
904

Am. J. Trop. Med. Hyg., 82(5), 2010, pp. 904–911
doi:10.4269/ajtmh.2010.09-0737
Copyright © 2010 by The American Society of Tropical Medicine and Hygiene

     INTRODUCTION 

 Plague, caused by the bacterium  Yersinia pestis , is a severe, 
primarily flea-borne, rodent-associated zoonosis. In humans, 
 Y. pestis  infection most commonly presents in one of three 
clinical forms. 1  Bubonic plague, the most common of the 
three, is typically associated with the bite of an infectious 
flea or with direct contact between the infectious agent and 
open skin lesions; it is characterized by sudden onset of fever, 
chills, headache, malaise and regional lymphadenopathy. 1–  4  
Occasionally, cutaneous exposure to  Y. pestis  may result in 
septicemic plague, which is characterized by fever and sep-
sis without the characteristic regional lymphadenopathy. 1–  4  
Pneumonic plague is rare, but also is the most severe form; 
it is caused either by hematogenous spread of plague bacte-
ria to the lungs or primary exposure through inhalation of the 
infectious agent. 1,  4,  5  Although person-to-person transmission 
requires close contact between infectious and susceptible per-
sons, 6  primary pneumonic plague is a feared complication and 
focal outbreaks still occur. 7–  10  Fatality rates for untreated infec-
tions range from 50% to 60% for bubonic plague to nearly 
100% for pneumonic infections, 11,  12  but outcome of infection is 
significantly improved by early diagnosis followed by appro-
priate antibiotic therapy. 13  

 Because of the severity of the disease and its potential for 
epidemic spread, plague was one of only three internation-
ally quarantinable diseases under previous International 
Health Regulations. 14  Under current International Health 
Regulations 15  ( http://www.who.int/ihr/en/ ), pneumonic plague 
remains an internationally notifiable disease that is noted 
as a public health emergency of international concern, and 
other forms are reportable only from non-endemic localities. 
Thus, compliance with these new regulations requires a clear 
understanding of the locations of plague foci. Historical data 

on plague case occurrence, which were typically reported by 
country, 16  provide an understanding of the coarse geographic 
distribution of the disease organism. However, risk is often 
spatially heterogeneous within plague-endemic countries. 
Geographic Information Systems (GIS) and Remote Sensing 
(RS) technology coupled with statistical modeling have been 
useful in generating risk maps that display this spatial hetero-
geneity and such outputs may aid in identifying previously 
uncharacterized plague foci. 17–  22  

 In recent decades, most human plague infections have been 
reported from eastern Africa and Madagascar. 16,  23  The GIS-
based models have identified widespread areas of risk on the 
African continent, and they have determined that ecological 
predictors of risk are variable among these foci. 21  Although 
informative for raising awareness in potentially endemic areas, 
the coarse scale of these risk maps limits their use in target-
ing scarce prevention and control resources. The objectives of 
the present study were to 1) identify remotely sensed corre-
lates of plague risk in the previously identified endemic West 
Nile region of Uganda, 22,  24,  25  2) extrapolate the model to a sub-
village scale and to neighboring regions of the Democratic 
Republic of Congo, and 3) evaluate model performance at 
multiple spatial scales. We believe that the sub-village reso-
lution of the model may aid in identifying villages at highest 
risk of plague case occurrence, and may be useful for guiding 
further efforts to more accurately identify environmental and 
behavioral risk factors for the disease. 

   MATERIALS AND METHODS 

  Study area.   The study was conducted primarily in Vurra 
and Okoro Counties, located within Arua and Nebbi Districts, 
respectively, in the West Nile region of Uganda ( Figure 1 ). 
The Rift Valley escarpment bisects the counties, dividing 
them into two distinct sections. The lower elevation section 
east of the escarpment is characterized by sandy soil and low 
rainfall, and the western, higher elevation area is comprised 
of lush vegetation, fertile soil, and numerous rivers and 
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tributaries. Although villages are distributed on both sides of 
the escarpment, most human plague cases are reported from 
western portions of the counties located above 1,300 meters. 22  
More detailed descriptions of the ecological characteristics of 
the area have been reported. 22,  25,  26  

 The West Nile region is divided into several administra-
tive boundaries. From largest to smallest, these include dis-
tricts, counties, sub-counties, parishes, and villages. With the 
exception of villages, boundaries of each have been geo-coded 
(International Livestock Research Institute, Nairobi, Kenya, 
2006). Our study focuses on the village and sub-village level, 
and boundaries of villages and residences of interest were 
mapped for this study as described below. 

    Description of cases and controls.   In Uganda, the standard 
criteria for diagnosis of plague include sudden onset of fever, 
chills, malaise, headache or prostration accompanied by either 
painful regional lymphadenopathy (bubonic), hematemesis or 
hematochezia (septicemic), or cough with hemoptysis (pneu-
monic). As described, 22  we compiled a database for 1999–2008 

that included the health clinic where the patient was seen, 
village of residence, date of onset of plague signs and symp-
toms, and a classification of suspect or probable plague case. 
Suspect cases included all cases where the clinic log records 
stated that the patient was diagnosed and treated for plague. 
In contrast, a probable case was a patient seen at a referral 
hospital in the region, was diagnosed and treated for plague, 
and additional environmental data suggestive of an on-going 
plague epizootic (e.g., report of a rat die-off in the area where 
the patient was believed to have been exposed to  Y. pestis ) 
were provided. 

 During the 2008–2009 plague season (approximately 
August–March), laboratory confirmation was conducted for 
patients with clinically suspected plague. Case confirmation 
was provided by demonstration of  Y. pestis -specific phage lysis 
of a culture isolated from primary specimens (i.e., lymph node 
aspirates, blood, or sputa) and/or demonstration of seroconver-
sion. 27  After laboratory confirmation of a case, the location of 
residence was recorded using a handheld global positioning 

 F igure  1.    Map of parishes in the West Nile region in northwestern Uganda ( inset ). Locations of clinics from which confirmed plague cases were 
reported during 2008–2009 are shown as crosses. Villages of residence of cases and controls are shown as solid or hatched polygons, respectively. 
Vurra County in Arua District and Okoro County in Nebbi District are shown in dark and light gray, respectively. This figure appears in color at 
 www.ajtmh.org .    
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system (GPS) receiver (Magellan Explorist 500; MiTAC Digital 
Corp., Santa Clara, CA; or Garmin GPSMap 60CSx; Garmin, 
Olathe, KS); these points comprise the case data included in 
the methods given below. All procedures involving human sub-
jects were reviewed and approved by the Centers for Disease 
Control and Prevention Institutional Review Board (Protocol 
nos. 4696 and 5301), the Uganda Virus Research Institute 
Scientific Ethics Committee (GC/127/08/12/22), and the Uganda 
National Council for Science and Technology (HS 488). 

 To control for access to care and to maximize the likelihood 
that control locations had a low probability of plague occur-
rence, in our selection of control locations we visited each of 
the seven clinics that reported a laboratory-confirmed plague 
case in 2008–2009 ( Figure 1 ). From the clinic log books, we 
extracted the name of the first village to appear before or after 
the confirmed plague case that was not represented on the list 
of villages that reported a suspect or probable plague case in 
1999–2008. We aimed to identify two control villages for each 
case village. 

 The boundaries of each case and control village were mapped 
using a handheld GPS receiver while walking the perimeter 
of each village with a village leader; longitude and latitude 
data were used to create a shapefile delineating boundaries 
of case and control villages ( Figure 1 ). Locations of human 
habitations, typically round or square earthen structures with 
thatch roofing, were digitized by overlaying the case–control 
village shapefiles on orthorectified Quickbird imagery col-
lected from 2002–2009 or WorldView imagery collected on 
February 16–24, 2008. All layers were projected to universal 
transverse Mercator zone 36N WGS 1984. From each con-
trol village, a single hut location was randomly selected using 
Hawth’s Random Selection Sampling Tool (Hawth’s Analysis 
Tools version 3.27). The resulting shapefile comprised the con-
trol points used in the methods described below. 

   Predictive variables.   The GIS and RS data used in this 
analysis have been described in detail. 22  Briefly, these 
data include 1) administrative boundaries within Uganda 
depicting district, county, and parish (International Livestock 
Research Institute, 2006), 2) a 90-meter digital elevation 
model (Shuttle Radar Topography Mission Elevation Data 
Set, 2008, accessed August 2008 at  http://seamless.usgs.gov/ ), 3) 
Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images 
captured January 1, 2007 (Row/Path: 58/172) and January 
10, 2007 (Row/Path: 58/173). Landsat ETM+ images were 
acquired through a cooperative agreement with the National 
Geospatial Intelligence Agency and were captured during clear 
atmospheric conditions; radiometric and geometric distortions 
of the imagery were corrected. Landsat images from January 1 
and 10, 2007 were mosaiced together as described by Winters 
and others. 22  

 In our exploration of the relationship between plague risk 
and elevation, we treated elevation as continuous or dichoto-
mous variables. According to the model of Winters and oth-
ers, 22  we created a raster layer defining areas as either above 
or below 1,300 meters. In addition to each individual Landsat 
ETM+ band value, we included 1) surface temperature, 2) 
the normalized difference vegetation index, 3) brightness, 4) 
greenness, and 5) wetness. Descriptions of the derivations of 
each variable were reported by Winters and others. 22  

   Model construction.   The objective of our model was 
to classify the West Nile region of Uganda into areas of 
elevated or low risk of human exposure to plague bacteria. 
In accordance with reported methods, 17  logistic regression 
models were constructed to evaluate the association between 
the probability of a grid cell being classified as high risk and 
its environmental attributes (described above). The first 
candidate model included variables that were previously 
identified as predictive of risk at a parish-level scale (i.e., 
elevation, brightness, greenness, wetness). 22  Other candidate 
models were constructed after predictive variables were 
screened by forward stepwise logistic regression modeling to 
identify those with the greatest association with elevated risk. 
Spearman correlation tests were used to eliminate variables 
that were significantly associated with risk ( P  < 0.05) but 
highly correlated with other covariates (ρ = 0.85). Each of the 
candidate models ( Table 1 ) may be described by the equation 

 Logit ( P ) = β0 + β 1 x 1  + β 2 x 2  + … + β k x k  [expression 1]  

 where  P  is the probability that a grid cell will be classified as 
elevated risk and β 0  is the intercept. The values β 1  … β k  rep-
resent coefficients assigned to each independent variable, 
x 1,  …, x k  included in the regression model. The probability of 
each cell being classified as high or low risk was derived from 
expression 1 using the equation 

  P  = e Logit (P)/(1 + e Logit (P)) [expression 2] 

      Whole model tests were used to assess statistical significance 
of each model. To determine   whether the covariates included 
in the model adequately described the distribution in the data, 
goodness of fit tests compared the pure error negative log-
likelihood with the fitted model log-likelihood. When the χ 2  
test result was not significant ( P  > 0.05), sufficient explanatory 
variables were considered to be included in the model. 

 The overall discrimination ability of each model was 
assessed using area under the curve (AUC) estimates derived 
from receiver operating characteristic curves (ROCs). The 
AUC provides a threshold-independent measure of the over-
all accuracy of the model; values range from 0.5 to 1, where a 
value of 1 indicates that all points were correctly classified. We 
used ROCs to determine the optimal probability cut-off value 

 T able  1 
  Candidate models for associations of remotely sensed variables and likelihood of a pixel being classified as elevated risk of exposure to 

 Yersinia pestis  in the West Nile region of Uganda *   
Model ID Negative log-likelihood K AIC DAIC AUC Sensitivity Specificity PPV NPV Independent model variables

1 56.91 5 66.91 3.21 80 81 69 57 88 1,300 meters, wetness, greenness, brightness
2 55.73 6 67.73 4.03 80 86 74 62 91 1,300 meters, band 3, band 7, ST, brightness
3 55.60 5 65.60 1.90 81 89 71 60 93 1,300 meters, band 3, band 6, brightness
4 55.60 4 63.70 0 81 86 71 60 91 1,300 meters, band 3, band 6

  *   K = number of estimated parameters included in the model; AIC = Akaike information criterion; AUC = area under the receiving operator characteristic curve; PPV = positive predictive value; 
NPV = negative predictive value; ST = surface temperature.  
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for characterizing each grid cell as high or low risk. Based 
on the selected probability cut-off value that simultaneously 
maximized sensitivity and specificity, 28  we compared sensi-
tivity, specificity, and positive and negative predictive values 
(described below) for each of the candidate models ( Table 1 ). 

 Akaike’s information criterion (AIC) was used to compare 
candidate models and to select the most parsimonious model 
with the highest predictive power. 29  For each candidate model 
an AIC value was calculated. The model with the lowest AIC 
value was deemed the best. However, models within 2 AIC 
units were considered to be competing models with substan-
tial support. 30  To select the best among competing models, we 
selected the model with highest sensitivity that had the best 
balance in sensitivity, specificity, and positive and negative 
predictive values. For the selected model, semivariograms of 
model residuals were constructed and spatial dependence was 
evaluated using Moran’s I statistic. A leave-one-out method 28  
was used to evaluate how sensitive the model was to any par-
ticular case or control point. In summary, the best model was 
sequentially refitted by removing a single site, recording the 
AUC value, replacing the site and removing the next site in the 
data set. The average and range in AUC values are reported. 
Finally, the best model was extrapolated to all pixels con-
tained within the two Landsat scenes by applying expression 
2 using the raster calculator function of ArcGIS version 9.3 
(Environmental Systems Research Institute, Redlands, CA). 

   Model evaluation.   To evaluate performance of the best 
model, sensitivity, specificity, and positive and negative 
predictive values were calculated based on the case and control 
points used to construct the model. To do so, expression 2 was 
applied to all pixels and risk probabilities were extracted 
for each case or control point. A site was assigned a value 
of elevated or low risk, if the probability value was above or 
below the threshold value identified by the ROC, respectively. 
Sensitivity is a measure of the percentage of case sites that 
were accurately classified by the model as elevated risk. 
Specificity summarizes the percentage of control sites that 
were accurately classified by the model as low risk. Positive 
and negative predictive values describe the percentages of 
sites that the model predicted to be elevated or low risk that 
were actual case or control locations, respectively. 

 In addition to the point-based evaluation, we calculated the 
percentage of each village that was classified as elevated risk. 
This secondary evaluation was conducted in part because exact 
exposure sites could not be determined. Given the amount of 
time inhabitants spend within their village of residence, it is 
expected that if the included variables are predictive of ele-
vated risk, significant differences should be observed between 
case and control villages. Using Wilcoxon rank sums tests, we 
compared the median area of elevated risk between case and 
control villages. Because risk areas may be located within vil-
lage boundaries, but not coincide with the locations of human 
habitations, we assessed the proportion of huts located within 
risk pixels. This assessment was accomplished by extracting 
the risk classification (i.e., elevated or low risk) for each hut 
that was digitized within the village boundaries. We then com-
pared the median proportion of huts located within risk areas 
between case and control villages using a Wilcoxon rank sums 
test. We assumed that a significantly higher proportion of huts 
located within risk areas in case villages was supportive of our 
hypotheses that 1) the selected variables were indicative of 
plague risk and 2) most exposures occur in the peridomestic 

setting. To expand upon the village-level model evaluations, 
we calculated the percentage of each parish classified as ele-
vated risk and used linear regression to explore the association 
between percent of the parish covered by areas of elevated 
risk and parish level incidence of human plague (based on sus-
pect and probable plague cases reported in 1999–2007). 

    RESULTS 

  Summary of epidemiologic data.   During 1999–2007, a 
median of 266 (range = 76–466) suspect or probable plague 
cases were reported per year. During August 2008–March 2009, 
a total of 163 cases were reported, of which 55 were confirmed 
by using standard laboratory diagnostic techniques. Thirteen 
of the 55 laboratory-confirmed cases were excluded because 
the patient was not seen in a health care clinic and therefore 
an appropriate control that would account for access to care 
could not be selected. Although we considered selecting 
controls from the nearest clinic to the patient’s village, further 
investigation showed that patients do not consistently seek 
care in the nearest clinic, and thus these cases were ultimately 
excluded from our analysis. Significant errors in geocoding of 
the locations of residence of six laboratory-confirmed cases 
were identified; thus, these cases were excluded. In total, 36 
case and 72 control points selected from 32 case villages and 
61 control villages were included in our model development 
( Figures 1  and  2 ). The median coverage areas and the density 
of physical structures (number of digitized huts divided by the 
area encompassed by the village boundaries) were similar for 
case and control villages (χ2 ≤ 0.96, degrees of freedom [df] = 1, 
 P  ≥ 0.33, by Wilcoxon rank sums tests). 

    Summary of plague risk model.   Among the candidate 
models, two were identified as competing (models 3 and 4, 
 Table 1 ). Model 3 was selected as the best because sensitivity 
and negative predictive value estimates were slightly higher 
for that model. The model included positive associations with 
the 1,300-meter elevation cut-off, brightness, and band 3, and 
a negative association with band 6 ( Table 2 ). Similar to the 
other models tested, model 3 indicated that plague risk was 
higher above 1,300 meters than below. In addition, plague risk 
increased with increasing brightness values, which is often 
used as a measure of bare soil. However, it is important to note 
that brightness had only a small effect on model performance, 
as seen by comparing models 3 and 4 ( Table 1 ). Band 3 was 
strongly negatively correlated with greenness (ρ = −0.834, 
 P  < 0.0001) and thus, indicates that plague risk is lower in 
areas with a lower green vegetation index during the month of 
January when agricultural lands are typically fallow and rainfall 
is scarce. Finally, band 6 had a strong negative correlation with 
wetness (ρ = −0.951,  P  < 0.0001), indicating that plague risk is 
higher in wetter areas. The model was extrapolated across the 
coverage area ( Figure 2 ) to identify the distribution in risk. 
Model residuals were randomly distributed (Moran’s I = 0.45, 
 P  = 0.20) and the leave-one-out evaluation showed that the 
model was not particularly sensitive to any individual point 
used to construct the model (average AUC = 0.81, range = 
0.80–0.83). 

      Model 3 had an overall accuracy of 81%. In total, 32 of 
36 case locations were correctly classified by the model as 
elevated risk, yielding a sensitivity of 89%. Specificity was 
71%, with 51 of 72 control locations classified as low risk. The 
model predicted that 53 of the hut locations were expected to 
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fall within areas of elevated risk and 32 of these corresponded 
with case locations, thus yielding a positive predictive value of 
60%. Given the low frequency of plague cases in this region 
and the single year of data used to evaluate the model, we 
believe this is an acceptable value. The negative predictive 
value was 93% with 51 of the 55 points expected to be situated 
within low risk areas identified as controls. 

 For each village, we calculated the percentage of the total 
area that was classified by the model as elevated risk. For case 
villages, the median percentage of risk area was 76.5% (range = 
0.01–100%), whereas the median percentage of risk areas 
within control villages was 41.6% (range = 0.002–100%; χ 2  = 
25.63, df =1,  P  < 0.0001). Risk pixels were contained within all 
villages, regardless of its designation as a case or control. To 
determine if the proportion of huts falling within risk areas 

differed between case and control villages, we calculated the 
percentage of huts within each village that were located within 
an area identified as elevated risk. On average, 79% (median 
value with range = 0–90%) of huts in case villages were located 
within areas identified by the model as elevated risk, whereas 
only 38% (range = 0–91%) of huts in control villages were 
located within pixels classified as elevated risk (χ 2  = 25.97, 
df = 1,  P  < 0.0001). Thus, although all villages evaluated in our 
study contained areas of elevated risk, the distribution of risk 
areas with respect to locations of housing appears to have dif-
fered between case and control villages. 

 Finally, to determine whether risk coverage was signifi-
cantly associated with plague incidence during 1999–2007, 
we constructed a linear regression of parish-level incidence 
on the proportion of each parish classified as elevated risk. 

 F igure  2.    Predicted distribution of areas at elevated risk for exposure to  Yersinia pestis  within the area of interest (AOI) in the West Nile region 
of Uganda and in neighboring regions of the Democratic Republic of Congo. Shaded areas represent pixels classified as elevated risk; the color 
gradient indicates the probability of case occurrence within areas of elevated risk based on dichotimization at a probability value of 0.37. Input vari-
ables included in the predictive model include positive associations with elevation above 1,300 meters, brightness, and Landsat Enhanced Thematic 
Mapper Plus (ETM+) band 3, and a negative association with Landsat ETM+ band 6.  Insets  show the AOI and parish level incidence for Ugandan 
parishes within the AOI. This figure appears in color at  www.ajtmh.org .    
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This construction yielded a significant positive association in 
which the proportion of the parish at risk explained 27% of 
the variation in incidence (incidence = –0.378 + 17.96 × pro-
portion of parish classified as elevated risk; F = 74.26, df = 1, 
205,  P  < 0.0001). Similar to the model of Winters and others, 22  
Ayavu parish was identified as an outlier, with the reported 
incidence being much higher than expected by the model. 
When this parish was excluded from the analysis, 42% of the 
variation in incidence was explained by the proportion of the 
parish classified as elevated risk (incidence = –0.778 + 18.55 × 
proportion of parish classified as elevated risk; F = 145.23, 
df = 1, 204,  P  < 0.0001). 

    DISCUSSION 

 Plague prevention and control activities typically include 
conducting surveillance of host and vector populations to 
identify evidence of epizootic activities and educating the pub-
lic to seek care for signs and symptoms indicative of  Y. pestis  
infection and to eliminate or reduce food and harborage for 
rodents in and around homes and workspaces. 31  In Uganda, 
the implementation of these activities is most often conducted 
at the village or even sub-village spatial scale, and typically as 
a reactive activity to human cases. Therefore, fine-scale spa-
tial representation of areas posing an elevated risk of plague 
activity is valuable for prioritizing such efforts. Because of 
privacy concerns and reporting conventions, it has been com-
mon practice to present epidemiologic data based on admin-
istrative boundaries such as countries, counties, or sub-county 
boundaries. 16,  22,  25,  32,  33  Such aggregating of data obscures signifi-
cant spatial patterns and falsely portrays risk as homogeneous 
across the coverage area. 

 In contrast to previous GIS-based spatial risk models of 
plague in Africa that were created at continental 21  or regional 
spatial scales, 22  our model identified remotely sensed corre-
lates of elevated risk at the sub-village scale. This fine resolu-
tion model may be used to more precisely identify risk factors 
for human exposure to  Y. pestis  and potentially to focus lim-
ited surveillance, prevention, and control resources and, ide-
ally, will enable increased proactive measures and an enhanced 
index of suspicion for plague symptoms in patients from areas 
described as being at risk. Similar to a previous plague risk 
model created at the parish level within the plague-endemic 
West Nile region of Uganda, 22  our model showed that at the 
sub-village scale, plague risk was higher at elevations above 
1,300 meters compared with those below this elevation. 
Furthermore, remotely sensed covariates that were included 
in the model implied that localities that are wetter, with less 

vegetative growth and more bare soil during the dry month of 
January (when agricultural plots are typically fallow) pose an 
elevated risk of plague case occurrence. The associations with 
elevated plague risk in higher and wetter areas are consistent 
with qualitative observations made by Hopkins in 1949. 34  

 The reasons why these variables are indicative of elevated 
plague risk have not been evaluated explicitly. However, we 
speculate that the spectral signatures used in our model may 
be detecting areas with more intensive agriculture. To con-
firm this possibility, future studies are needed to classify fine-
scale land use patterns and their association with plague risk. 
Nonetheless, we believe such an association with agricultural 
intensity and plague case occurrence is biologically plausi-
ble. According to a trophic cascade hypothesis, 35–  37  areas with 
increased primary production of food crops may increase 
the carrying capacity of rodents. Several quantitative models 
have demonstrated that the probability of plague epizootics, 
which represent periods when humans are at greatest risk for 
exposure to infectious fleas, 38  is dependent on reaching criti-
cal thresholds of key rodent hosts. 39,  40  If the crops produced 
in these plots are later stored within housing structures, as is 
common practice in this region, 25  infected rodents and their 
fleas may be drawn into human habitations, thus increasing 
the likelihood of contact between humans and infectious fleas. 
In addition, the positive association with wetness, as expressed 
by the inclusion of band 6, may be indicative of conditions that 
are conducive to flea survival. In general, fleas are suscepti-
ble to desiccation-induced mortality, 41  particularly when tem-
peratures are fairly high as they would be during the month 
of January when the Landsat images were captured. Vectorial 
capacity models suggest that as flea survivorship increases, the 
probability of flea-borne transmission also increases. 42,  43  

 Overall, the model performed well at the point, village, 
and even parish evaluation levels. However, it is important to 
note that the point-level model was evaluated by using data 
included in the build set that may optimistically bias the model 
evaluation. As surveillance activities continue over the years, 
model performance should be re-evaluated, and the model 
should be fine-tuned, if necessary. At the point scale, the model 
was 89% accurate in classifying areas from which plague cases 
were reported as elevated risk. However, 11% of case homes 
were situated in areas classified as low risk. We assumed that, 
similar to other plague foci, 17,  18,  44–  47  most plague cases occur 
in the peridomestic setting. This finding was supported by 
the observation that a higher proportion of case homes, rela-
tive to controls, were located within pixels classified as ele-
vated risk. However, we did not interview patients or conduct 
environmental investigations to evaluate whether every case 
included in our study was most likely exposed in or near his 
or her home. Additionally, this error could be attributed to the 
fact that not all risk factors could be identified by available 
input variables. By the corollary, the high model sensitivity 
could arise when the elevated risk area is over-estimated. For 
example, if 100% of the coverage area is classified as elevated 
risk, all cases should occur within areas of elevated risk. This 
occurrence does not appear to be the case in our model, which 
significantly reduced the area of elevated risk ( Figure 2 ) and 
reported a specificity of 71%. 

 It is noteworthy that 29% of controls were located within 
areas of elevated risk. This finding may be attributed in part 
to the fact that our study focused on only one year in which 
human plague cases were confirmed. It is possible that these 

 T able  2 
  Parameter estimates for the selected multivariate logistic regression 

model (model 3,  Table 1 ) predicting areas of elevated risk for expo-
sure to  Yersinia pestis  in the West Nile region of Uganda *   

  *   df = degrees of freedom. ETM+ = Enhanced Thematic Mapper Plus. Whole model test 
χ 2  = 25.53, df = 4,  P  < 0.0001; goodness of fit χ 2  = 111.15,  P  = 0.15.  

Model covariates

Parameter estimate Likelihood ratio test

Estimate SE χ 2 df  P 

Intercept −5.00 2.31 5.18 1 0.02
1,300 meter elevation cut-off 2.06 0.65 20.79 1 < 0.0001
Landsat ETM+ band 3 0.16 0.06 6.61 1 0.01
Landsat ETM+ band 6 −0.13 0.05 6.60 1 0.01
Brightness 0.01 0.03 0.14 1 0.71
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localities did not experience epizootic activity in the year of 
interest, but could pose a threat over the long-term. Previous 
studies in this region have shown that the distribution of 
zoonotic hosts and their vectors are not evenly distributed 
across the landscape or over time. 26,  48  Thus, some areas that 
contain the environmental characteristics that may support 
epizootic activity may be quiescent at any given point in time. 
Additionally, this finding emphasizes that case occurrence is 
not dictated entirely by environmental or landscape factors 
identified by our model. Preventative behaviors such as avoid-
ance of sick or dead animals, reducing rodent food and harbor-
age in and around homes, and avoiding contact with fleas 31,  45,  46  
may have reduced the likelihood of human infection in some 
areas. Our study did not evaluate prevention and control mea-
sures that may have been implemented and environmental sur-
veillance activities were not conducted as part of this study to 
determine if any of these areas were experiencing plague epi-
zootics. However, our model results may be used to control for 
known environmental and landscape risk factors within future 
case–control studies aimed at understanding either human 
behavioral risk factors, or fine-scale environmental factors 
that cannot be detected using remote-sensing technology (e.g., 
spatial heterogeneity in the abundance and diversity of rodent 
hosts and their vector fleas 26 ). Targeted investigations of areas 
classified as high risk that continue not to report plague cases 
may provide insight into subtle differences in housing, crops or 
behavior that prove protective. 

 It is important to note that the positive predictive value for 
the model was only 60%. That is, in 60% of point locations 
where the model classified an area to be elevated risk, a case 
occurred in that location. This finding may be explained by 
the reasons given above, namely that plague epizootics do not 
occur every year in localities that are conducive to such activi-
ties and human behavior can enhance or reduce the proba-
bility of human case occurrence. Not surprisingly for a rare 
disease, the negative predictive value was quite high, indicating 
that 93% of locations that were classified as low risk did not 
yield a case. Although this information may be informative in 
allocating prevention and control resources, it is worth empha-
sizing that areas of elevated risk occur throughout the West 
Nile region, and health care providers and the public should 
remain vigilant in their attempts to recognize epizootic activ-
ity regardless of whether a particular area is categorized as 
low or elevated risk. This point is underscored by the observa-
tion that, although case villages contained a higher proportion 
of homes located within elevated risk pixels, areas of elevated 
risk were detected in all villages, regardless of whether a 
plague case had been reported. 

 Finally, extrapolation of our model into neighboring regions 
in the Democratic Republic of Congo agrees with previous 
reports of continued epizootic activity across the international 
border in Orientale Province. 23,  49  Thus, successful efforts to 
control plague in the West Nile region require regional imple-
mentation of prevention and control measures. However, it 
is important to note that because of a lack of available fine-
resolution data on where laboratory-confirmed plague cases 
are occurring in the Democratic Republic of Congo, the model 
has not been evaluated in that country and our model extrapo-
lation serves simply as a hypothetical risk surface for that area. 
Our study follows World Health Organization recommenda-
tions 49  to integrate GIS technology and statistical modeling to 
better define the areas of elevated risk in this region, which 

may reduce the costs of plague surveillance by targeting high-
risk areas. Future studies are required to evaluate the accuracy 
of model predictions in the Democratic Republic of Congo 
and to identify risk factors for human exposure to  Y. pestis  that 
were not included in our model. We believe that the model 
presented here demonstrates that environmental and land-
scape features play a large part in classifying an area as eco-
logically conducive to plague activity. However, it is clear that 
future studies aimed at identifying behavioral and fine-scale 
ecological risk factors in the West Nile region are required to 
fully assess the risk of human exposure to  Y. pestis . 
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