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     INTRODUCTION 

 In the past two decades, technological capacity to map and 
model spatial patterns of risk for exposure to arthropod vec-
tors and vector-borne pathogens has progressed rapidly. 1–  4  
Geographic information system (GIS) and remote sensing 
software have become more user-friendly and are now com-
plemented by easy-to-use tools to assess spatial and space-time 
clustering, such as SaTScan™ and the DYCAST system. 5,  6  New 
mapping software, such as Google Earth™ and MS Virtual 
Earth™, 7,  8  provides basic and easy-to-use capacity to generate 
not only spatial data overlaid on pre-existing satellite imag-
ery or map representations, but also dynamic illustrations of 
space-time patterns that can be played as movie clips. 9–  11  These 
developments provide extended capacity to determine and 
present spatial patterns of disease incidence, or of occurrence 
of vectors or vector-borne pathogens. Geographic information 
system and other mapping technologies are now routinely 
used in academic institutions and by public health agencies at 
national, state, county, and city levels in the United States. 

 We also have seen explosive development in the field of 
web-based information delivery, which now provides an effec-
tive medium to distribute maps to a wide range of stakeholders 
including the medical community, vector control practitioners, 
policy makers, and the public at large. 12,  13  Using West Nile virus 
(WNV) disease as an example, maps showing spatial distribu-
tions of cases or incidence of West Nile fever (WNF) or West 
Nile neuroinvasive disease (WNND) are readily available 
from the Centers for Disease Control and Prevention web-
site ( http://www.cdc.gov/ncidod/dvbid/westnile/index.htm ), the 
U.S. Geological Survey Disease Maps website ( http://disease
maps.usgs.gov/index.html ), and from many state or local health 
department websites in WNV disease-endemic areas. Such 
maps can be used as tools to target limited prevention, surveil-
lance and control resources to high-risk areas for WNV expo-
sure, and to inform the public about local risk levels. 

 However, with this new technological capacity to deter-
mine and present spatial risk patterns comes a series of ques-

tions regarding how it should be used responsibly in public 
health. Benefits and drawbacks of using entomological versus 
epidemiologic data in spatial risk assessments, and the impor-
tant issue of uncertainty in pathogen exposure locations for 
patients afflicted with common vector-borne diseases such as 
WNV disease and Lyme disease, were discussed previously for 
important vector-borne diseases in North America. 9,  14,  15  We 
apply quantitative statistical methods to explore two ques-
tions that have not been adequately addressed in the United 
States for vector-borne diseases: 1) How are estimates of 
vector-borne disease occurrence influenced by spatial scale 
of data aggregation (i.e., county versus census tract)? and 
2) What is the extent of concordance among spatial risk pat-
terns based on disease case counts versus disease incidence 
for commonly used spatial boundary units such as county, cen-
sus tract, and zip code? As a case study to address these ques-
tions, we use epidemiologic data for WNV disease in Colorado 
during the outbreak years of 2003 (total = 2,947 WNV disease 
cases reported from the state) and 2007 (578 reported WNV 
disease cases). 

   MATERIALS AND METHODS 

  Epidemiologic and GIS-based data.   The study was based 
on WNV disease cases reported to the Colorado Department 
of Public Health and Environment during 2003 and 2007, 
which represent two outbreak years in Colorado with 2,947 
WNV disease cases, including 622 WNND cases, reported in 
2003 and 578 WNV disease cases, including 100 WNND cases, 
reported in 2007. 16  The ratios of WNF to WNND cases were 
3.7:1 in 2003 and 4.8:1 in 2007. The epidemiologic database 
provided by the Colorado Department of Public Health 
and Environment included for each case information for 
county, zip code, and census tract of residence, date of onset 
of symptoms, and whether the case was classified as WNF or 
WNND. No personal identifiers were included in the database. 
The epidemiologic database was complemented with GIS-
derived data for geographic boundaries (county, zip code, 
and census tract; Environmental Systems Research Institute, 
Redlands, CA) and 2004 human population (data from the 
U.S. Census Bureau provided by the Environmental Systems 
Research Institute). 
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 Cases were aggregated to census tract, zip code and county 
units, and cumulative disease incidence (hereinafter referred 
to as incidence per 100,000 person-years) was calculated for 
2003 and 2007 combined. Combining cases from 2003 and 2007 
was justified because WNV disease incidences in Colorado 
were significantly correlated in these outbreak years for the 
county scale (Spearman rank correlation, ρ s  = 0.737, n = 64, 
 P  < 0.001), the census tract scale (ρ s  = 0.434, n = 1,075,  P  < 
0.001), and the zip code scale (ρ s  = 0.459, n = 443,  P  < 0.001). 
Aggregating cases to county, zip code, and census tract units 
was based on the assumption that the likely WNV exposure 
site was located within the specific boundary unit where the 
residence was located. This assumption undoubtedly intro-
duces some degree of error because of occupational, recre-
ational, or travel exposures where persons are exposed outside 
their resident zip code, census tract, or county. However, in the 
absence of reliable information for probable WNV exposure 
sites in WNV disease patient case files, use of residence as the 
assumed exposure location is the best available solution. 

 Descriptive mapping combined all reported WNV disease 
cases (WNF and WNND cases) because our main interest was 
in risk of exposure to WNV rather than disease manifestations. 
Furthermore, analysis of data from 2003 and 2007 showed sig-
nificant correlations between numbers of WNF and WNND 
cases for the county scale (excluding counties reporting no 
WNV disease cases; 2003, ρ s  = 0.851, n = 47,  P  < 0.001; 2007, 
ρ s  = 0.684, n = 34,  P  < 0.001) and the census tract scale (exclud-
ing census tracts reporting no WNV disease cases; 2003, ρ s  = 
0.128, n = 737,  P  < 0.001; 2007, ρ s  = 0.161, n = 312,  P  < 0.005). 
Data for true infection rates for WNV in Colorado are not 
available because many infections are inapparent or cause 
only mild symptoms that are unlikely to result in visits to phy-
sicians, laboratory confirmation of WNV exposure, and case 
reporting. Studies from the United States indicate that approx-
imately 80% of human WNV infections are asymptomatic. 17  

 The statistical analysis of spatial disease case patterns by 
county versus census tract described below was conducted for 
1) all WNV disease cases combined and 2) WNND cases. The 
rationales for conducting a separate analysis for WNND are 
that 1) WNV disease cases manifesting in the less severe WNF 
form are far more likely to go undetected or unreported com-
pared with WNND cases, which often require hospitalization, 
and 2) WNF is potentially subject to greater awareness and 
testing bias compared with WNND. The side-by-side analyses 
for WNND cases and all WNV disease cases combined helped 
us determine if using only WNND cases would result in dif-
ferent spatial patterns compared with combining WNF and 
WNND cases. 

   Spatial model to partition variance of disease incidence at 
county and census tract scales.   The WNV disease and WNND 
incidence data for the census tract and county spatial boundary 
units in Colorado were used to explore the degree to which 
representations of spatial variability in risk are influenced 
when data are aggregated to county versus census tract. Zip 
codes were not used in this analysis because, unlike census 
tracts, they do not always nest within counties. To identify how 
variance of WNV disease or WNND incidence was partitioned 
across counties and within counties, a generalized linear 
mixed-effects (GLME) model was fitted to the data with the 
response variable being incidence per 100,000 person-years 
(2003 and 2007 combined) reported to the specific spatial unit 
(census tract or county). The population of each spatial unit 

was assumed to be fixed and the model assumed a binomial 
distribution for the responses. The GLME model specification 
is 

  h   ij   =  b  0  +  u   i   +  v  ij  

 where  h   ij   is the linear predictor for the  j th census tract in 
county  i ,  b   0   is the intercept,  u   i  , and  v   ij   are random effects for 
county  i  and census tract  j  in county  i . Case counts were mod-
eled according to the logistic model 18  and  u   i   and  v   ij   were dis-
tributed as a conditionally autoregressive (CAR) model 19,  20  
because exploratory data analysis of the residuals showed 
spatial dependence among data for WNV disease and WNND 
(based on Moran’s I statistic and neighbor and distance 
weights matrices). Models were fitted using only the distance 
spatial weights matrix (assuming that the strength of the cor-
relation between spatial units is inversely proportional to the 
distances between their centroids) because previous studies 21  
indicated that unintended correlation results can occur when 
a neighbor spatial weights matrix (equal correlation among 
adjacent spatial units) is used in a CAR model. 

   Hot-spot analysis.   For WNV disease, we also conducted 
hot-spot analyses based on the Getis-Ord Gi* statistic (using 
the Spatial Analyst in ArcGIS 9.2; Environmental Systems 
Research Institute) to determine presence of local clustering 
of census tracts, within a given county, with either high or low 
WNV disease incidence based on Z-score values. 22  A separate 
analysis was conducted for each county. A high and positive 
Z score value indicates that a census tract is surrounded by 
other census tracts reporting high WNV disease incidence 
(hot-spot). A high but negative Z-score value indicates that 
a census tract is surrounded by census tracts reporting low 
WNV disease incidence (cool-spot). 

   Disease case count versus incidence.   Zip code, census tract, 
and county were used to determine the extent of concordance 
for spatial patterns of areas characterized by high risk of 
exposure to WNV based on WNV disease case counts versus 
WNV disease incidence. As before, this analysis was conducted 
using combined WNV disease data for 2003 and 2007. For 
each spatial unit (zip code, census tract, county) and disease 
risk estimate (case count, case incidence), we systematically 
categorized risk by quartiles. The WNV disease case counts 
and WNV disease incidences falling within the fourth quartile 
were considered high risk and used to determine the degree 
of concordance for spatial patterns of high-risk areas for 
case count versus incidence for each of the three spatial 
boundary units examined. This determination was achieved 
by contingency table analysis. In addition, we determined 
the overall degree of correlation between case counts and 
incidence for the three spatial scales using Spearman’s rank 
correlation. 

   Statistical analyses and map development.   Statistical anal-
yses were conducted using the S-PLUS ®  version 8.0 (TIBCO 
Software Inc., Palo Alto, CA) and JMP ®  7.0.1 (SAS Institute 
Inc., Cary, NC) statistical packages. Maps were developed using 
ArcGIS 9.2 (Environmental Systems Research Institute). 

    RESULTS 

  Basic description of spatial patterns for WNV disease case 
counts and WNV disease incidence.   During 2003 and 2007, 
a total of 3,525 human WNV disease cases were reported to 
the Colorado Department of Public Health and Environment. 
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Larimer, Boulder, and Weld counties in north central Colorado 
accounted for the largest numbers of WNV disease cases during 
these two years with totals of 650, 537 and 507, respectively. 
In contrast, the highest WNV disease incidences occurred in 
the northeastern part of the state, with Logan, Sedgwick, and 
Phillips counties reporting 293, 273 and 228 cases, respectively, 
per 100,000 person-years compared with 92–116 cases per 
100,000 person-years for Boulder, Larimer, and Weld counties 
( Figure 1 ). In the western, mountainous part of Colorado, Mesa 
and Delta counties reported the highest incidence rates (16–
27 cases per 100,000 person-years) ( Figure 1 ). Spatial patterns 
for WNV disease case counts and WNV disease incidence 
are displayed visually by county, census tract, and zip code in 
 Figure 2 . 

     Spatial model to partition variance of WNV disease and 
WNND incidence at county and census tract scales.   Significant 
spatial autocorrelation was detected from the residuals of 
the GLME model for WNV disease for county (neighbor 
weights matrix, Moran’s I = 0.63,  P  < 0.01; distance weights 
matrix, Moran’s I = 0.48,  P  < 0.01) and census tract (neighbor 
weights matrix, Moran’s I = 0.22,  P  < 0.01; distance weights 
matrix, Moran’s I = 0.08,  P  = 0.03). The analysis for WNND 
provided similar results, with spatial autocorrelation occurring 

for county (neighbor weights matrix, Moran’s I = 0.28,  P  < 
0.01; distance weights matrix, Moran’s I = 0.25,  P  < 0.01) and 
census tract (neighbor weights matrix, Moran’s I = 0.15,  P  < 
0.01; distance weights matrix, Moran’s I = 0.11,  P  < 0.01). 

 To model the observed spatial dependence, CAR models 
were fit to the WNV disease and WNND data. 20  Positive spatial 
correlation among census tracts occurred for counties located 
along the Front Range in north central Colorado (WNV dis-
ease and WNND), in the southeastern part of the state (WNV 
disease), and to the southwest (WNV disease and WNND). 
Negative spatial correlation among census tracts occurred in 
counties dispersed throughout the state for WNV disease and 
WNND. The pattern for spatial correlation for WNV disease 
is shown in  Figure 3 . 

  The scale factors      s  u  
2      and      s  v  

2      had a ratio for WNV disease of 

ˆ u

v

2

2

4 5

3 2
1 41

.

.
.

ˆ  

 with a 95% confidence interval of 0.91–2.26, indicating no sta-
tistical difference from a ratio of 1 and suggesting that the spa-
tial model partitions the total variability between counties and 
census tracts similarly. 

 F igure  1.    West Nile virus disease incidence per 100,000 person-years by county in Colorado based on combined data for the 2003 and 2007 out-
break years. This figure appears in color at  www.ajtmh.org .    
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 with a 95% confidence interval of 0.27–0.80, indicating the ratio 
is statistically less than 1 and suggesting that the spatial model 
attributes more variability to the census tracts than to the coun-
ties. After accounting for spatial dependence, the results thus 
indicate that 1) variability in disease incidence within counties is 
approximately the same as the variability between counties for 
WNV disease and approximately twice the variability between 
counties for WNND, and 2) county-scale determination of spatial 
disease incidence patterns account for only approximately 50% 
of the variance in WNV disease incidence and approximately 
33% for WNND incidence at the finer census tract scale. 

   Hot-spot analysis for WNV disease.   The Getis-Ord Gi* 
statistic identified hot-spot census tracts for WNV disease, 
within a given county, that were surrounded by other census 
tracts reporting high WNV disease incidence and cool-spot 
census tracts surrounded by other low WNV disease incidence 
census tracts. We found numerous instances where hot-spots 
or cool-spots within counties are obscured when WNV disease 
incidence is displayed at the county scale. Denver County 
provided an example of census tract hot-spots occurring 
within a county reporting overall low incidence (17.09 cases 
per 100,000 person-years). As shown in  Figure 4A , eight 
statistically significant ( P  < 0.05) census tract hot-spots were 
identified within this county. Conversely, cool-spots occurred 
in several counties in north central Colorado that reported 
high overall WNV disease incidence (Larimer, Weld, and 
Morgan counties; range = 109.03–134.48 cases per 100,000 

 F igure  2.    West Nile virus disease case counts and incidences per 100,000 person-years in Colorado by county, census tract, and zip code based 
on combined data for 2003 and 2007 and classified as no cases reported or by quartile for the spatial boundary units reporting cases. This figure 
appears in color at  www.ajtmh.org .    
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person-years). Within these counties, 14 census tracts were 
statistically significant cool-spots ( Figure 4B ). 

    Concordance between spatial patterns based on WNV 
disease case count versus incidence.   Spatial patterns for WNV 
disease case counts and WNV disease incidence are shown 
by county, census tract, and zip code in  Figure 2 . Positive 
correlations between case counts and disease incidence 
occurred for all three spatial units but was much stronger for 
census tract (ρ s  = 0.877, n = 1,075,  P  < 0.001) than for zip code 
(ρ s  = 0.238, n = 443,  P  < 0.001) or county (ρ s  = 0.558, n = 64, 
 P  < 0.001). A similar pattern among the spatial units was detected 
for high-risk areas falling in the fourth quartile for each disease 
measure. High-risk counties based on WNV disease case counts 
were distributed throughout the Front Range in the central 
part of the state, whereas high-risk counties based on WNV 
disease incidence more commonly were located in far eastern 
Colorado ( Figure 2 ). Of the 12 counties classified as high risk 
based on WNV disease incidence, 6 were also classified as high 
risk based on WNV disease case counts (50% concordance 
between spatial patterns for high-risk counties based on WNV 
disease case count versus WNV disease incidence;  Table 1 ). 

      High-risk zip codes based on WNV disease case counts 
occurred in three distinct clusters in the north central, north-
eastern, and south central parts of Colorado, whereas high-
risk zip codes based on WNV disease incidence were shifted 
to the far eastern parts of the state ( Figure 2 ). Of the 74 zip 
codes classified as high risk based on WNV disease incidence, 
23 were also classified as high risk based on WNV disease case 
counts (31% concordance;  Table 1 ). In contrast, we found far 
higher concordance (83%) between spatial patterns for high 
risk based on WNV disease case count versus WNV disease 
incidence for the census tract scale ( Table 1 ). High-risk cen-
sus tracts were ubiquitous in northeastern Colorado, occurred 
commonly to the southeast, and were found only sporadically 
in the western, mountainous part of the state ( Figure 2 ). 

    DISCUSSION 

 We used WNV disease in Colorado as a case study to quan-
titatively examine 1) the degree to which estimates of vector-
borne disease incidence is influenced by spatial scale of data 
aggregation (i.e., county versus census tract), and 2) the extent 

 F igure  3.    Spatial correlation of West Nile virus disease incidence among census tracts within a given county based on combined data for 2003 
and 2007. Colorado counties with positive spatial correlation among census tracts are shown in purple, counties with negative spatial correlation 
among census tracts in light blue, and counties containing too few census tracts to calculate spatial correlation in white. Points indicate locations of 
census tract centroids and are color coded by West Nile virus disease incidence. This figure appears in color at  www.ajtmh.org .    
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of concordance between spatial risk patterns based on disease 
case counts versus disease incidence for commonly used spatial 
boundary units. The analyses showed that variability in WNV 
disease incidence within counties is approximately the same as 
the variability between counties, and that county-scale deter-
minations of spatial WNV disease incidence patterns there-
fore account for only approximately 50% of the variance in 
WNV disease incidence that is shown at the census tract scale. 
This pattern was even stronger for WNND, with variability in 
incidence within counties approximately twice the variabil-
ity between counties and the county scale accounting for only 
approximately 33% of the variability evident at the census 
tract scale. Use of the county scale was also found to mask hot-
spots for WNV disease evident at finer scale (census tract or 
zip code) in counties with low overall WNV disease incidence. 
Furthermore, there was high concordance between spatial 
patterns of areas with high risk for exposure to WNV based on 
WNV disease incidence and WNV disease case counts for the 

census tract scale but not for the county or zip code scales. The 
primary weakness of the study, which needs to be addressed in 
prospective follow-up studies, is the lack of reliable informa-
tion for WNV exposure sites for patients. Developing a more 
detailed understanding of the spatial dimensions of WNV 
transmission to humans in different environments, for exam-
ple in urban versus rural areas, is an important next step to 
provide additional data to guide the public health community 
in the choice of appropriate spatial boundary units for presen-
tation of aggregated vector-borne disease data. 

 There is a diverse stakeholder community with an interest 
in spatial patterns of risk for contracting diseases caused by 
vector-borne pathogens. In the specific case of WNV disease, 
stakeholders include federal, state, and local public health 
agencies, mosquito control programs, health care providers, 
purveyors of disease prevention products, and the general pub-
lic. These stakeholders have needs for spatial information that 
differ not only in terms of scale but also in type of information. 

 F igure  4.    Hot spots and cool spots for West Nile virus disease incidence based on combined data for 2003 and 2007 for census tracts located 
within selected counties in Colorado.  A , Denver County with a low overall incidence (17.09 cases per 100,000 person-years) and  B , Larimer, Weld, 
Morgan, and Logan counties with high overall incidences (range = 109.03–134.48 cases per 100,000 person-years). Points indicate locations of census 
tract centroids and are color coded to indicate presence of statistically significant ( P  < 0.05) hot or cool spots of West Nile virus disease incidence. 
A separate analysis was conducted for each county. This figure appears in color at  www.ajtmh.org .    
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For example, a mosquito control program aiming to implement 
control activities to suppress vector mosquitoes and reduce 
the burden of WNV disease likely will be most interested in 
finding out where high numbers of WNV disease cases occur 
at sub-county scales to focus expensive prevention efforts. 
Conversely, a member of the public seeking information to 
help determine his/her personal risk of exposure to WNV, and 
the need for use of personal protective measures such as repel-
lents, will be more interested in a spatial risk estimate based 
on WNV disease incidence (which accounts for population 
size) in the area of interest. The challenge presented to public 
health map-makers is to present stakeholders with a package 
of suitable and easy-to-understand information for spatial risk 
patterns in electronic map formats while at the same time pro-
tecting patient privacy and carefully considering benefits and 
drawbacks to determination and presentation of risk assess-
ments at different spatial scales. 23  

 Basic options to present information for spatial risk of vec-
tor-borne diseases in map formats include point locations for 
disease cases or aggregation of disease case counts or disease 
incidence to administrative boundary units (summarized in 
 Table 2 ). A map showing individual case point locations is 
obviously the most precise way to present spatial disease data. 
However, this has distinct disadvantages including 1) the pos-
sibility that the address of residence is not the site of pathogen 

exposure, 2) a lack of accounting for population size, and 3) in 
some countries, including the United States, strict regulations 
to guide the use of patient health information. 24–  26  The latter 
issue can be addressed by random offsets from the actual loca-
tion of the patient’s residence but this essentially means that 
an inaccurate disease case location map is presented. 

     A commonly used approach to avoid privacy issues is to 
aggregate disease case counts or disease incidence to adminis-
trative boundaries. This approach in turn raises the issue of the 
modifiable areal unit problem, 27  which occurs when numerical 
results vary when the same set of data is grouped at different 
levels of spatial resolution, and raises the question of which 
boundary unit best captures the variability of spatial vec-
tor-borne disease data without compromising data quality. 23  
Another issue to consider is that data collection practices for 
patients afflicted with common and less severe vector-borne 
diseases, such as WNF and Lyme disease, often do not enable 
reliable determination of probable pathogen exposure sites. 15  
This issue introduces uncertainty for pathogen exposure sites 
related to recognized disease cases and places restrictions on 
the use of fine spatial boundary units such as census blocks. 
In the United States, the Centers for Disease Control and 
Prevention and nearly all individual state health agencies 
provide spatial WNV disease information to the public at the 
county scale. One exception is the Colorado Department of 
Public Health and Environment, which in addition to county-
based information, also provides maps for WNV disease inci-
dence by census tract. 

 Although our results provide a compelling argument for 
display of risk patterns for exposure to vector-borne patho-
gens at sub-county scales, there are several problems that need 
to be considered before sub-county information is presented 
to end-users. There is no question that sub-county variabil-
ity exists for risk of exposure to mosquito and tick vectors of 
human pathogens such as WNV and the Lyme disease spiro-
chete,  Borrelia burgdorferi , in the United States. 28–  32  The basic 
problem when working with sub-county spatial risk patterns 
developed based on epidemiologic data is to determine which 
of the resulting patterns are real and which are likely to be 
analysis artifacts. Such artifacts may occur for several reasons 
including that 1) case files for common vector-borne diseases, 
such as WNV disease and Lyme disease, often lack informa-
tion for likely site of vector and pathogen exposure and thus 
the address of residence may not be the exposure location; 

 T able  2 
  Options for presentation of spatial patterns of vector-borne diseases  

Method Advantages Disadvantages

Disease case 
point locations

Fine-scale information allowing for precise communication of disease 
risk. Facilitates development of predictive spatial risk models from 
knowledge of case point locations (based on kriging interpolation, 
associations of case locations with environmental factors, etc). Not 
subject to modifiable areal unit problem.

Privacy issues associated with dissemination of 
information for disease case locations (can be 
addressed by random offsets from actual case 
locations). Address of residence may not be the 
site of pathogen exposure. May simply reflect 
population density.

Aggregate of 
disease cases

Useful for targeting vector control resources to the areas with the 
highest case loads. Improved likelihood that the probable site of 
pathogen exposure is included within the boundary unit 
associated with the address of residence.

Less precise compared with disease case point 
locations. Subject to modifiable areal unit 
problem. May simply reflect population density.

Aggregate of 
disease incidence

Disease risk measure that accounts for population and thus reflects 
level of personal risk. Improved likelihood that the probable site of 
pathogen exposure is included within the boundary unit associated 
with the address of residence.

Less precise compared with disease case point 
locations. Under-represents total variance. Subject 
to modifiable areal unit problem. Problematic for 
boundary units with low population bases.

 T able  1 
  Concordance between spatial patterns for high-risk areas based on 

WNV disease incidence versus WNV disease case counts for the 
county, zip code, and census tract scales, Colorado *   

WNV disease incidence

WNV disease case count

High risk † Other ‡ % Concordance

County scale
High risk† 6 6 50
Other‡ 6 46 88

Zip code scale
High risk† 23 51 31
Other‡ 51 318 86

Census tract scale
High risk† 158 33 83
Other‡ 33 851 96

  *   WNV = West Nile virus.  
  †   Spatial units with WNV disease case counts or WNV disease incidences falling within the 

fourth quartile for each spatial scale were considered high risk.  
  ‡   Spatial units either lacking cases and with incidence of 0, or falling within the first to 

third quartile.  
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2) information that a case has occurred may result in other 
nearby cases being detected through increased risk percep-
tion and health care seeking; and 3) lack of access to health 
care among lower income zip codes or census tracts may pre-
vent reporting and thus mask the presence of disease in those 
areas. These problems also occur at the county scale but can be 
assumed to have greater impact at sub-county scales.  

 One way to evaluate the accuracy of sub-county scale risk 
patterns that are based on epidemiologic data is to develop 
complementary spatial models based on entomological risk 
measures such as abundance of vectors or pathogen-infected 
vectors and compare the spatial patterns based on epidemio-
logic versus entomological data. 14,  32,  33  Concordance between 
epidemiologic and entomological risk measures can validate 
sub-county scale risk patterns, whereas discordance indicates 
the need for additional investigations. For example, ground-
based entomological surveillance in areas with high projected 
epidemiologic risk but low projected entomological risk can 
be used to assess whether the observed epidemiologic pattern 
represents real risk or more likely is a data artifact. 

 When choosing the most appropriate spatial scale to use for 
presentation of epidemiologic data for vector-borne diseases 
to stakeholder communities, we are faced with a situation 
where use of the county scale obscures variability in spatial 
risk patterns evident at sub-county scales. However, use of 
sub-county scales introduces more potential error in terms of 
actual pathogen exposure location not falling within the spa-
tial boundary unit containing the case’s residence. Prospective 
studies are urgently needed to determine the extent of this 
error for county versus sub-county scales for various vector-
borne diseases. Use of sub-county units with small popula-
tion sizes may also present the problem of unstable incidence 
rates. 23  Numerous spatial statistical smoothing methods exist 
to deal with the problem of rate instability including local-
area averaging or geostatistical smoothing such as kriging. 34,  35  
Finally, our findings also highlight the need to present maps of 
vector-borne disease incidence at either county or sub-county 
scales together with information on the limitations for the 
scale at which data are presented. 

  Figure 2  provides a powerful visual example of the value of 
side-by-side presentations of spatial disease patterns based on 
case counts versus incidence. At the county scale, there was 
low overall correlation between WNV disease incidence and 
case counts and poor concordance (50%) for counties cate-
gorized as high risk for WNV exposure based on case counts 
versus incidence. Because some stakeholders are better served 
knowing disease case counts (e.g., mosquito control programs) 
whereas other stakeholders need information based on disease 
incidence (e.g., general public), our findings argue for presen-
tations of WNV disease data at the county scale that include 
maps showing WNV disease case counts and WNV disease 
incidence. Concordance between high-risk areas determined 
by case counts versus incidence was also poor for the zip code 
scale (31%) but much higher for the census tract scale (83%). 
This pattern of higher concordance for census tracts than for 
either zip codes or counties in Colorado likely results, in part, 
from census tracts having a more uniform population size 
(mean population = 4,427, SD = 2,321) than either zip codes 
(mean population = 10,742, SD = 13,584) or counties (mean 
population = 74,355, SD = 148,158). 

 The analytical methods used in our study on WNV disease 
in Colorado are broadly applicable to vector-borne diseases in 

North America where humans are incidental pathogen hosts. 
These include a wide range of diseases caused by pathogens 
transmitted by fleas (e.g., plague), mosquitoes (e.g., eastern 
equine encephalitis, La Crosse encephalitis, St. Louis encepha-
litis, western equine encephalitis and WNV disease) and ticks 
(e.g., babesiosis, Colorado tick fever, human granulocytic ana-
plasmosis, human monocytic ehrlichiosis, Lyme disease, Rocky 
Mountain spotted fever, tick-borne relapsing fever, and tulare-
mia). The same methods may also be applicable to mosquito-
borne diseases where humans serve as important or primary 
pathogen hosts (e.g., dengue and malaria), but this needs to be 
corroborated in future studies. 

 Our study demonstrates the potential value of using sub-
county scales to determine and present spatial assessments 
of risk for vector-borne pathogens based on epidemiologic 
data. It also underscores some problem areas that need to 
be addressed in future studies including 1) development of 
a more detailed understanding of the spatial dimensions of 
WNV transmission to humans in different environments to 
assess the potential for increases in error of spatial assigna-
tion of WNV disease cases by address of residence at census 
tract or zip code scale, compared with the county scale, related 
to pathogen exposure occurring outside of the census tract 
or zip code of residence but within the county of residence, 
and 2) assessment of how data collection practices could be 
changed to provide improved information regarding poten-
tial pathogen exposure sites without placing undue burdens 
on the medical community. Other important research needs 
include 1) development of spatial risk models based on ento-
mological risk measures to complement risk assessments based 
on epidemiologic data, and 2) assessment of the extent to 
which model results may differ based on the scale of the data 
used to develop the model (for example home location ver-
sus census tract or county of residence for models based on 
epidemiologic data). The latter question applies not only to 
vector-borne diseases but also broadly to other diseases with 
causes linked to environmental conditions that are spatially 
heterogeneous. 

 There also is need for extensive research on delivery mecha-
nisms for spatial risk maps and other risk assessment informa-
tion to stakeholder communities, especially through web-based 
information delivery mechanisms. This need includes 1) gaining 
a better understanding of what type of information different 
stakeholder groups feel that they require, and 2) determining 
optimal map and text formats to ensure that the message we 
aim to transmit is clear to the user. Evaluating the effect of dif-
ferent data presentations for disease risk (e.g., maps of WNV 
disease case counts versus disease incidence) also merits future 
research because threat perception is closely linked to use of 
personal protective measures such as mosquito repellents. 
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