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Abstract
Chromatin remodelling guided by non-coding RNA (ncRNA) contributes mechanistically to the
establishment of chromatin structure and to the maintenance of epigenetic memory. Various ncRNAs
have been identified as regulators of chromatin structure and gene expression. The widespread
occurrence of antisense transcription in eukaryotes emphasizes the prevalence of gene regulation by
natural antisense transcripts. Recently, antisense ncRNAs have been implicated in the silencing of
tumor suppressor genes through epigenetic remodeling events. Characterization of the antisense
RNAs involved in the development or maintenance of oncogenic states may define ncRNAs as early
biomarkers for the emergence of cancer, and could have a significant impact on the development of
tools for disease diagnosis and treatment. In this review, current knowledge on the mechanisms of
ncRNA-mediated transcriptional gene silencing in humans is discussed, and parallels between the
establishment of a silent chromatin state mediated by siRNAs and long antisense ncRNAs are
highlighted.
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Introduction
Transcriptional gene silencing (TGS) mediated by the siRNA pathway has been well described
in the single-cell organisms Schizosaccharomyces pombe and Tetrahymena thermophila, as
well as in the more complex organisms Arabidopsis thaliana, Drosophila melanogaster and
Caenorhabditis elegans [1,2]. Small RNA-directed TGS has also been observed in human cells
following the exogenous delivery of siRNAs targeted to gene promoters [3]. Additional
evidence has emerged in recent years that suggests an endogenous RNA-mediated TGS
mechanism exists in the nucleus of mammalian cells, acting through long antisense non-coding
RNA (ncRNA) transcripts [4–6]. Studies that have investigated transcriptional activity
throughout the mammalian genome, predominantly from regions with low or no protein-coding
potential [7–17], have revealed an unexpected level of complexity in the mammalian
transcriptome. The regulatory potential of non-coding transcription is only beginning to be
dissected on a case-by-case basis. In this review, parallels and potential interrelations are
discussed between TGS of human genes triggered by exogenously delivered siRNAs, TGS of
tumor suppressors triggered by long antisense ncRNAs, and developmentally regulated
genome-wide programming by the Polycomb group (PcG) of proteins. These three seemingly
distinct phenomena have the underlying common theme of ‘ncRNA-mediated TGS’.
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Mechanism of siRNA-mediated transcriptional gene silencing
Promoter-targeted siRNAs have been demonstrated to inhibit the transcription of various
human and viral genes, including EF1A [3,18], ubiquitin C (UBC) [19], CCR5 [20],
RASSF1A [20,21], the progesterone receptor [22–24], the androgen receptor and huntingtin
[25], the major vault protein and cyclooxygenase-2 [22], cadherin-1 [26], endothelial nitric
oxide synthase [27], oncogene c-MYC [28], viral genes regulated by the long terminal repeat
region of HIV-1 [18,29,30] and simian immunodeficiency virus [31], and the human, as well
as the mouse INK4/ARF locus encoding several tumor suppressor proteins [32]. In these
studies, exogenously delivered siRNAs with a sequence complementary to the target promoter
were capable of triggering epigenetic modifications at the target genomic loci, resulting in the
silencing of gene transcription. Importantly, the antisense strand of siRNA alone was able to
direct sequence-specific TGS via an increase in the epigenetic marks that are characteristic for
silenced chromatin at the target promoter in human cells [18].

Chromatin remodeling in the vicinity and downstream of the initial siRNA target site
accompanies RNA-triggered TGS. For example, an enrichment of the silent chromatin marks
H3K9me2 (dimethylation at Lys9 of histone 3) and H3K27me3 (trimethylation of Lys27 at
histone 3) was observed at siRNA-targeted promoter loci ([3,18–20,30,32–36]; reviewed in
reference [37]). Proteins involved in TGS in humans have not been characterized
comprehensively. The RNA-binding protein argonaute 1 (Ago1) has been established to be
required for the initiation of siRNA-mediated TGS in human cells [19,20,25,30,32,35,36]. In
addition to Ago1, Ago2 [25,32] and TAR-RNA binding protein 2 (TRBP2) [20] were also
observed to be involved in siRNA-mediated TGS in humans. For example, Ago2 and Ago1
were involved in small-duplex RNA-mediated TGS of the progesterone receptor promoter in
T47D cells [25]. In this particular example, TGS was not accompanied by epigenetic
modifications in promoter-associated histones [25]. This study highlighted the possible
existence of different RNA-mediated TGS pathways in human cells that may be regulated by
different factors, and the observation that TGS may not always be accompanied by chromatin
remodeling [25]. However, proteins involved in chromatin remodeling, including the de
novo DNA methyltransferase Dnmt3A [18,19,30], HDAC1 [19,30,36] and the histone lysine
methyltransferases KMT6 (formerly Ezh2) [20,30] and KMT1C (formerly G9a) [19], were
demonstrated to play a role in TGS in humans (Figure 1; for the new nomenclature of
chromatin-modifying enzymes, see reference [38]). The initial steps in TGS are the recruitment
of the Ago1-siRNA nucleoprotein complex to the targeted promoter loci and the interaction of
the complex with a promoter-associated nascent RNA transcribed by RNA polymerase II
(RNAPII) [34]. Transcripts that are targeted by the TGS pathway in a siRNA- and Ago1-
dependent manner in the nucleus are not degraded [37]. Ago1 was also observed to interact
with RNAPII [20]. The RNAPII-Ago1 interaction may actively contribute to the recruitment
of the Ago1-RNA complex to the gene promoter. An analysis of high-throughput sequencing
data of a short-RNA population from mouse embryonic stem (ES) cells and from a genome-
wide nuclear run-on assay in human fibroblasts revealed that widespread and divergent
transcription occurs at promoters over short distances, and that this phenomenon is common
for active genes in higher eukaryotes [39,40]. Depletion of the exosome in human cells
identified a new class of upstream transcripts within promoters (PROMPTs) that are transcribed
in both directions, and the levels of which peak at distances of 1 kb upstream of known protein-
coding genes [41]. These recent genome-wide studies support previous observations that
promoter-associated RNA transcripts associate with several genes and play a role in TGS
[34]. Although the two silent chromatin marks, H3K9me2 and H3K27me3, together with the
Ago1, Dnmt3A and HDAC1 proteins are considered to be hallmarks of siRNA-mediated TGS
in human cells [37], the mechanisms of chromatin modification at promoters remain to be
determined.
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Long-term transcriptional gene silencing
Short hairpin RNA-mediated transcriptional gene silencing

An important aspect of TGS in humans has emerged recently. A short hairpin RNA (shRNA)
targeted to the promoter of the UBC gene in human cells was demonstrated to mediate long-
term transcriptional silencing [19]. Importantly, the suppression of UBC was observed for 1
month, although expression of the shRNA targeting the UBC promoter was induced for only
7 days. TGS was dependent on the presence of a promoter-targeted antisense shRNA, and
additional factors such as Ago1, Dnmt3a and HDAC1, and to some extent the H3K9-specific
lysine methyltransferase KMT1C, but not the H3K27-specific lysine methyltransferase KMT6
[19]. Conversely, the maintenance of long-term TGS was dependent on the DNA
methyltransferases Dnmt1 and Dnmt3a, but was independent of Ago1, HDAC1 or the shRNA
that initially triggered TGS [19]. Methylation of CpG islands in the promoters of human genes
has been established to play a significant role in the stable, long-term epigenetic silencing of
genes throughout healthy development, and in cancer [42]. In addition, the requirement for
Dnmt1, an enzyme responsible for the maintenance of DNA methylation, correlated with the
observed increase in DNA methylation at the UBC promoter [19]. These data suggest that
silencing is established initially at the level of histone methylation, which is subsequently
followed by DNA methylation. After these epigenetic changes have occurred, it is possible to
maintain TGS in a long-term manner without the need for the initial RNA effector molecule
[19]. This example of long-term silencing by a ncRNA is the only published example of long-
term TGS by exogenous RNA effectors [19]. Many cases of long-term TGS by endogenous
long ncRNAs also exist, and are reviewed in reference [43].

Long non-coding RNA-mediated transcriptional gene silencing
The Polycomb and Thrithorax groups of proteins—Polycomb (PcG) proteins act to
repress transcription, whereas the Thrithorax group (TrxG) of proteins act to maintain
transcription. These proteins are important genome-wide regulators that are required to
establish long-term gene expression during development through modulation of the epigenetic
state of chromatin [44,45]. In D melanogaster, PcG response elements (PREs) or TrxG
response elements (TREs) are several hundred base pairs in length and function as the sites of
PcG or TrxG complex recruitment, respectively [44]. The definition of PREs or TREs in
vertebrates has not been established [44,46]. Interestingly, many PREs and TREs appear to be
transcribed from both DNA strands [46]. Hekimoglu and Ringrose suggest, among four
alternative models, one possible model for PcG/TrxG recruitment that is based on an RNA-
RNA interaction: a free RNA transcript binds the PcG or TrxG complex; subsequently, the
PcG-RNA and/or TrxG-RNA complex associates with a complementary nascent RNA
transcript transcribed in the opposite direction, resulting in the recruitment of PcG/TrxG to
bidirectionally transcribed genomic loci [46]. An analogous mechanism was proposed for TGS
in the case of the p21 and E-cadherin tumor suppressors in human cells [47], whereby antisense
RNA transcript spanning a gene promoter targets a nascent promoter-associated RNA
transcribed in the sense direction. This targeting results in recruitment of a putative
transcriptional silencing complex and subsequent formation of heterochromatin in the
promoter region, leading to transcriptional silencing of the target genes [47] (Figure 1).

An example of PcG- and TrxG-regulated genes that are involved in the development of higher
eukaryotes is the HOX family of genes [44]. In a comprehensive study investigating the
transcriptional activity of human HOX loci, 231 ncRNA transcripts with low-coding potential
were identified to be transcribed from the intergenic regions [48]. The majority of these ncRNA
transcripts (74%) were transcribed in an antisense orientation compared with the HOX genes
[48]. The same study identified a long ncRNA termed HOTAIR (Hox antisense intergenic
RNA), which is a 2.2-kb spliced and polyadenylated transcript that is transcribed from the
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HOXC locus. The HOTAIR transcript negatively regulates the distant HOXD locus in trans
through the recruitment of the PRC2 Polycomb complex, which correlates with increased levels
of the repressive H3K27me3 mark on the HOXD locus [48].

Long non-coding RNAs involved in X inactivation—In the case of X chromosome
inactivation, a 17-kb ncRNA transcript in humans [49] and a 15-kb transcript in mice [50], the
X inactive-specific transcript (Xist) mediates silencing of gene expression from one copy of
the X chromosome, the mechanism through which dosage compensation in female mammals
operates during early development [51]. A study in mouse ES cells and embryonic fibroblasts
led to the characterization of a 1.6-kb RepA long ncRNA that was transcribed from the repeat
A element of the XIST locus [52]. The RepA ncRNA recruited the PRC2 Polycomb complex
to the XIST promoter through a direct interaction with the KMT6 subunit of PRC2 [52]. Initial
local trimethylation of H3K27 at the 5′ end of the XIST gene by PRC2 created a heterochromatic
patch that, paradoxically, led to XIST transactivation resulting in widespread X inactivation
[53]. In mice, XIST activity itself was negatively regulated in cis by the 40-kb ncRNA Tsix (X
inactive-specific transcript backwards), which is transcribed antisense to XIST [54]. Tsix also
modulates the chromatin status at the XIST promoter [51]. Interestingly, the transcription of
TSIX through the XIST promoter in the antisense direction is a prerequisite for downregulation
of XIST [55]. Although the Tsix sequence is conserved between mice and humans [54], whether
Tsix-mediated downregulation of XIST occurs in human cells remains to be determined. These
recent insights into the mechanism of X inactivation (reviewed in references [51,56,57])
revealed a complex role for long ncRNAs in the regulation of gene expression through
modulation of the epigenetic status.

Genomic imprinting of autosomal genes—Additional examples of long ncRNAs
involved in genomic imprinting of autosomal genes – a mono-allelic mechanism of gene
silencing based on the parent-of-origin- include Air [58] and Kcnq1ot1 [59] (reviewed in
reference [57]); this mechanism has been studied extensively in mice. Both the 108-kb Air and
the 91-kb Kcnq1ot1 ncRNAs are transcribed by RNAPII [60,61]. These ncRNAs function to
silence large domains of the genome epigenetically through their interaction with chromatin.
The Air ncRNA silences in cis the three paternally inherited genes IGF2R, SLC22A2 and
SLC22A3, which are all within 300 kb, and is transcribed in an antisense direction to IGF2R
and SLC22A3 [58]. Air localizes to the silenced SLC22A3 promoter and recruits the KMT1C
lysine methyltransferase, which leads to targeted H3K9 methylation and allele-specific gene
silencing by chromatin remodeling [60]. The Kcnq1ot1 mRNA is transcribed from intron 10
of the KCNQ1 gene in an antisense direction and silences several paternally inherited genes in
cis that are transcribed in both directions from within a 780-kb region [59,61–63]. Kcnq1ot1
RNA itself is required for epigenetic silencing of neighboring genes upstream and downstream
of the KCNQ1 locus [64]. In addition, epigenetic silencing has been demonstrated to correlate
with the interaction of Kcnq1ot1 with both the PRC2 Polycomb complex and the KMT1C
lysine methyltransferase, as well as with the enrichment of the repressive histone modifications
H3K27me3 and H3K9me3 at the loci of silenced genes [64]. The PRC2 complex has been
identified to be responsible for trimethylation of H3K27 in D melanogaster [65], while KMT1C
is responsible for mono- and dimethylation of H3K9 at Kcnq1ot1-targetted promoters in
mammalian cells [66]. The mechanism of epigenetic gene silencing by long ncRNAs in X
inactivation and in genomic imprinting was recently reviewed comprehensively by Nagano
and Fraser [57],

Interestingly, while Air localizes to the nucleus, spliced versions of this ncRNA have been
demonstrated to localize in the cytoplasm [67]. In comparison, Kcnq1ot1 is polyadenylated,
but not spliced, and localizes exclusively to the nucleus [64]. Introducing an exon/intron
boundary into the KCNQ1 gene had no observable effect on the nuclear localization of
Kcnq1ot1 RNA [64]. Intriguingly, the HOTAIR antisense RNA, which regulates the HOXD
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cluster of genes, is both spliced and polyadenylated [48]. Based on these observations, a striking
aspect of ncRNA biogenesis, that has not yet been assessed comprehensively, is the role of
post-transcriptional processing and the potential influence of this process on the biological
activity and nuclear localization of regulatory ncRNAs.

Transcriptional gene silencing of tumor suppressors in human cells is
mediated by antisense transcription

Many tumor suppressor genes are silenced epigenetically in a variety of cancers [42]. In
addition, various genes associated with CpG islands also undergo de novo DNA methylation
in cancer [42]. Yu et al recognized that several annotated antisense transcripts are associated
with many well-characterized tumor suppressor genes, and investigated the possibility that
antisense RNAs may trigger epigenetic silencing of mammalian genes [68]. In this study, the
p15 antisense RNA transcript was demonstrated to silence p15 expression both in cis and in
trans, although the cis mechanism predominated. Interestingly, eliminating overexpression of
p15 antisense RNA did not reactivate p15 mRNA expression, indicating that long-term
transcriptional silencing was established upon exposure to high levels of the p15 antisense
RNA. In addition, relatively stable silencing of p15 expression correlated with an increase in
H3K9me2 and with a decrease in the transcriptionally active chromatin mark H3K4me2 at the
p15 promoter. However, an increase in p15 promoter DNA methylation was not observed,
suggesting that the formation of heterochromatin rather than DNA methylation of the p15
promoter was a prerequisite for p15 antisense RNA-mediated TGS. Moreover, TGS of p15
induced by the antisense transcript was Dicer-independent, indicating that the mechanism of
p15 silencing did not act through the siRNA/miRNA post-transcriptional gene-silencing
pathway, in which the Dicer complex is a central component [68].

Although most data on the role of siRNAs in TGS demonstrate the ability of these molecules
to silence target gene promoters directly via the initiation of epigenetic changes, treatment of
human cells with siRNAs targeted toward promoter regions also resulted in the transcriptional
activation of E-cadherin and the tumor suppressor p21 genes [69,70]. A subsequent study
conducted to determine the mechanism of siRNA-mediated activation of p21 gene transcription
indicated that the activating siRNAs targeted and post-transcriptionally silenced an antisense
ncRNA transcript associated with the p21 genomic locus [47]. This study therefore revealed
that antisense ncRNAs can negatively regulate their sense counterpart and function as effectors
of TGS in human cells in an Ago1-dependent manner [47]. These data indicated that RNAs
transcribed in an antisense direction can lead to an enrichment of H3K9me2 and H3K27me3
at the sense protein-coding promoter, resulting in TGS. In the case of siRNA-mediated TGS,
the antisense strand of siRNA alone is the effector molecule that triggers TGS in human cells
[18]. Thus, while the studies with siRNAs highlighted potential mechanisms of action, it is the
antisense RNAs that have helped elucidate the underlying mechanism of TGS in human cells
[18]. The direct consequence of an imbalance in endogenous bidirectional transcription could
potentially lead to the deregulation of genes, a situation often observed in various diseases,
including cancer. These data, when considered in the context of previously described data on
long ncRNAs that function in imprinting, such as Xist, Air and Kcnq1ot1, suggest that the
association of antisense ncRNA transcripts that have a regulatory function with the
transcription of protein-coding genes in human cells could be a more common phenomenon
than previously anticipated.
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Chromatin-modifying activities potentially involved in ncRNA-mediated
transcriptional gene silencing

KMT6, and the recently identified mammalian homolog Ezh1 [71,72], are the only known
methyltransferases that methylate H3K27 (a transcriptionally repressive chromatin mark that
is associated with TGS). KMT6 and/or Ezh1 are associated with two other subunits, SUZ12
(JJAZ1) and EED, in the PRC2 and/or PRC3 Polycomb complexes [73,74], which have been
implicated in mediating long-term TGS in mammals (discussed in detail in the Polycomb and
Thrithorax groups of proteins section). Moreover, an interaction between the HDAC1 and
HDAC2 histone deacetylases and the EED subunit of the PRC2 Polycomb complex was
demonstrated in which histone deacetylase activity was required for PRC2-mediated
transcriptional repression, thereby providing a mechanistic link between Polycomb-mediated
gene repression and histone deacetylation [75]. In a subsequent study, an important physical
and functional interaction between KMT6 and the DNA methyltransferases Dnmt1, Dnmt3A
and Dnmt3B in the context of the PRC2 Polycomb complex was demonstrated, whereby KMT6
was required for CpG methylation of Polycomb-targeted promoters [76]. The requirement for
the H3K27me3-specific KMT6 lysine methyltransferase in some cases, together with the
requirement of HDAC1 and Dnmt3a for establishing TGS [37], strongly suggest a role for the
PRC2 and/or possibly the PRC3 Polycomb complex in RNA-mediated TGS. Although
H3K27me3 is undoubtedly linked to TGS, the precise mechanistic role of H3K27-specific
lysine methyltransferase activity in association with the PCR2 and/or PCR3 Polycomb
complexes is unclear, and requires further investigation.

Methylation of Lys9 of histone H3 (H3K9) is an epigenetic hallmark of heterochromatin
formation and transcriptional silencing in eukaryotes [77]. Five lysine methyltransferases have
been identified for which H3K9 is a substrate: KMT1C (G9a), KMT1D (Glp), KMT8 (Riz1),
KMT1E (Eset) and KMT1A/B (Suv39h1/2) ([38]; reviewed in reference [78]). Of these five
methyltransferases, KMT1C appears to be the predominant H3K9 methyltransferase in
mammalian cells [79,80]. A functional interaction between KMT1C-mediated H3K9
methylation and DNA methylation was demonstrated in several studies [81–84]. In particular,
a direct interaction between the histone methyltransferase KMT1C and the DNA
methyltransferase Dnmt1 was reported [82]. In ES cells, the KMT1C/KMT1D complex was
demonstrated to regulate both H3K9 incorporation and DNA methylation, two epigenetic
marks that cooperatively silence gene expression [85]. Furthermore, genetic evidence has
indicated that the DNA methyltransferases Dnmt3A and Dnmt3B are responsible for de
novo DNA methylation at the KMT1C/KMT1D target loci [85]. These data, together with the
observations that KMT1C is required for the long-term silencing of the UBC promoter [19],
suggest that KMT1C is the primary candidate for H3K9-specific methyltransferase activity in
human cells, and should be investigated further.

The DNA methyltransferases Dnmt3A and Dnmt1 had been demonstrated to associate in
vivo with the histone deacetylase HDAC1 [86–89] and with the H3K9-specific
methyltransferase KMT1A [90]. Thus, given the complex network of interactions between
chromatin-modifying proteins, a putative transcriptional silencing complex may mediate TGS
in the nucleus of human cells. As outlined in Figure 1, the transcriptional silencing complex
may contain either the KMT1C or KMT1A H3K9-specific methyltransferases and other
chromatin-modifying proteins, such as the KMT6-containing Polycomb complex PRC2, which
methylates H3K27, HDAC1 and the DNA methyltransferases Dnmt3A and Dnmt1. A
comprehensive characterization of the enzymatic activities responsible for the chromatin
remodeling that accompanies TGS, and further biochemical analysis of protein complexes
involved in TGS in the cell nucleus will be invaluable for gaining insight into the mechanism
of RNA-mediated TGS.
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Parallels between transcriptional gene silencing in development, imprinting
and cancer

Currently, limited data are available on antisense RNA-mediated TGS in the context of tumor
suppressor proteins [47,68]. Nevertheless, studies on TGS of tumor the suppressors p15 and
p21 [47,68] suggest that the mechanism of TGS closely resembles that of developmentally
regulated and imprinted genes, whereby long ncRNAs function in cis in combination with
Polycomb proteins to establish a silent chromatin state and to silence gene expression [47,
68]. The analogy between Polycomb-mediated gene silencing in development and antisense-
mediated epigenetic silencing of tumor suppressor genes in cancer suggests that there is a
common underlying theme among these apparently distinct biological processes. Therefore,
targeting the epigenetic machinery, which involves Polycomb protein complexes and perhaps
DNA methyltransferase complexes, to the epigenetically silenced genes during both
development and cancer could be mediated by a related mechanism involving long ncRNA
transcripts in higher eukaryotes [6].

Evidence suggesting that the well-characterized tumor suppressor genes encoded in the INK4a/
ARF locus, which control cell-cycle progression and senescence, are regulated by Polycomb
proteins was obtained in a study in mice by Jacobs et al [91]. Since this study, the regulation
of the INK4a/ARF tumor suppressor genes has been investigated extensively and the epigenetic
mode of their transcriptional regulation is well established (reviewed in references [92,93]). A
long antisense ncRNA termed ANRIL was detected within the INK4a/ARF chromosomal
region in human cells; the first exon of ANVIL is located in the promoter of the p14/ARF gene
and overlaps two exons of the p15/CDKN2B gene [94]. The role of ANRIL or potentially other,
as yet unidentified, ncRNAs in the regulation of the INK4a/ARF locus has currently not been
established.

Interestingly, in some human cells, including the differentiated fibrosarcoma cell line HT1080
[95] and immature hematopoietic precursor cells [96], the induction of X inactivation was Xist-
responsive outside of the usual discrete developmental window in which expression if the
XIST gene normally occurs [56]. In addition, in a mouse thymic lymphoma model, the induction
of Xist resulted in the initiation of X inactivation and the inhibition of tumor growth [97]. This
study also led to the identification of SATB1, a nuclear matrix protein and genome organizer
[98], and its close homolog SATB2[97] as the first identified cofactors required for Xist-
mediated initiation of X chromosome inactivation [97]. These findings suggest that perturbing
mechanisms of TGS involving Xist ncRNA play a significant role in tumorigenesis. Moreover,
elevated expression levels of SATB1 correlated with aggressive breast tumor phenotypes,
whereby SATB1 upregulated metastasis-associated genes and downregulated tumor
suppressor genes directly [99]. The role of SATB1 in both X chromosome inactivation and
tumorigenesis is notable, and future studies are expected to reveal whether the SATB1/SATB2
proteins have a more general role in RNA-mediated TGS.

Whether long ncRNAs, ubiquitous antisense transcription and Polycomb complexes mediate
transcriptional gene silencing in development, imprinting and cancer in humans remains to be
established. A better understanding of the TGS mechanism mediated by ncRNAs through
epigenetic changes in chromatin will undoubtedly help to resolve these issues.

Conclusion
Transcription in the mammalian genome is pervasive, both in the sense and antisense
directions. Emerging evidence highlights a role and function for ncRNAs in the regulation of
gene expression. While there are clearly differences between the experimental systems
discussed herein, namely siRNA-mediated TGS, Polycomb-mediated silencing of imprinted
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genes and antisense RNA-mediated repression of tumor suppressors, a common underlying
regulatory theme, whereby ncRNAs silence gene transcription through epigenetic
modifications of chromatin within promoter regions, is evident. Only a few proteins involved
in ncRNA-mediated TGS pathways have been identified and attempts to characterize the
underlying ncRNA-mediated TGS mechanism in human cells are at an early stage. A detailed
mechanistic understanding of RNA-mediated TGS of tumor suppressors will contribute
significantly to the understanding of the molecular mechanisms that underlie the early stages
of tumor development. Understanding the TGS mechanism on a molecular level will lead
directly to molecular strategies aimed at preventing tumorigenesis. Restoring physiological
levels of gene expression for tumor suppressors by suppressing the transcription of antisense
ncRNAs in a highly specific manner, using RNAi technology, has significant therapeutic
potential, providing a promising strategy for the treatment of cancer and other diseases by the
targeted control of gene transcription. The identification of a comprehensive set of genes that
appear to be silenced by antisense ncRNAs in various tumor tissues will prove to be a highly
valuable prognostic biomarker for the emergence of cancer.
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Figure 1. A model for the antisense non-coding RNA-mediated initiation of transcriptional gene
silencing in human cells
Antisense RNA associates with the argonaute 1 (Ago1) protein. The RNA-Ago1 complex then
targets the nascent promoter-associated RNA, which is transcribed by RNA polymerase II
(RNAPII) in the sense direction. Subsequently, the putative silencing complex, which may
consist of the PRC2 Polycomb complex (composed of KMT6 [Ezh2], SUZ12 and EED),
HDAC1, the DNA methyltransferases Dnmt3A and Dnmt1 and the histone methyltransferases
KMT1C (G9a) and/or KMT1A (Suv39h1), is recruited to the promoter. Recruitment of the
silencing complex may be mediated through the interaction of Ago1 with Dnmt3a, or directly
through promoter-associated RNA. HDAC1-mediated histone deacetylation may precede
histone H3 methylation at Lys9 and Lys27 (H3K9me2 and H3K27me3, respectively) of the
nucleosomes proximal to the promoter target site. Histone methylation may be mediated by
the candidate lysine methyltransferases KMT6 (for H3K27) and KMT1C (for H3K9) and/or
KMT1A (alternative H3K9 methyltransferases are shown in white), leading to the formation
of heterochromatin at the target promoter. The associations of protein subunits indicate known
interactions.
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