection intensity. To fill this gap, we present Bayesian methods to estimate selection intensity
under k-allele models with overdominance. Our model allows for an arbitrary number of loci and
alleles within a locus. The neutral and selected variability within each locus are modeled with cor-
responding k-allele models. To estimate the posterior distribution of the mean selection intensity
in a multilocus region, a hierarchical setup between loci is used. The methods are demonstrated
with data at the Human Leukocyte Antigen loci from world-wide populations.

KEYWORDS: overdominance, heterozygote advantage, balancing selection k-allele models, Bayesian
inference

∗Erkan Ozge Buzbas is supported both by NSF Grant DEB-0515738 and NIH Grant P20
RR016454 from the INBRE Program of the National Center for Research Resources. Paul Joyce
is supported in part by NSF Grant DEB-0515738. Zaid Abdo is supported by COBRE/NCRR
1-P20 RR016448.



1 Introduction
Selection reshapes patterns of variation in the genome leaving its signature on al-
lele frequencies. Different selective mechanisms produce a variety of patterns.
A balancing selection pattern arises when heterozygous genotypes are favored, a
mechanism known as overdominance (see [Maruyama, 1981] and references therein
for background). Contrary to mechanisms which work by eliminating the genetic
variability, overdominance actively maintains allelic polymorphism in populations.
Consequently, exceptional levels of polymorphism are expected to mark prototypi-
cal loci under overdominance. In this paper, methods to estimate selection intensity
in such genomic regions are presented.

While mathematically well grounded frameworks have been advanced to model
overdominance, equally well grounded statistical methods, linking the observed
patterns of variability to the estimates are yet to be developed. This inference prob-
lem has some unique aspects. A notable one is that both elevated mutation rates
and selection promote genetic diversity. This fact implies that allele frequencies re-
shaped by both processes do not carry distinctive information about the respective
parameters. In statistical terms, parameters representing mutation and selection are
unidentifiable. Another point arises in estimation. A relatively detailed and well un-
derstood class of population genetic models that can accommodate overdominance
is k-allele models with selection [Watterson, 1977, Wright, 1949]. Nevertheless, it
has been shown that the maximum likelihood estimates cannot be reliably coupled
with bootstrap to assess the error of estimates under k-allele models with selection
[Buzbas and Joyce, 2009]. Intensive resampling of the allele frequency space cre-
ates a numerical instability, which causes the estimates to be both unreliable and
inaccurate. Therefore, obtaining good interval estimates is a challenge. Further,
polymorphic systems may span a number of genetic loci, sometimes with large
number of alleles. This makes the scalability of computational methods an issue.
To our knowledge, there exists no likelihood based methods that can handle data
from multiple polymorphic loci to make inference on the strength of overdomi-
nance. Our main contribution is to provide such methods which overcome all the
aforementioned problems.

We alleviate the problem of identifiability by defining two classes of “alleles”
which capture two types of variation, “neutral” versus “selected”. We build two
classes of k-allele models. One to identify plausible mutation rates using the neutral
variation. Another to use this information and the selected variation to recover
the signal due to overdominance. We solve the instability issue in estimation by
taking a Bayesian view. Since posterior inference fixes the data and searches only
the parameter space, it avoids pitfalls arising due to resampling of the data space.
Our model can accommodate arbitrary number of loci and alleles. This flexibility

1

Buzbas et al.: Bayesian Methods for Overdominance

Published by The Berkeley Electronic Press, 2009



allows us to obtain estimates of mean selection intensity for groups of loci using a
hierarchical model setting.

As a real data application we consider the polymorphism in the Major Histo-
compatibility Complex (MHC) region of vertebrates. In humans, each major MHC
locus has sufficient variability to be a good candidate for overdominance. How-
ever, there is extensive functional similarity and cooperation of molecular prod-
ucts encoded by different MHC loci. In such systems, handling information from
the whole group of loci is a reasonable first approximation for an assessment of
the intensity of selection in the region. Methods are demonstrated using Human
Leukocyte Antigen data from world-wide populations. Data sets published in the
Proceedings of the 13th International Histocompatibility Workshop and Conference
(see [Meyer et al., 2007] and references therein) are analyzed across loci for signals
of overdominance.

2 Model
The k-allele model with symmetric overdominance is described using a Wright-
Fisher population (see [Donnelly and Kurtz, 1999, Ethier and Griffiths, 1987, Ethier
and Kurtz, 1993, Ewens, 2004] for background). It assumes a panmictic population
of N diploid individuals at a non recombinant locus with non overlapping genera-
tions. There are k possible alleles. Each generation 2N genes are randomly paired to
form N gene pairs or genotypes. Thus, (assuming large N) the genotype frequency
of AmAl will be 2xmxl . The genotypes are then sampled to form the next generation.
The probability of sampling a genotype is proportional to its fitness, wml = 1+ sml,
with sml = 0 if m 6= l and sml = −s, (s > 0) otherwise. A randomly chosen allele
within each sampled genotype is subjected to mutation with probability u before it
is included into the next generation’s allele pool. This process is Markovian and
there exists a stationary distribution of the allele frequencies, x = [x1 ... xk], given
by

(1) f (x|θ ,σ) =
e−σ ∑

k
i=1 x2

i

c(θ ,σ)

k

∏
i=1

x(θ/k−1)
i

where θ = 4Nu, σ = 2Ns are mutation and selection parameters and

(2) c(θ ,σ) =
Γ(θ/k)k

Γ(θ)

∫
· · ·
∫

e−σ ∑
k
i=1 x2

i f (x|θ)dx

is the normalizing constant. Efficient numerical methods to compute c(θ ,σ) are
given in [Genz and Joyce, 2003] and [Joyce et al., 2009]. Here, f (x|θ) is the
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stationary distribution under neutrality which is appropriate when all genotypes
have equal fitness. It can be obtained as a special case of equation 1 by setting
σ = 0, which gives

(3) f (x|θ) =
Γ(θ)

Γ(θ/k)k

k

∏
i=1

x(θ/k−1)
i .

In the next two subsections, we describe our approach to jointly estimating θ ,σ
using both equations 1 and 3, with selected and neutral variability respectively.

2.1 Allelic Variability
The data from single locus are summarized in Table 1. The first column identifies
selectively distinct alleles, k of them in total. These alleles differ by a non syn-
onymous mutation at least at one site in their sequence and constitute the “selected
variation”. Each line in the second column gives the frequency vector of neutral
variants, for the corresponding selectively distinct allele. Elements of a vector dif-
fer from each other by synonymous substitutions only. For example, the ji neutral
variants associated with the ith allele in the first column are denoted by [xi1 ... xi ji].
These alleles are subject to the same selection and thus differ from each other by
a “neutral” substitution. The third column gives the frequency of selected alleles
which are then collected in the vector x = [x1 x2 ... xk]. Finally, in the last column are
the normalized frequencies of neutral variants, to be used with the neutral model.
These are collected in the vector of vectors Y.

As we justify in section 5, if only x is available, θ and σ are statistically uniden-
tifiable. This problem can be circumvented however, by observing that variation
encapsulated in Y is reshaped by mutation only and it can be used to extract in-
formation about θ . The variation in x on the other hand, can be used to extract
information about both parameters. The two types of data, x and Y are modeled as
follows.

2.2 Single Locus Model
The neutral variation does not affect fitness, hence it is subject to equation 3. As-
suming a constant mutation rate within a locus, Appendix A shows that the joint
likelihood of the allele frequencies can be written as

(4) P(Y|θ) ∝

k

∏
i=1

f (yi|θ).

3

Buzbas et al.: Bayesian Methods for Overdominance

Published by The Berkeley Electronic Press, 2009



Table 1: Partitioning the allelic variability at a locus.

Number of Frequency of Frequency of Normalized frequency
selected alleles neutral variants selected alleles of neutral variants

1 [x11 ... x1 j1] x1 = ∑
j1
i=1 x1i y1 = [x11 ... x1 j1 ]/x1

2 [x21 ... x2 j2] x2 = ∑
j2
i=1 x2i y2 = [x21 ... x2 j2 ]/x2

· · · ·
· · · ·
· · · ·
k [xk1 ... xk jk ] xk = ∑

jk
i=1 xki yk = [xk1 ... xk jk ]/xk

Vector of selected allele frequencies x = [x1 x2 ... xk].
Vector of vectors for neutral allele frequencies Y = [y1 y2 ... yk].

Using Bayes’ rule we obtain

(5) P(θ |Y) ∝ P(Y|θ)P(θ),

where P(θ) is a prior for the mutation parameter.
On the other hand, the selected variation results from fitness differences and

under overdominance it follows equation 1. Denote the likelihood by P(x|θ ,σ),
which is the density in equation 1 evaluated at the data x as a function of θ ,σ .
Assuming the prior independence of θ ,σ and using Bayes’ rule we link neutral and
selected models by

(6) P(θ ,σ |x,Y) ∝ P(x|θ ,σ)P(θ |Y)P(σ)

where P(σ) is prior for the selection parameter. In this way, the information ob-
tained using the density in equation 3 and the data Y are fused with that from equa-
tion 1 and x. In practice, we first estimate the posterior distribution of the mutation
parameter, P(θ |Y) = P(Y|θ)P(θ), then use this information to obtain the posterior
in equation 6. The second analysis is still joint estimation, that is, our view of the
mutation parameter from the first step is not fixed but subject to re-evaluation using
the new evidence. Throughout we use proper uniform priors with diffuse bounds
both for θ and σ .

2.3 Extension to Multiple Loci
To extend the single locus model to multiple loci we adopt a hierarchical normal
model as a robust choice (see [Bustamante et al., 2002] for an application in popula-
tion genetics and [Gelman et al., 2004] pp. 74-77 for a detailed treatment in general
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settings). Given i = 1,2, ...,m loci, we assume that selection parameters σi are nor-
mally distributed with group specific common mean µ and variance τ. Conditional
on the normal distribution, the process at each locus is identical, corresponding to
a (conditionally) independent Wright-Fisher population. From the Bayesian per-
spective, the normality has the interpretation of a prior on the selection parameters.
Next, we derive posterior distributions of the mutation and selection parameters.

There are m conditionally independent posteriors, one for each selection pa-
rameter. Let xi and Yi denote the selected and the neutral frequencies for ith locus.
Appendix B shows that the conditional distribution of σi and θi are given respec-
tively by

(7) P(σi|xi,θi,µ,τ) ∝ P(xi|θi,σi)P(σi|µ,τ),

(8) P(θi|σi,xi,Yi) ∝ P(xi|θi,σi)P(Yi|θi)P(θi).

We assign diffuse priors to hyperparameters. We use a uniform distribution on µ

and an inverse chi-squared distribution on τ, which is conjugate for the normal
model variance [Gelman et al., 2004]. We write, τ ∼ Inv− χ2(ν0,τ0) where Inv−
χ2 denotes an inverse χ2 distribution. Prior parameters are chosen so that this
distribution is uninformative (i.e., large τ0 and small ν0). The joint posterior for
(µ,τ) is given by

(9) P(µ,τ|σσσ) ∝
1

τ(m+ν0+2)/2
e−

∑
m
i=1(σi−µ)2−ν0τ0

2τ ,

where σσσ = [σ1 ... σm]. The total number of parameters to be estimated is 2m + 2,
mutation and selection parameters for 2m loci in addition to µ,τ. In particular, our
interest lies with µ, the group specific mean selection parameter.

The above treatment of the normal hierarchical model is a common one. How-
ever, the hard to compute integration constant in the stationary distribution of the
allele frequencies creates difficulties in sampling the target posterior distributions.
Below we present algorithms to accomplish this task.

3 Methods

3.1 Single Locus
The posterior distribution of θ under the neutral model and the joint posterior distri-
bution of (θ ,σ) under overdominance are obtained with the following (Metropolis-
Hastings) algorithms respectively [Hastings, 1970, Metropolis et al., 1953].
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Algorithm 1

1. Start with an arbitrary initial value, θ (0).

2. Generate θ ∗ independently, from θ ∗ ∼ Unif(0,θmax) where θmax is a fixed
constant.

3. Generate U ∼ Unif(0,1).

4. Set θ (1) = θ ∗ with probability α = min
{

1,∏k
i=1

f (yi|θ∗)
f (yi|θ (0))

}
.

5. Iterate from step 2.

Algorithm 2

1. Start with arbitrary initial values (σ (0),θ (0)).

2. Generate (θ ∗,σ∗) independently, from θ ∗ ∼ P(θ |Y) and σ∗ ∼
Unif(−σmax,σmax) where σmax > 0 is a fixed constant.

3. Generate U ∼ Unif(0,1).

4. Set σ (1) = σ∗, θ (1) = θ ∗ with probability α = min
{

1, f (σ∗,θ∗|x,Y)
f (σ (0),θ (0)|x,Y)

}
.

5. Iterate from step 2.

If diffuse limits for θmax and σmax are used, the priors will be uninformative.

3.2 Multiple Loci
Under the hierarchical model of section 2.3, a relatively easy strategy to simulate
from the joint posterior distribution of the parameters is as follows [Bustamante et
al., 2002, Gelman et al., 2004]:

1. Simulate τ from its marginal posterior distribution and µ from its conditional
distribution given τ .

2. Given the values of the hyperparameters and the data, generate the selection
and mutation parameters for each locus from their conditional distributions
respectively.
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To perform Step 1 we exploit

(10) P(µ,τ|σσσ) = P(µ|σσσ ,τ)P(τ|σσσ).

The posterior distribution of the mean selection parameter conditional on τ is given
by (µ|τ,σσσ) ∼ N(σ̄ ,τ/m), where σ̄ denotes the mean of selection parameters and
m is the number of loci. The marginal distribution of the variance is given by

(τ|σσσ)∼ Inv−χ
2(ν0 +m,

ν0τ0 +(m−1)sσσσ

ν0 +m
),

where sσσσ is the sample variance of selection parameters.
The posterior distributions of θ and σ to be sampled in Step 2 do not have fa-

miliar forms and simulating directly from these conditionals is not possible with
standard methods. One way to sample them is via the inverse method using em-
pirical cumulative distribution functions evaluated on a grid, but this is computa-
tionally expensive under k-allele models. In the rest of this section we describe
efficient methods to sample from these distributions. These methods are embedded
in a Gibbs sampler including all the parameters and hyperparameters.

We start with the selection parameter. Using equation 7 without subscripts for
notational convenience, the conditional distribution of σ can be written as

(11) P(σ |x,θ ,µ,τ) ∝
e−σFG(θ/k−1)

c(θ ,σ)
e−(σ−µ)2/2τ

where F = ∑
k
i=1 x2

i ,G = ∏
k
i=1 xi. Completing the square and collecting the exponen-

tial terms we get

(12) P(σ |x,θ ,µ,τ) ∝

[
1√
2πτ

e−
(σ−(µ−τF))2

2τ

][
1

c(θ ,σ)

]
.

The first term on the right is the familiar normal density with mean µ − τF and
variance τ. The second term is a normalizing constant from the stationary distribu-
tion under selection which we know how to compute numerically [Genz and Joyce,
2003, Joyce et al., 2009]. To sample the density in equation 12 we use a result
due to Damien et al. [Damien et al., 1999]. Put in our context, the result states
that if c(θ ,σ) is invertible and non-negative, then there exists a Gibbs sampler for
P(σ |x,θ ,µ,τ). The condition is satisfied since c(θ ,σ) > 0 for all θ ,σ and it fol-
lows from equation 2 that c(θ ,σ) is a decreasing function in σ for fixed θ . To build
the Gibbs sampler, an auxiliary variable U is introduced such that the conditional
distribution U |σ is uniform on (0,c(σ ,θ)−1). On the other hand, the conditional
distribution σ |U is the normal distribution given in equation 12, restricted to the set

7

Buzbas et al.: Bayesian Methods for Overdominance

Published by The Berkeley Electronic Press, 2009



Bσ = {σ : c(θ ,σ)−1 > u}. Hence, the conditional of σ is a truncated normal with
truncation point updated at each iteration of the Gibbs sampler. The truncation is
from the left and for strong selection the set Bσ consists of large values of σ . This
involves drawing from extreme tails of a normal distribution, a difficult feat using
the standard inverse method due to the cumulative distribution function approaching
to unity. We circumvent this problem using an accept-reject algorithm that is effi-
cient for hard to draw values from truncated normal distributions [Geweke, 1991].
The choice of the instrumental distribution depends on the truncation point. For the
hard to draw region described above a truncated exponential distribution with rate
min(Bσ ) on σ > min(Bσ ) is used, where min(Bσ ) is the truncation point.

The posterior distribution of the mutation parameter, θ , is given by

(13) P(θ |x,Y,σ) ∝
G(θ/k−1)

c(θ ,σ)
P(Y|θ)P(θ).

To obtain a workable form we fit a gamma distribution (with parameters λ ,α), to
P(θ |Y) = P(Y|θ)P(θ). After some algebra we get

(14) P(θ |x,σ ,λ ,α) ∝

[
(λ − logG/k)αθ α−1e−(λ−logG/k)θ

Γ(α)

][
1

c(θ ,σ)

]
.

The first term on the right is a gamma density with parameters λ − logG/k and
α, whereas the second term is again the normalizing constant of the density under
selection. Similar to the case of σ , one way to sample the posterior distribution of
θ is by first finding the restriction set for θ and then drawing from the truncated
version of the gamma given by the first term of equation 14. There exist efficient
accept-reject algorithms to sample a truncated gamma density to obtain draws in
this way [Dagpunar, 1978, Phillippe, 1997]. Here we opt for an alternative, the
inverse cumulative distribution function method coupled with a truncated exponen-
tial density [Damien and Walker, 2001]. There is little difference between the two
methods from computational point of view. We let Bθ = {θ : θ α−1c(θ ,σ)−1 > u}.
Now, generating from the posterior distribution of θ is equivalent to generate from
P(θ |λ ,x) = (λ − logG/k)e−(λ−logG/k)θ I(θ > min(Bθ )), which is a truncated ex-
ponential distribution with parameter (λ − logG/k). We use the inverse method to
generate θ by

θ =− log(U/(λ − logG/k))/(λ − logG/k)+min(Bθ ),

where U ∼ Unif(0,1).
To sample posterior distributions of all the parameters and hyperparameters we

setup a Gibbs sampler as follows.
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Algorithm 3

1. Start with initial values for the parameter vector

µ
(0),τ(0),σσσ (0) = [σ (0)

1 , · · · ,σ (0)
k ],θθθ (0) = [θ (0)

1 , · · · ,θ (0)
k ].

2. Iterate for all i :

(a) Draw u = U from Unif(0,1) and find the set

Bσ = {σ : c(θ (0)
i ,σ)−1 > uc(θ (0)

i ,σ
(0)
i )−1}.

(b) Sample σ
(1)
i ∼ T N

(
(µ(0)− τ(0)Fi),τ(0)

)
where TN denotes a truncated

normal distribution with truncation point given by min(Bσ ).

(c) Draw u = U from Unif(0,1) and find the set

Bθ = {θ : θ
α−1
i c(θi,σ

(0)
i )−1 > u(θ (0)

i )α−1c(θ (0)
i ,σ

(0)
i )−1}.

(d) Draw u =U from Unif(0,1) and find θ
(1)
i =− log(u/(λ−logG/k))/(λ−

logG/k)+min(Bθ ).

3. Given σσσ (1), sample from τ ∼ Invχ2(m−1,s
σσσ (1)).

4. Given τ(1), sample from µ ∼N(σ̄ (1),τ(1)/m), where σ̄ (1) is the sample mean
of σσσ (1).

5. Iterate from Step 2.

Before moving to specific examples let us recapitulate the above procedures.
Given a set of loci, considered as a group for purposes of estimating the intensity
of selection under overdominance, we adopt the following strategy.

1. Identify neutral and selected frequencies at each locus as defined in table 1.

2. Use neutral variation and Algorithm 1 to construct a prior view of the muta-
tion parameter at each locus.

3. Use this prior, selected variation and Algorithm 3 to sample the posterior
distribution for the mean and variance of the selection parameter for each
group.
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4 Method Validation and Examples

4.1 Simulations
The focus of our simulations is two fold. First, we explore the effect of the dis-
tribution of information among loci on the estimates of µ. Second, we assess the
amount of data required to obtain reasonable error bounds on µ under appreciable
selection. In the same context, we also analyze the simulated data with fixed θ , to
assess the quality of joint estimation with respect to the known mutation parameter
case.

Consider data sets with

(m,k) = {(3,32) , (4,24) , (6,16) , (8,12) , (12,8) , (16,6) , (24,4) , (32,3)}

all generated under σ = 100. Each data set has 96 allele frequencies in total, how-
ever, the organization of information is quite different. We simulated thirty repli-
cates under each parameter combination and obtained posterior distributions as ex-
plained in Algorithm 3. Credible intervals for µ show that data sets with fewer
alleles distributed in many loci yield smaller variance estimates in comparison to
those with large number of alleles distributed over a few loci (figure 1). This result
is not totally unexpected and it can be interpreted as a realization of the fact that data
from different loci are treated as (conditionally) independent. In other words, an al-
lele at a new locus has more information (due to independence) than an additional
allele within a locus (where the frequencies are correlated).

As can be deduced from the analysis just presented, single locus data are not
expected to provide precise estimates. Note that, a multivariate x is actually sample
of size 1 for each locus. Combined information from multiple loci on the other
hand, is expected to improve the precision considerably. Accordingly, we now
fix k and turn to answer how many loci yield a reasonable precision on the mean
selection parameter. The data have m = 5, 10, 20, 25, 30, k = 10 and σ = 100.
The improvement in precision with the number of loci are illustrated as the mean
of thirty replicates in terms of 95% credible intervals and coefficient of variation in
µ . A comparison of these intervals with corresponding intervals from the analysis
with fixed θ show very little difference (figure 2). Hence, prior distributions of θ

obtained using neutral variation are pretty informative and do an excellent job in
recovering information about individual mutation parameters.

4.2 Human Leukocyte Antigen
As an application of the methods we consider data from the Human Leukocyte
Antigen (HLA) loci, a most intensively studied region of the human genome. HLA
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Figure 1: 95% credible intervals of µ for data sets with m = 3, 4, 6, 8, 12, 16, 24, 32 loci
and k = 32, 24, 16, 12, 8, 6, 4, 3 alleles respectively, all generated under σ = 100. For
each parameter vector the mean credible interval based on thirty replicates (black) and ten
individual intervals are shown (shades). Interval lengths for means are given on top.

genes code for molecular products that regulate and control immune system func-
tions. High levels of genetic variability is observed in these genes. Complex adap-
tive processes that resulted in diversification of functional regions such as HLA are
yet to be resolved [Black and Hedrick, 1997] and the astounding1 variability in these
regions has many implications. A widely stated hypothesis is that the high genetic
variability at HLA is a result of overdominance. The molecular products coded by
HLA help detect foreign agents such as pathogens, bacteria, virus etc. Briefly, these
molecular products are attached on the cell surface and they either remain inactive
if they recognize an agent as “self” (i.e., produced by the body itself) or signal to the
immune system if they recognize it as “non-self”. Higher genetic variability is pro-
moted since the production of different molecules gives an opportunity to recognize
a wider range of non-self pathogenic agents. Therefore, heterozygous individuals
are hypothesized to have a selective advantage over homozygous ones.

1As of May 2008, 2128 Class I, 954 Class II HLA alleles [Robinson et al., 2003]. IMGT/HLA
database reports
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Figure 2: The decrease in 95% credible intervals of µ with m. For all data k = 10 and
σ = 100. Interval estimates from joint estimation (solid lines) and fixed θ estimation (dotted
lines) show little difference. Coefficient of variation for each µ from joint estimation is
given on top of the corresponding interval.

There exist analyses of single locus HLA data sets in the literature aiming at es-
timating the selection intensity from allele frequency data. For example, Muirhead
and Slatkin [2000] analyzed large data sets of HLA from world wide populations
for signals of balancing selection. Their model is essentially the same as the single
locus model presented in this paper, however, they used simpler estimators of selec-
tion intensity since current methods and computational power were not available at
that time. Here, we use some of the data on HLA loci provided by the Proceedings
of the 13th International Histocompatibility Workshop and Conference [Meyer et
al., 2007] to illustrate our methods. We use data from three Class I loci (i.e., A, B
and C) and two Class II loci (i.e., DRB and DQB) consisting of three geographical
populations: European, South American and Sub-Sahara African. The most poly-
morphic of these is the Sub-Sahara African population, with an exceptional vari-
ability both in neutral and selected variation, whereas the least polymorphic is the
South American population (Table 2). We analyze the data using the hierarchical
model with the goal of estimating the mean selection intensity in the HLA region of
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Table 2: The HLA data (modified from 13th Histocompatibility workshop proceedings
[Meyer et al., 2007]). Only loci that provide sufficient variation at synonymous level are
used. Populations/Loci not used for the analysis are indicated by (*). The first figure in
each cell is the number of serologically differing alleles (selected variability). The neutral
variation is given parenthetically: an denotes that there are n groups with a neutral alleles
each.

Pop./ Locus A B C DRB DQB
European 17,(2,3) 28,(24,3) 13,(24,3) 13,(27) 5,(22)

South American 9,(2) 10,(23) 7,(23) 10,(2) *
Sub-Sahara African 21,(22,32) 30,(25,32) 14,(25,3,4) 13,(28,3) 5,(25,3)

the genome, for each of these populations. Since there exists sufficient variability
at serotype groups, we assume that selection acts at the antigen level and identify
the selected alleles accordingly. High variability in the neutral data for each locus
provided informative prior distributions of θ . Posterior samples of µ for European
and Sub-Sahara African populations (figure 3), indicate that overdominance might
be a plausible hypothesis for the HLA loci in these populations, since 95% credible
intervals do not include zero, the neutral case. On the other hand, South American
population frequencies are not inconsistent with neutrality. For this population, one
would fail to conclude a signal for overdominance. Note that this result is consistent
with our observation that this is the least polymorphic of the three populations.

5 Discussion
In this paper, we presented an overdominance model that can accommodate data
from multiple loci with multiple alleles and likelihood based methods to estimate
the selection intensity under this model. Our methods use two types of genetic
variability: neutral and selected. The necessity of neutral variability as part of
the data has been mentioned several times hitherto. Its crucial role is to restrict
the mutation parameter to a range consistent with the data such that unrealistically
large values are not considered consistent with the data. If only selected variation is
used, large mutation rates are able to account for the variation actually produced by
selection. Consequently, selection intensities would be biased towards lower values
leading to erroneous inference. In fact, under the k-allele model, mutation and
selection parameters turn out to be statistically unidentifiable if the data consist only
of allele frequencies reshaped by both forces (figure 4). Therefore, some external
data limiting the mutation rates are necessary for meaningful inference.
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Figure 3: Posterior samples for the mean selection intensity, µ , under selective overdomi-
nance model for European, South American and Sub-Sahara African populations.

of interest. For example the HLA system has six major Class I and Class II genes.
Data consisting of 32 loci such as ones considered in the simulations seem overly
optimistic. When the number of loci is small, interval estimates can be too wide to
be useful even if there is appreciable signal for selection.

Importantly, when m,k (i.e., the number of loci and allele frequencies in the
data) are small to moderate, the estimates of σ and µ will be sensitive to the prior
parameter τ0 for the variance. This effect is due to the fact that τ is a parameter in
the posterior distributions of σ and µ. In such cases, τ0 should be chosen carefully
to minimize its effect on inference. For the conjugate prior considered above, the
Inv− χ2 prior is uninformative when τ0 is large. However, for a given pair of m,k,
a too large τ0 introduces a negative bias in the estimates, whereas a too small τ0 cre-
ates a positive bias. To minimize the effect in either direction, τ0 can be optimized
based on the number of loci and allele frequencies for the loci of interest. Note that,
these quantities are constants in the model and not part of the data, legitimizing
their role to optimize the prior parameter. An optimal τ0 for a given m,k pair has on
average a minimal biasing effect. A good way to determine such a τ0 is as follows.

A large number of loci might not always be available for the biological system

14

Statistical Applications in Genetics and Molecular Biology, Vol. 8 [2009], Iss. 1, Art. 32

http://www.bepress.com/sagmb/vol8/iss1/art32
DOI: 10.2202/1544-6115.1466



Figure 4: The effect of θ , on the posterior distribution of σ illustrating the identifiability
problem.

First, we generate a large sample of data sets with the m and k of the actual data.
(The actual value of µ under which the data are generated, has a negligible effect
on the bias.) We choose an arbitrary τ0 and obtain the posterior distribution of µ. If
the mode is above the true value, we decrease, otherwise increase τ0 and reiterate
until an acceptable level of bias is achieved. The effect of prior parameter τ0 on
the estimates is shown by mean estimates of µ, based on 10 independent simulated
data sets for each m,k combination and a range of τ0 values (figure 5 and 6).

A certain amount of genetic linkage is expected in a set of loci located on the
same chromosome. Linkage affects a multi locus system by creating correlation in
the allele frequencies between loci. In this case, the joint distribution of data across
loci currently given by equations 18 through 21 in Appendix A, would no longer
be the product of the likelihoods, but would be more complex. To derive such
a likelihood one would have to know specific information concerning the linkage
between loci. However, if these adjustments are possible, the rest of the hierarchical
Bayesian setup would remain unchanged. Yet, this strategy is not useful unless a
realistic correlation structure about the system is available. However, if locus i
and locus j are linked, one would expect the estimated selection coefficients to be
closer than if they were unlinked. From an estimation perspective, the consequence
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Figure 5: Mean µ̂ for a range of τ0 for data with increasing number of loci (k =
10 constant). For each τ0, marks indicate estimates for (from top to bottom) m =
5,10,15,20,25,30. Each estimate is the mean of 10 data sets. The unbiased point es-
timates corresponding to the given number of loci are obtained respectively at optimal
τ0 = 6100,6000,5500,4450,4100,2850 (not shown).

of correlation between allele frequencies is decreased variance of the estimates of
σ ; which in turn decreases τ .

Our model assumes no population demography. Under balancing selection, mi-
gration turns out to be one of the confounding demographic effects [Hudson, 1991].
In the diffusion approximation to Wright-Fisher model, if included, the effect of mi-
gration on the allele frequencies is similar to that of mutation. Both migration and
mutation affect the allele frequencies linearly, whereas selection affects the allele
frequencies non-linearly. In particular, under our model, symmetric migration can
be incorporated by replacing the mutation parameter θ by θ +M where M = 4Nm
is the population scaled migration parameter and m is the migration rate. It is also
possible to introduce asymmetric migration structures where the rate of migration is
different for each allele, although such a model will be data hungry since the num-
ber of parameters increases. On the other hand, if there is some migration ignoring
it will inflate the mutation parameter estimates. The selection parameter estimates
however, will not be affected unless migration is much stronger than mutation or it
has a highly asymmetric structure.
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Figure 6: Mean µ̂ for a range of τ0 for data with different (m,k) combinations. From
top to bottom: (m,k) = {(3,32),(4,24),(6,16),(8,12),(12,8),(16,6),(24,4),(32,3)} The
unbiased point estimates corresponding to the given number of loci are obtained respec-
tively at τ0 = 4350,3900,3850,3800,3800,3500,3250,3050,2700. Note that, in the given
range of (m,k) values, all but very extreme pairs have similar optimal τ0 (approximately
3500-4000). That is, when both m and k are relatively large, optimal τ0 stays constant.

The hierarchical model is a first pass to make inference from a multiple loci
system with a high number of alleles. As such, it does not take into account allele
frequency changes due to epistatic interactions between loci. This is not surprising
for a model of additive effects. A model capturing more biological detail such as
epistasis is necessarily more complicated than the one presented in this paper. Un-
der the framework presented here such a model implies a more intricate hierarchy.
From an inference perspective, epistasis might be easier to handle with a model
able to treat the multi locus allele frequencies without appealing to a hierarchical
structure. For example, the mathematical machinery of the multiple loci k-allele
diffusion can be also established in the presence of epistasis, as shown by new the-
oretical developments [Fearnhead, 2006]. Fearnhead extended the theory of single
locus diffusion approximations to the multiple loci case, where a group of genes
act as a single unit of selection. Using this result, overdominance can be modeled
in the presence of epistatic interactions between loci. This avenue is particularly
appealing for inference on loci related to immune system, where there is evidence
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for epistatic interactions between loci. Therefore, a future direction is to develop
statistical methods for such models, a problem which we tackle in a subsequent
paper.

Appendix A
We are interested in the joint density of θ ,σ given the two data sets, x,Y. Apply
Bayes’ rule

P(θ ,σ |x,Y) ∝ P(x,Y|θ ,σ)P(σ ,θ)(15)
= P(Y|θ ,x)P(x|θ ,σ)P(θ ,σ)(16)

=

(
k

∏
i=1

P(yi|xi,θ)

)
P(x|θ ,σ)P(θ ,σ).(17)

The last equality follows from

P(Y|θ ,x) = P(Y,x|θ)/P(x|θ) =
k

∏
i=1

P(yi,xi|θ)/P(x|θ)(18)

=
k

∏
i=1

P(yi|xi,θ)P(xi|θ)/P(x|θ)(19)

=
k

∏
i=1

P(yi|xi,θ)P(x|θ)/P(x|θ)(20)

=
k

∏
i=1

P(yi|xi,θ).(21)

The second equality in equation 18 follows from the fact that given the ith sum,
xi, the synonymous allele frequencies for that class yi are independent of the other
sums. The result in equation 17 says that the joint posterior of θ ,σ has three pieces:
The joint likelihood under neutrality, where only the synonymous data are used,
the joint likelihood under selection, where only the non-synonymous data are used
and the prior. This formulation is equivalent to use the posterior of θ from the
synonymous data analysis as the prior of θ for the analysis under selection. This
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can be seen by expressing equation 17 as

k

∏
i=1

P(yi|xi,θ)P(x|θ ,σ)P(θ)P(σ)(22)

=
k

∏
i=1

P(yi|xi,θ)P(θ)P(x|θ ,σ)P(σ)(23)

∝ P(θ |x,Y)P(x|θ ,σ)P(σ).(24)

Appendix B
The joint distribution of all the parameters for ith locus is given by

f (σi,θi,xi,µ,τ) = f (σi|θi,xi,µ,τ) f (θi,xi,µ,τ)(25)
= f (xi|σi,θi,µ,τ) f (σi,θi,µ,τ).(26)

By the second equality we get

(27) f (σi|θi,xi,µ,τ) =
f (xi|σi,θi,µ,τ) f (σi,θi,µ,τ)

f (θi,xi,µ,τ)
.

Using the fact that the hyperparameters affect the data only through the parameters
and conditioning we have

(28) f (σi|θi,xi,µ,τ) =
f (xi|σi,θi) f (σi|θi,µ,τ) f (θi,µ,τ)

f (xi|θi,µ,τ) f (θi,µ,τ)
.

Noting that µ and τ fully specify the distribution of σi, we write

(29) f (σi|θi,xi,µ,τ) =
f (xi|σi,θi) f (σi|µ,τ)

f (xi|θi,µ,τ)

and finally

(30) f (σi|θi,xi,µ,τ) ∝ f (xi|σi,θi) f (σi|µ,τ).

The first term is the stationary distribution of the allele frequencies under selection
from the single locus model and the second term is the normal density.

Similarly for θi we get

(31) f (θi|σi,xi,Yi,µ,τ) f (θi,xi,Yi,µ,τ) = f (xi|σi,θi,µ,τ) f (σi,Yi,θi,µ,τ).
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(32) f (θi|σi,xi,Yi,µ,τ) =
f (xi|σi,θi) f (θi|σi,Yi,µ,τ) f (σi,µ,τ)

f (xi|σi,µ,τ) f (σi,µ,τ)
.

(33) f (θi|σi,xi,Yi,µ,τ) =
f (xi|σi,θi) f (Yi|θ) f (θi)

f (xi|σi,µ,τ)
.

So we have

(34) f (θi|σi,xi,Yi) ∝ f (xi|σi,θi) f (Yi|θ) f (θi).

Again, the first term is the stationary distribution of the allele frequencies under
selection from the single locus model and the second term is the prior distribution
of θi which is the posterior obtained from the neutral model analysis for ith locus.
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