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Abstract
Case-control genome-wide association (GWA) studies have facilitated the identification of
susceptibility loci for many complex diseases; however, these studies are often not adequately
powered to detect gene-environment (GxE) and gene-gene (GxG) interactions. Case-only studies
are more efficient than case-control studies for detecting interactions and require no data on
control subjects. In this paper, we discuss the concept and utility of the case-only genome-wide
interaction (COGWI) study, in which common genetic variants, measured genome-wide, are
screened for association with environmental exposures or genetic variants of interest. An observed
G-E (or G-G) association, as measured by the case-only odds ratio, suggests interaction, but only
if the interacting factors are unassociated in the population from which the cases were drawn. The
case-only odds ratio is equivalent to the interaction risk ratio. In addition to risk-related
interactions, we discuss how the COGWI design can be used to efficiently detect GxG, GxE, and
pharmacogenetic interactions related to disease outcomes in the context of observational clinical
studies or randomized clinical trials. Such studies can be conducted using only data on individuals
experiencing an outcome of interest or individuals not experiencing the outcome of interest.
Sharing data among GWA and COGWI studies of disease risk and outcome can further enhance
efficiency. Sample size requirements for COGWI studies, as compared to case-control GWA
studies, are provided. In the current era of genome-wide analyses, the COGWI design is an
efficient and straightforward method for detecting GxG, GxE and pharmacogenetic interactions
related to disease risk, prognosis, and treatment response.
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INTRODUCTION
Case-control genome-wide association (GWA) studies have facilitated the identification of
susceptibility loci for many complex diseases [McCarthy, et al., 2008]; however, these
studies are often not adequately powered to detect gene-environment (GxE) and gene-gene
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(GxG) interactions. The case-only study has been proposed as an efficient design for the
detection of GxE [Khoury and Flanders, 1996; Piegorsch, et al., 1994] and GxG interactions
[Yang, et al., 1999] in human disease. To conduct a case-only study, researchers must
collect relevant data on genotype (G) and environmental exposure (E) for diseased
individuals only; data on control subjects is not required. An observed association between a
G and an E in a sample of diseased individuals suggests that G and E interact to influence
disease risk, but this conclusion relies on a key assumption: G and E must be uncorrelated in
the population from which the cases arose (the “source population”). The case-only design is
an attractive alternative to the case-control design for detecting statistical interactions
because case-only studies require far fewer total study participants [Yang, et al., 1997] and
avoid difficulties associated with appropriate control group selection [Khoury and Flanders,
1996]. However, the utility of the case-only study is limited by its inability to assess additive
interactions and genotype-phenotype associations (i.e. “main effects”).

In this paper, we discuss the concept and utility of the case-only genome-wide interaction
(COGWI) study for detecting interactions related to disease risk, prognosis, and treatment
outcomes. We begin by providing an overview of approaches for detecting GxE and GxG
interactions. We then discuss the details of detecting risk-related interactions in COGWI
studies of diseased individuals only and then extend these ideas to the detection of
prognosis-related interactions using data from only cases who experience an outcome of
interest. Similarly, we introduce the novel utility of COGWI studies in assessing gene-drug
interactions (i.e., pharmacogenetics) in the context of randomized clinical trials (RCTs) or
other therapeutic/chemoprevention studies, by only genotyping participants experiencing the
study outcome. Finally, we briefly discuss genome-wide analysis issues and sample size
requirements, as well as the strengths and limitations of the COGWI study design.

DETECTING GENE-ENVIRONMENT AND GENE-GENE INTERACTIONS
Several motivations for identifying GxE interactions in complex disease have been
previously described [Hunter, 2005], many of which also pertain to GxG interactions. For
example, knowledge of interactions may be useful for generating better attributable risks for
genetic and environmental risk factors, estimating risks by subgroups, understanding disease
mechanisms, identifying specific molecular risk factors in complex mixtures, designing
preventative and therapeutic strategies, and offering advice on personalized disease
prevention and treatment [Hunter, 2005]. Furthermore, interacting factors may have weak
marginal associations with disease, making the detection of interactions crucial for the
identification of both genetic and environmental determinants of disease [Ottman, 1996].

Study Designs for detecting interactions
The most common design used to detect interactions is the case-control study, in which
interaction can be tested using data from a simple 2×4 table [Botto and Khoury, 2001] if the
outcome and the interaction factors are dichotomous. Case-control studies may be feasible
for detecting interacting factors that are common, but will be underpowered to detect
interactions as the frequencies of the interacting factors decrease [Hwang, et al., 1994],
suggesting a need for more efficient study designs [Goldstein, et al., 1997]. Power and
efficiency can be enhanced in case-control studies by employing two-stage design strategies
that oversample cases and controls with rare exposures (or genotypes) or countermatch
controls to cases based on environmental exposures or genotypes (or surrogates thereof)
[Andrieu and Goldstein, 1998]. Interaction estimates from case-control studies are subject to
well-known problems, such as selection bias, recall bias (misclassification of exposure),
population stratification, and control selection issues. In addition, prospective measures of
biomarkers of interest (for assessing temporality between biomarkers and disease) are
generally not available.
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Interactions can also be tested in the context of cohort studies (or nested case-control
studies), where the likelihood of selection bias, survival bias, and recall bias can be reduced
or eliminated, and the prospective collection of biomarker data (i.e. temporality) is feasible.
Traditional cohort studies will typically not be practical for detecting interactions related to
relatively rare phenotypes on the genome-wide scale because the number of cohort members
whose genotype and environmental data will be needed is too large and thus cost
prohibitive. Furthermore, the collection of additional phenotype measures (such as fresh-
frozen tumor samples for cancer patients) will be difficult to obtain for individuals in a large
cohort study, compared to case-control studies conducted at a small number of institutions
[Hunter, 2005].

There are several statistical methods for testing interactions, and the presence or absence of
statistical interaction depends on the scale chosen to measure association. In case-control
studies with dichotomous genetic and environmental factors, deviation from multiplicative
or additive models of interaction can be tested [Botto and Khoury, 2001]. These models are
based on the case-control odds ratio (OR), which estimates odds, rate, or risk ratios,
depending on the method of control selection [Schmidt and Schaid, 1999]. The
multiplicative model has the advantage of being easily testable in the context of a logistic
regression, which can generate ORs adjusted for potential confounders, while it has been
argued that the additive model is more relevant to addressing public health issues [Rothman,
et al., 2008]. In cohort studies, additive or multiplicative interaction can be tested, using
RRs, ORs, or rate ratios. As the number of genotypes and exposures categories increases,
models of interaction become more complicated; however, modeling interactions is an
active area of research (reviewed in [Kraft and Hunter, 2005]).

Family-based association tests, which measure departures from Mendelian transmission
from parents to affected children, can be extended to assess GxE interactions, and such
extensions have been made to well-known family based association methods (essentially by
stratifying based on the exposure status of affected offspring) such as the family-based
association test (FBAT) [Lake and Laird, 2004], the log-linear approach [Umbach and
Weinberg, 2000], and transmission disequilibrium test (TDT) [Khoury and Flanders, 1996].
Interactions can also be tested using a family-based case-control study using related controls
(e.g., discordant sib-pairs) [Andrieu, et al., 2005; Andrieu and Goldstein, 1996], or a
combination of related and unrelated controls [Andrieu and Goldstein, 2004; Goldstein, et
al., 2006], in a similar manner as in a case-control study.

Detecting interactions using a case-only (or outcome-only) design
In case-only studies, an interaction that influences disease risk can be detected as an
association between the interacting factors in a sample of diseased individuals. An observed
positive association suggests synergistic interaction, while an inverse association suggests
antagonistic interaction [Ottman, 1996]. Detecting a true interaction in a case-only study is
dependent upon a key assumption: the interacting factors must be uncorrelated in the
population from which the cases arose (the “source population”). Such correlations will be
rare, but may arise in situations where G(s) influences uptake, dependence, or avoidance of
E(s) or due to G-G linkage disequilibrium (LD). Violation of this assumption will lead to a
distorted interaction estimate [Albert, et al., 2001]; however, if the source of this non-
independence can be measured, it is possible to control for non-independence and estimate
valid measures of interaction [Gatto, et al., 2004].

The interaction parameter in case-only studies (i.e., the case-only OR) estimates departure
from multiplicative risk ratios (RRs) derived from a cohort study of the source population,
when the interacting factors are independent in the source population [Gatto, et al., 2004]
(Figure I). The genetic variant(s) of interest can be modeled as a dichotomous variable (i.e.
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dominant or recessive mode of inheritance) as in Figure I, or as three genotypes, which can
be modeled as a log-additive mode of inheritance in the interaction model (i.e. in the
presence of the interacting exposure, the presence of two interacting alleles increases risk
twice as much as the presence of one interacting allele). The case-only design can also be
used to detect prognostic interactions, using only data on diseased individuals experiencing
an outcome of interest. In this case, the interaction estimate (i.e., the case-only OR for
disease outcome) is equivalent to the interaction RR, but only if the interacting factors are
uncorrelated in the source population of diseased individuals (i.e. case-only OR for risk =
1.0) (Figure I).

CASE-ONLY GENOME-WIDE INTERACTION STUDY OF DISEASE RISK
Researchers conducting GWA studies have successfully identified genetic variants that
influence a wide array of diseases [McCarthy, et al., 2008]; however, the extent to which
these associations differ by disease characteristics and are modified by other environmental
or genetic factors still needs to be described. Additional research is also needed to identify
interacting factors that have weak or no marginal effects on disease risk, as these factors will
only be detectable in the context of studies designed and powered to detect interactions
[Ottman, 1996]. Employing dense genotyping technologies in studies of interaction may
facilitate rapid discovery, similar to that of early GWA studies.

Study design and analysis
A COGWI study of disease risk could include cases from an existing case-control GWA
study (Figure II). Simply discarding the controls from such a study would increase power to
detect interaction [Piegorsch, et al., 1994]; however, depending on the size of the GWA
study, additional cases would likely be needed to achieve adequate power [Smith and Day,
1984]. Diseases that are tracked in population-based registries are ideal for COGWI studies,
as these registries provide an excellent resource for unbiased recruitment of cases [Botto and
Khoury, 2004].

A general analysis plan for COGWI studies of GxE interaction would be to choose an
environmental exposure of interest, perhaps an established risk factor for a disease, and
screen for genetic variants that modify the magnitude of the risk factor’s association with
disease, in a genome-wide fashion. In other words, in the case-only setting, one would
simply screen all genetic variants for an association with an exposure of interest.

Detecting GxG interactions in the case-control GWA setting, without any prior hypotheses
regarding candidate interacting loci, is a computationally intensive task that is further
complicated by issues of multiple testing and statistical modeling [Evans, et al., 2006;
Marchini, et al., 2005]. Similarly, exploratory COGWI studies of all possible 2-way G-G
interactions would involve approximately k2/2 tests of interaction (ignoring LD), where k is
the number of genotyped markers. Modeling would be somewhat simpler in COGWI
studies, because of the inability to detect marginal associations with disease. In order to
mitigate the multiple testing problem, preliminary GxG COGWI studies can be conducted
that screen the genome for variants that interact with a candidate polymorphism in an
identical fashion to the GxE scans described above.

The COGWI study and the case-only assumption
Detecting interactions in a COGWI study relies on the assumption that the interacting
factors are uncorrelated in the source population. With respect to GxE interactions, the vast
majority of variants included on a genome-wide panel will be independent of any
environmental exposure in the population of interest. There may be exceptions, but they will
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be the overwhelming minority. The group of promising variants identified in a COGWI
screen may be enriched for variants that show a G-E correlation in the source population.
Therefore, it would be ideal to independently assess the G-E correlation for these promising
variants in a smaller group of samples randomly selected from the source population to
insure G-E independence.

Correlations between health behaviors and knowledge of genetic susceptibility (and the
resulting G-E correlation) will not be of significant concern in COGWI studies. Assuming
the marginal risks conferred by variants implicated in GxE interactions are modest, any
variant being tested for interaction will weakly associate with family history. Thus,
confounding by family history is less of a concern in COGWI studies than in GxE studies of
more penetrant mutations (i.e., those with strong main effects), which strongly associate
with family history and are more likely to result in G-E correlations.

With respect to GxG interactions, any given single nucleotide polymorphism (SNP) is
expected to be uncorrelated with the vast majority of other SNPs in the genome, making the
case-only design an attractive option for investigating GxG interactions. The primary
exception is SNPs that are in close proximity to one another and correlated due to LD.
However, commercial genome-wide panels (e.g., Illumina platforms) are designed to
efficiently capture the majority of variation in the human genome with a minimal number of
tagging SNPs (tagSNPs). As a result, LD between neighboring SNPs is minimized, without
losing a great deal of information. Nevertheless, associations between SNPs residing in the
same chromosomal region should be interpreted with caution, using knowledge of
population-specific patterns of LD [Ardlie, et al., 2002]. Ideally, associations between
promising SNPs pairs identified in GxG studies should be tested in the source population, to
ensure the validity of the case-only interaction estimate.

Additional applications of the COGWI study
In addition to genome-wide GxE screens, similar screens could be conducted to identify
genetic factors that correlate with clinical, pathological, or molecular characteristics of
interest, perhaps those with prognostic or etiologic significance [Begg and Zhang, 1994;
Botto and Khoury, 2004]. Variants identified would be hypothesized to put carriers of
specific alleles at higher risk for developing disease associated with specific clinical,
pathological, or molecular characteristics. These types of analyses would not be dependent
on any assumptions regarding the source population.

It is possible to use genetic information as a surrogate for endogenous biological exposures.
GWA studies have successfully identified numerous protein quantitative trait loci (pQTLs)
for many clinically relevant serum and plasma proteins [Melzer, et al., 2008]. For
endogenous exposures of interest for which measures are not available, it may be
appropriate to use genetic determinants of that exposure to screen for GxG interactions, as a
surrogate screen for GxE interactions. The surrogate GxG estimate is less susceptible to
confounding and reverse causality than the GxE estimate because G can be viewed as an
instrument variable that is independent of disease outcome conditional on E [Lawlor, et al.,
2008]. In other words, because the relationship between E and disease risk may be
confounded (within strata of G), a GxG interaction provides evidence that GxE interact (in a
causal manner) to influence disease risk (i.e. “Mendelian randomization”), although this
method will be less powerful than studies incorporating information on the endogenous
exposure.
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CASE-ONLY GENOME-WIDE INTERACTION STUDY OF DISEASE
OUTCOME

The COGWI study design is equally applicable to the detection of interactions that influence
outcome (i.e., prognosis) among diseased individuals. In a COGWI study of disease
outcome, study participants are selected based upon the presence (or absence) of an outcome
of interest (e.g., mortality, disease recurrence, outcomes defined by biomarkers or
intermediate endpoints). As in a COGWI study of disease risk, individuals with the outcome
of interest are genotyped using a dense panel of genetic markers, and these markers are
screened for associations with exposures or genetic variants of interest. A G-E (or G-G)
association suggests that G and E (or G and G) interact to influence the outcome under
study, assuming the two factors are independent in the source population of all cases.

Relatively little research has focused on the impact of GxE or GxG interactions on disease
outcomes, and there is a need for new approaches to model the contributions of interactions
in outcomes research [Ambrosone, et al., 2006]. Any prognostic information (including
information related to GxG or GxE interactions) is of obvious value to physicians and
patients making decisions about appropriate treatments. The diagnosis represents a time
point at which individuals often become motivated to learn about modifiable prognostic
factors and make lifestyle changes to enhance the their quality of life and survival [Demark-
Wahnefried, et al., 2005], changes that could be related to diet, physical activity, weight
loss, or nutritional supplements. COGWI studies can facilitate the identification of genetic
and/or environmental factors that influence disease outcomes.

Study design and analysis
The most common design for studying disease outcome (and prognostic interactions) is the
longitudinal cohort study, which requires tracking many diseased individuals over time.
Such a study may not be practical for detecting interactions, especially in genome-wide
studies, which require very large sample sizes. A COGWI study of outcome would be
conducted retrospectively, making a study of interactions more practical, in terms of sample
size and costs. Participants experiencing the outcome of interest could be selected from
existing studies of disease risk or prognosis, assuming the data of interest could be extracted
from these studies (Figure II). Similar to case-only studies of risk, COGWI studies of
prognosis are ideal for conditions tracked in population registries, should events of interest
be tracked as well.

Choice of outcome is a critical feature of COGWI studies of prognosis, as many diseases
have a wide range of outcomes which can be measured in multiple ways. The outcome and
criteria for participation need to be clearly defined and clinically relevant [Laupacis, et al.,
1994; Mak and Kum, 2005]. The outcome could be based on a dichotomous clinical event
(e.g., second primary cancer, recurrence, metastasis, or intermediate endpoint), vital status,
or a threshold of a continuous measure of health status (i.e. sampling individuals from the
tails of phenotypic distributions). Researchers may want to focus on outcomes which appear
to have some genetic basis, although the evidence supporting such a hypothesis may be
limited. The time period between diagnosis and enrollment needs to be sufficiently long to
fully capture the outcome of interest and the selected participants should represent the full
spectrum of the disease of interest to avoid selection bias [Laupacis, et al., 1994; Mak and
Kum, 2005]. For outcomes that are inevitable, such as mortality, well defined restrictions
(such as “disease-specific mortality” or “death within 5-years”) will be needed to accurately
define the relevant outcome of interest. These definitions should be based on sound
biological, clinical, and/or epidemiological reasoning.
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Exposures of interest in interaction studies of outcome may be substantially different than
those considered in interaction studies of risk. For instance, clinical, molecular, or
pathological features of disease, including molecular phenotypes, could interact with genetic
variants to influence prognosis, whereas these features can not interact with genetic variants
to influence disease risk. In addition, the biological mechanisms (and the exposures related
to these mechanisms) underlying disease etiology may be distinct from those underlying
disease progression and survival. Known prognostic factors without a significant role in
disease etiology may be of primary interest in interaction studies of outcome.

COGWI study of the absence of outcome (“control-only” study)
When the outcome of interest is common, an interaction related to outcome will induce a G-
E association in the group experiencing the outcome (case-only OR = (o00*o11)/(o01*o10))
and the group not experiencing the outcome (case-only OR=((d00-o00)*(d11-o11))/((d01-
o01)*(d10-o10))), assuming there is no G-E association in the source population of diseased
individuals (Figure I). If the interaction is synergistic (i.e., case-only OR>1) then the
association between G and E in those without the outcome of interest will be negative (case-
only OR<1), and vice versa. Thus, depending on the frequency of the outcome and strength
of the anticipated interactions, there may be two groups of samples appropriate for screening
for interactions related to outcomes using case-only methods: individuals experiencing the
outcome and individuals not experiencing the outcome.

Assuming a constant case-only OR (i.e. interaction RR) for outcome, as the frequency of the
outcome increases, power to detect an interaction in cases not experiencing the outcome
increases (i.e. the case-only OR for absence of outcome moves further from the null). For
example, if the outcome of interest has a low absolute risk (<25%), a case-only study of
individuals experiencing the outcome will generally be more powerful for detecting
interactions than a study of those not experiencing the outcome, although the lower risks
will result in few available cases. For outcomes with relatively high absolute risks (>75%), a
case-only study of the absence of outcome will be more powerful than a case-only study of
the outcome, although the higher risks will result in fewer individuals not experiencing the
outcome (unpublished calculations not shown here). Such studies would be especially
applicable to outcomes such as mortality, where DNA may not be available for deceased
subjects. Details of the utility and epidemiologic properties of these two approaches will be
explored further in a subsequent paper.

CASE-ONLY GENOME-WIDE INTERACTION STUDIES OF DRUG
RESPONSE

In addition to the study of prognostic and risk-related interactions, the COGWI study design
can be used to identify genetic variants that predict response to treatment. In a sample of
individuals who have experienced an outcome of interest, an association between a genetic
variant and a specific treatment suggests a gene-drug interaction is influencing the outcome,
provided the genetic variant is uncorrelated with treatment in source population. For
COGWI studies of therapeutic treatments, case groups should be selected based on
outcomes similar to that of COGWI studies of prognosis or based on adverse side effects of
interest. For COGWI chemoprevention studies, case group selection should be similar to
that of COGWI studies of disease risk.

The ideal setting in which to test for gene-drug interactions is in a randomized clinical trial
(RCT). Individuals with an outcome of interest could be selected for inclusions in a COGWI
study of pharmacogenetic interactions, where treatment assignment is the exposure of
interest. In this scenario, the key assumption of the case-only analysis is valid by design,
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because treatment is randomly assigned. In other words, there will be no systematic
correlation between treatment assignment and any potential effect modifier (genetic or
otherwise) in the “source population” (i.e. all RCT participants at risk for the outcome of
interest).

Studying gene-drug interactions in well-designed observational studies of treatment or drug
response is also possible, and the implementation of the COGWI study design is similar to
that of studies of prognosis, although interacting variants would be interpreted as
“predictive” rather than interacting “prognostic” variants. Predictive variants influence a
patient’s response to a specific treatment (e.g. efficacy and toxicity), while prognostic
variants influence a patient’s overall outcome independent of treatment [Vallbohmer and
Lenz, 2006]. In some instances, genetic variants may be related to both prognosis and drug
response [Fagerholm, et al., 2008]. A prognostic variant that is associated with clinical,
pathological, or molecular characteristics of prognostic significance may also be associated
with treatment assignment, leading to a violation of the key assumption of case-only
interaction analyses: a G-E association in the source population of cases.

The application of the COGWI study design to RCTs is particularly attractive because there
is existing data and stored samples for many large therapeutic and chemopreventative RCTs.
The main effects of these treatments are well described, as a result of the primary RCT
analyses. Exploring pharmacogenetic interactions is the next logical step towards
understanding the effects of these treatments and may facilitate the discovery of treatment
effects specific to subgroups defined by genetic variants.

Special applications to clinical trials: Phase I, Phase II, and 2×2 factorial Phase III trials
There are certain types of gene-treatment interactions that cannot be detected using a
COGWI study. For example, if a genetic variant interacts with a treatment to increase risk of
drug toxicity, only individuals taking the drug will experience that toxicity, and there will be
no variability in treatment (or treatment assignment in an RCT) among individuals who
experienced toxicity. Toxicity (i.e. drug safety) is usually assessed in Phase I and Phase II
clinical trials, where all subjects are given treatment. In scenarios where only the treated
group is of interest, a GWA analysis limited to individuals receiving treatment could
potentially identify the interacting variant (as demonstrated in [Link, et al., 2008]). For a
COGWI analysis to be feasible, the outcome of interest must occur in both treated and non-
treated individuals (such as myocardial infarction). However, a COGWI study of individuals
experiencing a drug-specific toxicity could be used to detect GxG or GxE interactions
related to toxicity, without taking treatment into account.

The COGWI design can also be applied to RCTs employing a 2×2 factorial design, an
efficient design for evaluating the effects of two treatments simultaneously assuming the
treatments do not interact. Individuals are randomized to either one of two treatments, both
treatments, or placebo. Similarly, data on individuals from all four study arms who
experience some outcome of interest could be used to detect pharmacogenetic interactions
related to either treatment, provided that the two treatments do not interact to influence the
outcome of interest. In other words, the efficiency of the 2×2 factorial design in assessing
main effects of treatment on outcomes can be preserved in a COGWI study of
pharmacogenetic interactions. In the case were the two treatments interact, analyses models
stratified on or adjusted for one treatment, could be employed to account for this interaction
when screening for pharmacogenetic interactions related to the other treatment.
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ANALYSIS STRATEGIES FOR COGWI DATA
Genome-wide studies typically involve a large number of tests (300,000–1,000,000),
requiring investigators to use higher levels of significance (p~10−7) to guard against false
positives (which in turn requires larger sample sizes). The number of expected false
positives in a COGWI screen using a single exposure/treatment or a single candidate genetic
variant will be identical to that of GWA study using the same panel of markers, assuming
one p-value for interaction is generated per variant. As more environmental exposures,
treatments, genetic variants, or clinical/prognostic factors are tested for interaction or
heterogeneity, the total number of expected false positives will increase.

Pooling data among several studies is often a requirement to achieve the samples sizes
required to conduct a GWA study, and the same will be true for COGWI studies. When
working with multi-site data, researchers also need to ensure that the key assumption of
case-only analysis is valid for each study site. In order to reduce genotyping costs (with little
power loss), researchers often employ staged designs, conducting genome-wide genotyping
on only a subset of participants and in a second stage, typing only markers showing
evidence of interaction in the first stage. In COGWI studies, existing genome-wide data
could be used for stage one, while a smaller subset of candidate markers could be genotyped
inexpensively in additional cases. Analyzing data from both stages jointly has been shown to
enhance power to detect associations in GWA studies [Skol, et al., 2007], a strategy that will
also enhance the power of COGWI studies.

In GWA analyses, several computational techniques can be employed to increase the
probability that a true association is detected. Knowledge of LD patterns can be used to
impute genotypes for all variants whose correlations with other SNPs are known [Marchini,
et al., 2007]. Alternatively, SNPs can be weighted according to how many other SNPs they
tag (under the hypothesis that a tagSNP tagging many SNPs is more likely to be associated
with disease than a tagSNP tagging few SNPs) [Carlson, 2006], or according to prior
knowledge related to the functional consequences of the nucleotide change [Roeder, et al.,
2007]. Confounding due to ancestry (which may of increased importance in multi-site
analyses) can be addressed using several methods that account for population structure using
the available genome-wide data, including principal components analysis [Price, et al.,
2006] and model-based clustering methods [Pritchard, et al., 2000].

STRENGTHS AND LIMITATIONS OF THE COGWI APPROACH
The COGWI study is an efficient method for detecting GxE, GxG, and pharmacogentic
interactions [Yang, et al., 1997], as case-only studies produce more precise estimates of
interaction (i.e., smaller standard errors) than case-control studies [Piegorsch, et al., 1994]
and other family-based methods, thus requiring smaller sample sizes [Kazma, et al., 2007].
This is a significant benefit considering the cost of genome-wide genotyping and the large
samples sizes needed when searching for modest effects using many statistical tests.

Sample size requirements for whole-genome screening for interactions with a candidate
exposure of interest using COGWI and case-control GWA studies are compared in Figure
III. These estimates are based on 80% power, a type 1 error rate of 10−7, a synergistic model
of interaction with no main effects, and a one to one case to control ratio. Sample size
estimates vary by gene variant frequency, exposure frequency, and magnitude of risk due to
interaction. Estimates were generated using the Quanto program [Gauderman, 2002;
Gauderman and Morrison, 2006]. For all parameter combinations, the sample size
requirement for COGWI studies is consistently lower than those for case-control GWA
studies, often 2- to 3-fold lower. For common interacting exposures (prevalence ≥0.5),
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relatively uncommon interacting variants (frequency ≤0.3) require larger samples sizes than
do more common variants, especially for stronger interactions (Figure III).

In COGWI studies of disease risk that utilize data from an existing case-control GWA
studies, available data on controls can be used to assess G-E or G-G independence for
promising interactions identified in the COGWI analysis (Figure II) [Schmidt and Schaid,
1999], as G-E or G-G correlations in the source population will lead to distorted interaction
estimates [Albert, et al., 2001]. However, this method may be problematic in some
instances, as the association observed in controls may not accurately reflect the association
between interacting factors in the source population [Gatto, et al., 2004]. The association in
controls will tend to underestimate the association in the source population as baseline risk
of disease and the magnitude of the interaction increase [Gatto, et al., 2004]. Ideally, one
would measure this association in a random sample from the source population.

An interaction estimate from a case-only study is equivalent to an interaction estimate based
on RRs, as derived from a prospective cohort study, while an interaction estimate from a
case-control study is typically based on ORs, which tend to overestimate the true RR
[Schmidt and Schaid, 1999]. However, case-only studies are limited to assessing a
multiplicative model of interaction; interactions based on additive models, which may be
more relevant to addressing public health issues, cannot be assessed [Rothman, et al., 2008].
Similar to the case-control study, the case-only study is susceptible to selection bias, recall
bias (if data is collected retrospectively), and population stratification [Wang and Lee,
2008]. Potential confounding related to both G and E should be considered, although any G-
E association that is heavily attenuated by confounder adjustment suggests that a confounder
may be participating in the interaction, rather than the genetic or environmental factor with
which the confounder is associated.

In COGWI studies of disease outcome, risk-related interactions will result in G-E (or G-G)
associations in the source population of diseased individuals. For these pairs of interacting
factors, the key case-only assumption will be violated, and the results will not be valid,
unless this correlation is taken into account. Similarly, this assumption would be violated if
a genetic variant increased risk for a disease subtype associated with the outcome under
study (i.e., the variant would be associated with the subtype in the source population).
Although these scenarios will undoubtedly be very rare considering the number of variants
being tested, G-E (or G-G) associations observed in COGWI studies may be enriched for
such variants, again suggesting that interacting factors should be tested for independence in
a random sample of individuals from the source population. If study participants are drawn
from an existing sample of cases from the source population (e.g. a case-only study; see
Figure I and Figure II), this study can serve as a convenient source of data to test the key
assumption or quantify the association.

In COGWI studies where death is the outcome of interest, DNA samples may be
unavailable; although, this limitation could potentially be addressed by conducting a case-
only study of the absence of an outcome, if death is a common outcome. In addition,
COGWI studies cannot incorporate quantitative information regarding the outcome of
interest (unless a threshold is used as a cutpoint), including time-to-event information, which
is often utilized in longitudinal analyses of prognosis. Furthermore, if the outcome of
interest is uncommon, it may not be feasible to recruit the number of participants needed for
a well-powered study, considering the large sample size requirements (see Figure III).
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CONCLUSION
The COGWI design is an efficient method for detecting GxE and GxG interactions related
to disease risk, prognosis, or drug response, requiring data on far fewer study subjects than
other study designs [Yang, et al., 1997]. In addition, no controls are needed, eliminating
concerns related to bias created by inadequate control selection [Khoury and Flanders,
1996]. Sharing data across GWA and COGWI studies of disease risk and outcome can
further enhance efficiency. COGWI studies are limited by their reliance on the assumption
of independence of interacting factors in the source population and their inability to test
“main effects”. COGWI analyses should initially focus on screening for genes that interact
with established or suspected risk factors (genetic or environmental), prognostic factors, and
treatments, a straightforward strategy for detecting risk- and outcome-related GxE, GxG and
pharmacogenetic interactions on a genome-wide scale.
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Figure I. An overview of the case-only study design for detecting GxE interactions related to
disease risk and disease outcome
(A) A hypothetical cohort of individuals is drawn from a population of interest and
classified according to presence or absence of G and E. Individuals are then classified
according to disease and disease outcome status. Actual data is collected on individuals in
categories shown in bold, for case-only studies of risk (D+) and outcome (O+). (B) The key
association measures for case-only studies are dependent upon assumptions related to G-E
associations in the source population.
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Figure II. Overview of data requirements, analysis opportunities, and strategies for efficient
multi-study design related to case-only genome-wide interaction studies of disease risk and
outcome
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Figure III. Sample size estimates for detecting GxE interactions in COGWI and case-control
GWA studies
Estimates are based on 80% power, a significance threshold of p<10−7, a synergistic model
of interactions with no main effects, a log-additive mode of inheritance (in the presence of
E), and a one to one case-control ratio. IRR is the interaction relative risk per allele copy in
the presence of E (Homozygous RR=IRR2). Individuals lacking E or having 0 copies of G
were assigned an IRR of 1.00.
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