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Abstract

Normalization is an important step in the analysis of microarray data of transcription profiles
as systematic non-biological variations often arise from the multiple steps involved in any tran-
scription profiling experiment. Existing methods for data normalization often assume that there
are few or symmetric differential expression, but this assumption does not always hold. Alter-
natively, non-differentially expressed genes may be used for array normalization. However, it is
unknown at the outset which genes are non-differentially expressed. In this paper we propose
a hierarchical mixture model framework to simultaneously identify non-differentially expressed
genes and normalize arrays using these genes. The Fisher’s information matrix corresponding to
array effects is derived, which provides useful intuition for guiding the choice of array normaliza-
tion method. The operating characteristics of the proposed method are evaluated using simulated
data. The simulations conducted under a wide range of parametric configurations suggest that the
proposed method provides a useful alternative for array normalization. For example, the proposed
method has better sensitivity than median normalization under modest prevalence of differentially
expressed genes and when the magnitudes of over-expression and under-expression are not the
same. Further, the proposed method has properties similar to median normalization when the
prevalence of differentially expressed genes is very small. Empirical illustration of the proposed
method is provided using a liposarcoma study from MSKCC to identify genes differentially ex-
pressed between normal fat tissue versus liposarcoma tissue samples.
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1 Introduction

Microarray is a high-throughput tool that can simultaneously measure the ex-
pression level of thousands of transcripts on a genome-wide scale (Schena et al.
1995; Lipshutz et al. 1999). It is increasingly used to determine the under-
lying biological differences in disease subtypes or treatment effects (Spellman
et al. 1998; Perou et al. 2000; LaTulippe et al. 2002; Singer et al. 2007).
A microarray experiment involves a complex multi-step process, including ex-
traction of mRNAs, reverse transcription to cDNAs, denaturation of cDNAs,
hybridization to probes on a microarray, and image scanning of fluorescence
(Schena et al. 1995; Lipshutz et al. 1999; Nguyen et al. 2002). Owing to the
complexity of the underlying process, the resulting data consist of multiple
sources of variation, including systematic variation due to biological effects
(the effect of interest), systematic variation due to experimental process, and
stochastic noise. Common causes of systematic non-biological variation are
background fluorescence, array batch difference, print-tip spatial effects, and
dye effects (for two-color cDNA arrays).

The process of estimating and subsequently removing the effects due to
experimental process is called preprocessing (Nguyen et al. 2002; Irizarry et al.
2003). Assumptions need to be introduced to make non-biological systematic
effects identifiable from biological systematic effects. Preprocessing often in-
volves multiple steps. The primary goal of this paper is to investigate meth-
ods for removing array effects so that the expression measures are comparable
across arrays. We refer to this process as “normalization”. When done appro-
priately, normalization can improve the accuracy of the subsequent statistical
analysis, such as differential expression detection (Reilly et al. 2003). As
pointed out by a referee, when analyzing real data, one needs to also consider
other typical features of microarray data, such as the skewed distribution of in-
tensity measurements (Purdom and Holmes 2005), the additive-multiplicative
noise problem (Rocke and Durbin 2001), and the variance stabilization prob-
lem (Durbin and Rocke 2004; Huber et al. 2003). Addressing all these issues
simultaneously using a single model may be an ambitious goal, particularly
since the sample size of these studies is substantially smaller than the number
of probes on the array. Therefore, it may be pragmatic to address them in
multiple steps so as to avoid any identifiability issues that may arise under si-
multaneous modeling. For example, there is a large body of literature on data
transformations (Atkinson 1985) that may be applied to the intensity data to
address issues such as skewness, non-linearity, and variance stabilization. In
this paper we focus on the array normalization issue, assuming that separate
steps have been undertaken previously for other data pre-processing needs.
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Existing methods for normalization often follow one of the two strategies.

1. All-gene normalization. This strategy makes the distribution of the
data similar across arrays by using all genes on each array for normal-
ization. It is based on the implicit assumption that few or symmet-
ric over-/under-expression exists among genes. Methods based on this
strategy include median normalization, non-linear normalization (often
intensity-dependent) (Yang et al. 2002), and quantile normalization
(Bolstad et al. 2003). In situations where this assumption does not
hold, these methods tend to attenuate biological effects and hide differ-
entially expressed genes. For example, under median normalization, the
estimates of biological effects might be biased, as the median of an array
(denoted as m) is determined by the following equation: P (y > m) =
P (equivalent expression)P (y > m|equivalent expression)+P (differential
expression)P (y > m|differential expression).

2. Some-gene normalization. This strategy selects a subset of genes
(called “control genes”) and makes the mean of their data distribu-
tion similar across arrays. Choices of control genes include spiked-
in genes, house-keeping genes, and rank-invariant genes (Li and Wong
2001). These methods assume that the expression of each control gene is
constant across the samples under study; hence the reliability of the con-
trol genes is critical. Spike-in genes are typically chosen to be genes with
constant expression patterns across a panel of tissue types or treatments
in prior studies. House-keeping genes are those believed to hold impor-
tant biological function in cells and expected to be consistently expressed
(for example, GAPDH and beta-Actin), but fluctuations of their expres-
sion do occur (Thellin et al. 1999). An example is an eight-tissue study
conducted by Affymetrix, which compares the expression of GAPDH,
beta-Actin, and the 100 (spiked-in) normalization control genes on HG-
U133A arrays (Affymetrix document: Performance and Validation of
the Genechip Human Genome U133 Set, available at Affymetrix websit
http://www.affymetrix.com/index.affx). The validity of rank-invariant
genes, whose ranks are consistent across arrays, for normalization de-
pends on the assumption of independence between differential expression
and expression intensity. For example, it is plausible that genes having
high expression are more likely to be over-expressed, which is ignored
under the rank-invariant formulation.

Cancer is a complex disease characterized by within-patient and, most
notably, between-patient tumor heterogeneity. To normalize microarrays for
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such heterogeneous samples, the assumption of all-gene methods might not
hold and the choice of control genes is not straightforward. Normalization
methods based on non-differentially expressed genes have been used for two-
channel array data (Zhao et al. 2005; Reilly et al. 2003). In this paper,
we employ a hierarchical Gaussian mixture model to identify differentially
expressed genes in the single-channel oligonucletide arrays. The normaliza-
tion factor is a parameter of this model. The proposed model has parallels
to penalized regression approach (Hastie et al. 2001). We derive the Fisher
information corresponding to the normalization parameter, which provides
intuition and mathematical justification guiding the choice of array normal-
ization method. Simulation studies are conducted to evaluate properties of
the proposed method.

1.1 Motivating Example

Our work is motivated by an ongoing study of gene expressions in liposarcoma
at Memorial Sloan-Kettering Cancer Center. Liposarcoma is a rare type of
tumor that arises in fat cells. It has five major variants: well-differentiated,
de-differentiated, myxoid, myxoid/round cell (MRC), and pleomorphic. A mi-
croarray study was performed to measure gene expression among liposarcoma
tumors and normal fat tissues using Affymetrix HG-U133A arrays consisting
of 22,215 probe sets, 100 of which are control probesets (Affymetrix website).
In this paper we consider data from 8 MRC tumor samples and 12 normal fat
samples. Figure 1 shows the un-normalized probe-level intensities for all genes
(22,215 probesets) and for the control genes (100 probesets). Each curve rep-
resents the empirical density of the gene expressions from a single array (that
is, sample). It is evident that there is substantial variation among arrays even
within the normal fat group. Clearly, the expression levels of the control genes
are not similar across arrays. These observations suggest the need for appro-
priate normalization of the arrays to identify differentially expressed genes.

This paper is organized as follows. Section 2 describes the proposed hi-
erarchical mixture model for normalization and discusses the identifiability of
model parameters. The Fisher information corresponding to the normalization
parameter is derived and used to provide further insights into the proposed
method. Section 3 illustrates the operating characteristics of the proposed
method using simulated data. Application of the proposed method to the
liposarcoma data is detailed in Section 4, and compared with median nor-
malization, control-gene median normalization, and quantile normalization.
Section 5 provides concluding remarks and recommendations for practice.
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Figure 1: Density plots of normal fat (left panels) and liposarcoma (right pan-
els) arrays in absence of normalization. Top panels are for all genes and bottom
panels are for the 100 control genes. In each panel, each curve represents one
array.
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2 Method

2.1 The Model

We will present the proposed model in a two-class setting (for example, tumors
vs. normal tissues). Denote yigp as the expression intensity (typically log2
transformed for variance stabilization) for sample i, gene g, and probe p (nested
within gene g), and xi as the indicator of disease status for sample i (0 for
normal tissues and 1 for tumors). The gene expression yigp is modeled using
analysis of variance (ANOVA) with the following components: array effect αi,
gene effect βg, probe effect δgp (nested within gene effect), interaction between
array effect and gene effect γig, and measurement error εigp (see Equation 1
below). These components can be interpreted as follows. The array effect
αi represents the normalization parameter or the systematic non-biological
variation, averaged over all the genes on the array. This parameter needs
to be estimated accurately so that the differentially expressed genes can be
identified with adequate sensitivity. The gene effect βg represents the baseline
expression level of gene g. The probe effect δgp is the contribution of an
individual probe p to the expression level of gene g. In this paper we ignore
probe-specific effects and set δgp = 0 (Equation 2). The interaction γig is
the additional effect of gene g on the expression level that arises due to the
disease status xi, and we represent this as γig = xiγg (Equation 3). Thus, the
expected expression of gene g is βg among the controls and βg + γg among the
cases. And γg = (βg + γg) − βg is the extent to which gene g is differentially
expressed in the cases relative to the controls. The component εigp is random
noise, assumed to have an independent N(0, σ2) distribution.

yigp = αi + βg + δgp + γig + εigp (1)

= αi + βg + γig + εigp (2)

= αi + βg + xiγg + εigp (3)

εigp ∼ N(0, σ2)

βg ∼ N(0, τ 2)

γg ∼ (1 − π)I{0} + πλN(µo, ψ
2) + π(1 − λ)N(µu, ξ

2)

where µo > 0 > µu

The normalization parameter αi may be interpreted as the systematic
non-biological variation, averaged over all the genes on the array. The effect
βg may be assumed to be 0 once the non-biological variation is eliminated.
However, it is conceivable that some genes may naturally be over- or under-
expressed in the control population and, hence, the assumption of βg = 0
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may not be uniformly applicable to all genes. Under such uncertainty, we
may postulate a stochastic framework for the underlying true expression βg

as βg ∼ N(0, τ 2), where τ 2 represents the uncertainty about the assumption
of zero gene effect among the controls. A gene g may be equivalently ex-
pressed (γg = 0), over-expressed (γg > 0), or under-expressed (γg < 0) among
the cases relative to the controls. Denote µo and µu (µo > 0 > µu) as the
mean over- and under-expression of the differentially expressed genes. As be-
fore, we can conceptually postulate a stochastic framework for the over- and
under-expressed genes. Denoting π as the proportion of differentially expressed
genes and λ as the proportion of over-expressed genes among those differen-
tially expressed, we posit a mixture distribution for the effect γg: a mass at
0 with probability 1 − π, a N(µo, ψ

2) distribution with probability πλ, and a
N(µu, ξ

2) distribution with probability π(1 − λ). Here the variances ψ2 and
ξ2 reflect the uncertainty about the mean over- or under-expression effects of
the differentially expressed genes.

A more convenient mathematical construct, which will be helpful for
obtaining parameter estimates, can be set up by introducing binary variables
og and ug, where og = 1 if gene g is over-expressed and 0 otherwise, and ug = 1
if gene g is under-expressed and 0 otherwise. Hence, γg = ogγog +ugγug, where
γog ∼ N(µo, ψ

2) and γug ∼ N(µu, ξ
2). Further, og and ug have a multinomial

distributions with probabilities πλ and π(1 − λ), respectively.

γg = ogγog + ugγug (4)

(1 − og − ug, og, ug) ∼ Multinomial(1, (1 − π, πλ, π(1 − λ)))

γog ∼ N(µo, ψ
2)

γug ∼ N(µu, ξ
2)

2.2 Motivation of the Use of Gaussian Mixture Model

The Gaussian mixture model in our work is motivated by the following ob-
servations. When analyzing a large number of putative risk factors (such as
gene expressions) in relation to an outcome of interest, it is now widely ac-
cepted that analyzing one risk factor at a time may not be a useful strategy
(for example, Kendziorski et al. 2003). It can lead to imprecise estimates of
the effects and can easily result in false positive findings. Penalized regression
techniques have been proposed as a useful strategy for addressing such issues
(for example, Hastie et al. 2001). This approach estimates the effects by im-
posing suitable stability constraints, and has been successfully used for both
class comparison and class prediction problems.
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Two very popular and useful penalized regression methods are: ridge
regression (Hoerl 1962) and the LASSO (Tibshirani 1996). Ridge regression
imposes a constraint on the sum of the squares of the effects. This is equiva-
lent to imposing an exchangeable normal prior distribution for the effects. The
variance of this prior distribution is intimately related to the ridge constraint.
In contrast, the LASSO imposes a constraint on the sum of the absolute values
of the effects. This is equivalent to imposing an exchangeable double expo-
nential (equivalently, Laplace) prior distribution for the effects. The variance
of this prior is intimately related to the LASSO constraint.

Both ridge regression and LASSO provide shrinkage estimates of the
effects. It is well-known that LASSO places higher a priori mass around 0
(Tibshirani 1996). Thus, LASSO can identify null effects with better speci-
ficity than ridge regression. LASSO is also closely related to robust estima-
tion techniques. Carroll (1980) showed that mixture distributions of the form
(1 − ε)Φ + εH can provide robust inferences. Here Φ is a standard normal
distribution and H is any symmetric distribution. Carroll (1980) termed this
the “normal centre-exponential tails” distribution, and used this approach for
robust inferences when applying Box-Cox type of power transformations to the
outcome to achieve normality. One can plot the “normal centre-exponential
tails” distribution with H as an indicator function having mass at 0 and by
considering various choices of ε. From such a plot, it can be easily seen that
this mixture distribution has similarities to a Laplace prior.

2.3 Identifiability of Model Parameters

Given the equivalent-expression, over-expression, or under-expression status
of each gene, the unknown parameters of the proposed mixture model are (a)
the normalization parameters αi’s, (b) the means of over-expressed genes µo

and under-expressed genes µu, (c) the variances of treatment effects for over-
expressed genes ψ2 and under-expressed genes ξ2, (d) the variance of gene
effects τ 2, and (e) the variance of measurement error σ2. Before describing
the algorithm to estimate these unknown parameters, it will be useful to un-
derstand if these parameters are indeed identifiable using the observed data.
Table 1 gives the method of moments estimates, illustrating that the unknown
parameters can be estimated unbiasedly using the gene-specific covariances
and variances of the probe intensities.

• If sample i is a control (that is, xi = 0), then E(yigp) = αi. An unbiased
estimate of the normalization factor αi is the average of all the probe
intensities on array i.
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Table 1: Parameter identifiability in the mixture model for array normaliza-
tion.

Equal-Expression Over-Expression Under-Expression
E(yigp) αi αi + xiµo αi + xiµu

var(yigp) σ2 + τ 2 σ2 + τ 2 + xiψ
2 σ2 + τ 2 + xiξ

2

cov(yigp, yigq) τ 2 τ 2 + xiψ
2 τ 2 + xiξ

2

• If sample i is a case (that is, xi = 1), then E(yigp) = αi, E(yigp) = αi+µo,
or E(yigp) = αi + µu, depending upon whether gene g is equivalently
expressed, over-expressed, or under-expressed. An unbiased estimate of
αi is the average probe intensity of the equivalently expressed genes on
array i. Were we to know a priori that µo = −µu, then αi may be
unbiasedly estimated as the average intensity of all genes on array i.

• Once αi is estimated, an unbiased estimate of µo (or µu) can be ob-
tained as the difference between the average probe intensity of the over-
expressed (or under-expressed) genes and the equivalently-expressed genes,
since og and ug are assumed known.

• The errors are independent. Therefore, when gene g is equivalently ex-
pressed or when sample i is a control, we have τ 2 = cov(yigp, yigq), the
covariance between probes within a gene. When gene g is over-expressed,
we have τ 2 + xiψ

2 = cov(yigp, yigq). Finally, when gene g is under-
expressed, we have τ 2 + xiξ

2 = cov(yigp, yigq). This suggests that all
four unknown variance parameters can be estimated unbiasedly using
the gene-specific covariances and variance of the probe intensities.

2.4 Parameter Estimation

Since differential expression status, (og, ug)’s, are not observed, we use the
EM algorithm to maximize the classification likelihood for the mixture model.
(Details of the implementation are presented in Appendix A.)

• In the E-step, og and ug are estimated for each gene in the form of
posterior probabilities.

• In the M-step, array effects αi’s are estimated as the average among the
non-differentially expressed genes for each array and the variances for
random effects are estimated by fitting a linear mixed effects model.
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2.5 Fisher’s Information of the Normalization Parame-

ters

The variance of the parameter estimates can be derived using the Fisher’s infor-
mation matrix. We are particularly interested in estimating the normalization
parameter αi’s as accurately as possible. The differential expression status
of the genes are unknown at the outset. This missing piece of information
can have an impact on the precision when the parameters are estimated. The
precision is given by the Fisher’s information, defined as the second derivative
of the log likelihood function with respect to αi, which can provide important
guidance to assess trade-offs in estimating the αi’s. Here we calculate Fisher’s
information corresponding to αi and evaluate the underlying insights.

We observe the probe level intensities yigp’s. The differential expression
status of each gene is unobservable or missing. Therefore, the information
corresponding to αi can be obtained using the probe intensity yigp of array i

as the difference between the complete data information and the missing data
information ((Louis 1982); Appendix B). Denoting P as the number of probes
per gene, the missing data information, Im, is given by:

Im = P 2 xi

1 + xi

∑

g

{B1g +B2g +B3g} where (5)

B1g = (ȳig. − αi)
2w0g(1 − w0g)

B2g = µ2
o[(1 − w0g) − (w1g − w2g)

2]

B3g = 2(ȳig. − αi)µow0g(w1g − w2g)

Note that w0g, w1g, and w2g = 1 −w0g −w1g are the posterior probabilities of
equivalent-, over-, and under-expression of gene g, respectively. It is desirable
to have the missing data information as small (that is, preferably as close to
0) as possible, so that the estimate of αi is precise.

Recall that xi = 1 for cases and 0 for controls. The term xi

(1+xi)
in Equa-

tion 5 is 0 when xi = 0, suggesting that missing information for the array effect
is only a concern for cases. This is consistent with intuition that gene expres-
sion remains at the expected level among controls and differential expression
results in altered expression level of a gene among the cases. Hence, array nor-
malization will be critical for cases. The first term (B1) within the summation
vanishes for those genes whose the differential expression probability w0g is 0 or
1. Hence, genes with ambiguous differential expression probabilities contribute
to missing information, particularly when their normalized expression level is
large. This observation suggests the need to estimate the differential expression
status of gene g with minimum or no ambiguity to the extent possible. The
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second term (B2) can be written as µ2
0[w1g(1−w1g)+w2g(1−w2g)+ 2w1gw2g].

Genes with ambiguous probabilities of over- or under-expression contribute
to this term. This suggests that excluding differentially expressed genes from
normalization can reduce the missing data information, further supporting our
proposal that normalization be based solely on equivalently expressed genes.
For every gene g, the third term (B3) vanishes when there is symmetry of
differential expression (that is, w1g = w2g) or when the differential expression
status is known without ambiguity (that is, w0g = 0 or 1), again suggesting the
need to estimate the differential expression status as accurately as possible.

In summary, the missing data information suggests normalizing the
arrays, particularly of cases, using equivalently expressed genes.

3 Simulation

Evaluating the performance of different normalization methods depends upon
the scientific question such as detection of differential expression and estima-
tion of the amount of differential expression. Here we consider the problem
of detecting differential expression, and evaluate the sensitivity (true positive)
and specificity (true negative) rates based on three normalization methods.
More specifically, we simulate data as outlined below and analyze them as
follows.

• First, the data are analyzed using the proposed method. The posterior
probability of association between each gene and the disease status can
be obtained from the proposed EM algorithm (quantified by w1g + w2g;
see Appendix B). The genes are ranked in the decreasing order of this
posterior probability, and the sensitivity and specificity are calculated.
One hundred datasets are simulated, and sensitivity and specificity are
averaged across them. The ROC curve ((Hanley and McNeil 1982)) is
then plotted and the area under the curve (AUC) is calculated. Large
areas correspond to favorable performance of the proposed method.

• Secondly, the data are analyzed by applying median normalization fol-
lowed by the two-sample t-test to evaluate differential expression. The
genes are ranked based on the increasing order of the resulting p-values.
A ROC curve and the corresponding AUC are obtained as outlined
above.

• Finally, the data are analyzed by applying no normalization and using
the two-sample t-test for each gene. The genes are ranked based on the
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increasing order of the resulting p-values. A ROC curve and its AUC
are obtained as outlined above.

The AUCs of the proposed method, median normalization, and no normaliza-
tion are compared to examine which method provides favorable gene ranking.

In the first set of simulations, data are generated according to Equation
3 for 50 arrays (25 cases and 25 controls), 10000 probesets, 4 probes per
probeset. Array effect αi’s are generated from a normal distribution with
mean 7 and standard deviation 2. The mean of over-expression µo is set to
2 and the mean of under-expression µu to −2. The variances of the random
effects are set to 0.52, 2.52, 12, and 0.752 for measurement error εigp, gene effect
βg, over-expression disease effect γog, and under-expression disease effect γug,
respectively.

We simulated data under three scenarios for various patterns of dif-
ferential expression: (1) many and highly asymmetric differential expression
(π = 0.3 and λ = 0.9), (2) some and highly asymmetric differential expression
(π = 0.1 and λ = 0.9), and (3) many and slightly asymmetric differential
expression (π = 0.3 and λ = 0.6).

In the first set of simulations, array effects are sorted to be higher
in controls than cases (that is, array effects is non-randomized). As shown
in Figure 2 (left-hand panels), normalization is necessary to detect differen-
tially expressed genes and the proposed normalization out-performs median
normalization. Clearly, when the assumption of median normalization does
not hold, it might not only hide differentially expressed genes but also lead to
non-differentially expressed genes claimed otherwise. The improvement of the
proposed normalization depends on the proportion of differential expression
(π), the degree of asymmetry of over-/under-expression (λ), and the aver-
age size of differential expression (µo and µu; see results in supplementary
Figure 1). These three factors determine the true median of the expression
intensity on an array, given that differential expression exists. An example of
non-randomization in real data is when all the cases are hybridized together on
one batch and all controls are hybridized together on another batch (separately
from the cases).

We performed a second set of simulations for the same three differential
expression patterns but with array effects randomized between controls and
cases. The results are consistent with intuition that, when the array effects
are randomized, normalization is not critical. Further, the proposed normal-
ization method slightly improves the detection of differential expressed genes,
while median normalization could deteriorate the detection if the differential
expression are many and asymmetric (Figure 2, right-hand panels).
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Figure 2: ROC curves for the posterior probability based on the proposed
normalization and the two-sample t-test p-values following no or median nor-
malizations. True array effects are non-randomized for the left panels and
randomized for the right panels. From top to bottom, (π, λ) are (30%, 90%),
(10%, 90%), and (30%, 60%).
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In order to examine whether the above simulation results favor the
proposed normalization due to the fact that the data are generated based
on the proposed model, we conducted a third set of simulations under the
following parametric configurations: (1) the gene effect βg is generated from
a uniform distribution; and (2) the measurement error εigp is generated from
a t distribution with degrees of freedom of 3. The results of these simulations
are similar to those observed above. The corresponding figures are given as
supplementary materials.

Finally, we also conducted additional simulations with σ2 = 1 to study
the operating characteristics when the measurement error is not very low. The
results of these simulations (shown in supplementary materials) are similar to
those observed above.

In summary, the proposed method out-performs median normalization
when there are many and asymmetric differentially expression, while it per-
forms similarly when there are few differentially expression. Hence, the pro-
posed method is robust to the assumption of few or symmetric differential
expression.

4 Data Application

We applied the proposed normalization, median normalization, control-gene
normalization, and quantile normalization to a subset of the liposarcoma data,
including 8 MRC tumors and 12 normal fat tissues. The arrays were generated
as patient samples became available; that is, the tumors and normal tissues
were not separately batched and also not purposely randomized.

Figure 3 shows the density plot of the arrays after normalization us-
ing each of the four normalization methods. It shows that the normalized
data based on the proposed method is most similar to that based on median
normalization. Also control-gene normalization does not seem to sufficiently
remove the array effects and it results in negative values for most genes. In this
particular dataset, the array effects based on the proposed method are slighly
smaller than those based on median normalization, with a difference bigger
among normal fat arrays than among tumor arrays. In order to evaluate how
well the proposed model fits the data, we calculated the predicted expression
using the maximum likelihood estimates of the fixed effects and the BLUPs
of the random effects (Robinson 1991), and then obtained a QQplot for the
predcited expression versus the observed expression among normal fat samples
and tumor samples (see supplementary material). Due to the large number of
probesets, we show the QQplots for a random set of one tenth of the probesets
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on the array (that is, 2228 probesets). The QQplots show that the proposed
model fit the data well.

A per-gene two-sample t-test was then applied to identify differentially
expressed genes between tumors and normal fat tissues. Figure 4 compares
the distribution of the p-values for the four normalization methods. They
show that the proposed normalization, median normalization, and quantile
normalization provide very similar p-values for this dataset, while no normal-
ization and control-gene median normalization give very different results. In
particular, based on the proposed normalization, the proportion of differen-
tially expressed genes is estimated to be π = 32.0%; among these genes, the
proportion of up-regulated genes is estimated to be λ = 37.0%; the mean of
over-expression is estimated to be µo = 0.35 and that of under-expression to be
µu = −0.05. These results suggest that there are many and moderately asym-
metric differential expression between MRC tumors and normal fat tissues in
the liposarcoma data. Further the magnitude of over- and under-expression
are different. This corresponds to a scenario that is approximately similar to
the simulations represented in the bottom left panel in supplementary Figure
1, which shows that the performances of the proposed method and median nor-
malization are fairly similar and superior to no normalization. In this manner,
the data analysis results are consistent with the simulation findings.

There have been limited studies published to date providing a detailed
investigation on the genetic basis of liposarcoma. Since there is no gold stan-
dard method providing the genes of relevance for liposarcoma, we examined
the functional relevance of the genes identified by the proposed method and
median normalization in an effort to obtain insights into the practical utility
of the two methods. A significance cutoff of p-value=0.00001 was applied to
the per-gene p-values to identify significant genes for each of the normalization
methods. There are 1893 and 2007 significant genes for median normalization
and proposed normalization, respectively. Among them, 1734 genes are over-
lapping. A total of 159 genes were identified by the proposed method but not
by the median normalization. According to the EASE analysis on the func-
tional themes, these 159 unique genes are enriched in signal transduction and
cellular process. These functions have been previously implicated in genetic
studies of liposarcoma (Gauthier et al. 2003; Chibon et al. 2004; Muller et al.
2007; Guo et al. 2008). A total of 273 unique genes were identified solely
by the median normalization method. These genes are enriched in nucleoside
metabolism or binding, as suggested in other published studies (Barone et al.
1994). The detailed EASE results can be found in the supplementary materi-
als. These results suggest that the proposed normalization method is able to
identify genes of known functional relevance for liposarcoma.
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Figure 3: Density plots of normal fat (left panels) and liposarcoma (right
panels) arrays after different normalizations (proposed, median, control-gene
(CG) median, and quantile normalization).
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Figure 4: Scatter plots comparing the t-test p-values following proposed
normalization with that following no normalization, median normalization,
control-gene (CG) median normalization, and quantile normalization. P-
values are plotted on the -log10 scale.
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5 Discussion

The essence of both all-gene and some-gene strategies is to identify non-
differentially expressed genes with certain assumptions and use their expres-
sion for normalization across arrays. All-gene methods use all genes on an
array, while some-gene methods define these genes a priori. In order to ef-
fectively choose the control genes a priori, the selection should be based on a
randomized experiment with a sufficiently large sample size.

For both all-gene and some-gene strategies, nonlinear estimation can be
applied (Yang et al. 2002). Most of them model the array effects as a nonlinear
function of intensity levels, for example loess smoothing. Intensity normaliza-
tion will work reasonably well if, at each level of intensity, the average up-
and down-regulation are about equal. However, as the normalization method
becomes more flexible, one needs to be aware of the risk of over-normalizing
and washing out real biological effects.

Randomization has been shown in our simulation study to be an effec-
tive approach to minimize the effect of array differences and should be adopted
in practice to the extent possible.

We obtained diagnostic QQplots to examine the goodness of fit for the
proposed model when applied to the liposarcoma data. The QQplots provide
evidence that the proposed model fit the data well.

Zhao et al (2005) employed a mixture model to identify equivalently
expressed genes for normalization. While these authors focused on the normal-
ization of cDNA microarrays using Gamma mixture distributions, our work
pertains to oligonucleotide arrays with expressions modeled as Gaussian mix-
tures.

The current implementation of the proposed method took about 8 hours
to normalize this liposarcoma data in a PC with 3.0GHz Pentium 4 processor
and 1024 MB memory running Windows 2000. More computational efficient
implementation will be explored as part of the future research.

In summary, array normalization is an important component of ana-
lyzing microarray data. Several normalization methods have been proposed in
the literature, based on simplifying assumptions. We have developed a novel
approach that utilizes genes that are not differentially expressed for normaliza-
tion. Our results suggest that the proposed method has superior sensitivity for
identifying differentially expressed genes, relative to median normalization and
no normalization, when the arrays are not randomized. As expected, when the
arrays are randomized, the sensitivity of the proposed method is comparable
to no normalization.
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6 Software

The proposed method has been implemented using R. The code is available
from the first author (qinl@mskcc.org). This code may also be downloaded
from our institutional web page http://www.mskcc.org/mskcc/html/60448.cfm.

7 Appendix

7.1 Appendix A. Parameter stimation for the roposed

ethod

The observed data is yigp’s. The complete data is yigp’s and {og, ug}’s. The
parameters to estimate are αi’s, µo, µu, τ

2, ψ2, ξ2, and σ2.
In the E-step, the posterior probability for a gene to be equal-, over-

and under-expressed are calculated as following. Denote yg as the vector of
expression levels for gene g, x as the vector of disease status corresponding to
yg, Φ as the pdf function of a multivariate normal distribution, Σ as a n× n

covariance matrix, 0 as a vector of zero, and I as a unit diagonal matrix.

f(yg|og = 0, ug = 0) = Φ(yg; µe,Σe)

f(yg|og = 1) = Φ(yg; µo,Σo)

f(yg|ug = 1) = Φ(yg; µu,Σu)

µe = 0

µo = xµo

µu = xµu

Σe = Iσ2

Σo = Iσ2 + xT xψ2

Σu = Iσ2 + xT xξ2

A gene is then assigned to the category that gives the highest pdf: equal-
expression (og = 0 and ug = 0), over-expression (og = 1 and ug = 0), or
under-expression (og = 0 and ug = 1).

In the M-step, the parameters are estimated by fitting a linear mixed
effects model as following.

lme(y′ ∼ −1 + x ∗ o+ x ∗ u, random = ∼ 1 + x ∗ o+ x ∗ u| group)

where y′igp = yigp −αi, group indicates the grouping of the observations
such that observations for each equal-expressed gene are in a unique group and
observations for each differential-expressed gene are in two unique groups, one

E

M

P
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for cases and the other for controls. For example, one configuration of group
is the following.

groupigp = g, if og = 0 and ug = 0

groupigp = g, if og = 1 and xi = 0

groupigp = g, if ug = 1 and xi = 0

groupigp = −g, if og = 1 and xi = 1

groupigp = −g, if ug = 1 and xi = 1 (6)

7.2 Appendix B. Information of αi’s

Let θ0g, θ1g, and θ2g denote indicators for equal-, over-, and under-expression
of gene g, respectively. Note that for any gene, θ0g + θ1g + θ2g = 1.

The complete data log likelihood for array i, given {θ0g, θ1g, θ2g}’s, can
be written as follows. Let ψ() denote the density function for a standard
normal distribution.

lc({yigp}, αi, µo, µu, τ
2, σ2, ψ2, ξ2)

=
∑

g

∑

p

{θ0g log φ(
yigp − αi√
τ 2 + σ2

)

+ θ1g log φ(
yigp − αi − xiµo
√

τ 2 + σ2 + xiψ2
)

+ θ2g log φ(
yigp − αi − xiµu
√

τ 2 + σ2 + xiξ2
)}

The complete data information is given by −E(∂2lc
∂α2

i

), that is,

Ic = GP{ π

τ 2 + σ2
+

(1 − π)λ

τ 2 + σ2 + xiψ2
+

(1 − π)(1 − λ)

τ 2 + σ2 + xiξ2
}

where G and P are the total number of genes and the total number of probes
per gene on the array, respectively.

The missing data are {θ0g, θ1g, θ2g}′s. The log likelihood of the missing
data given the observed data can be written as the following.

lm({yigp}, αi, µo, µu, τ
2, σ2, ψ2, ξ2)

=
∑

g

θ0g log(w0g) + θ1g log(w1g) + θ2g log(w2g)

where wkg = P (θkg = 1|{yigp}, αi, µo, µu, τ
2, σ2, ψ2, ξ2) for k = 0, 1, 2.
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The missing data information corresponding to αi is given by −E(∂2lm
∂α2

i

).

It follows from straightforward algebra that

Im =
∑

g

∑

k

1

w0g

(
∂w0g

∂αi

)2

For the sake of simplicity, we provide the formula for the special case
where µu = −µo and τ 2 + σ2 = 1. Note that w0g, w1g, and w2g are posterior
probabilities of equal-, over-, and under-expression, respectively; hence we
can write the following equations using simple algebraic expansions. Denote
ȳig. = 1

P

∑P

p=1 yigp.

∂w0g

∂αi

= Pw0g

xi

1 + xi

[(ȳig. − αi)(1 − w0g) + µo(w1g − w2g)]

∂w1g

∂αi

= −Pw1g

xi

1 + xi

[(ȳig. − αi)w0g + µo(1 − w1g + w2g)]

∂w2g

∂αi

= Pw2g

xi

1 + xi

[−(ȳig. − αi)w0g + µo(1 + w1g − w2g)]

Therefore, the missing data information for αi’s is the following.

Im = P 2 xi

1 + xi

∑

g

{B1 +B2 +B3}

B1 = (ȳig. − αi)
2w0g(1 − w0g)

B2 = µ2
o[(1 − w0g) − (w1g − w2g)

2]

B3 = 2(ȳig. − αi)µow0g(w1g − w2g)
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